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Abstract

Background: Three kinases: Sch9, PKA and TOR, are suggested to be involved in both the
replicative and chronological ageing in yeast. They function in pathways whose down-regulation
leads to life span extension. Several stress response proteins, including two transcription factors
Msn2 and Msn4, mediate the longevity extension phenotype associated with decreased activity of
either Sch9, PKA, or TOR. However, the mechanisms of longevity, especially the underlying
transcription program have not been fully understood.

Results: We measured the gene expression profiles in wild type yeast and three long-lived
mutants: sch9A, ras2A, and tor| A. To elucidate the transcription program that may account for the
longevity extension, we identified the transcription factors that are systematically and significantly
associated with the expression differentiation in these mutants with respect to wild type by
integrating microarray expression data with motif and ChlIP-chip data, respectively. Our analysis
suggests that three stress response transcription factors, Msn2, Msn4 and Gis|, are activated in all
the three mutants. We also identify some other transcription factors such as Fhll and Hsfl, which
may also be involved in the transcriptional modification in the long-lived mutants.

Conclusion: Combining microarray expression data with other data sources such as motif and
ChlP-chip data provides biological insights into the transcription modification that leads to life span
extension. In the chronologically long-lived mutant: sch9A, ras2A, and tor | A, several common stress
response transcription factors are activated compared with the wild type according to our
systematic transcription inference.

Background the mean or maximum number of daughter cells gener-
The yeast S.cerevisae has become one of the most valuable  ated by individual mother cells [1]. The second, chrono-
model organisms for ageing studies. In this uni-cellular  logical life span (CLS) is a measure of the mean or
eukaryote, two distinct paradigms are used to measure = maximum survival time of populations of non-dividing
longevity. The first, replicative life span (RLS) is defined as  yeast [2]. Yeast RLS has been proposed as a model for the
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ageing of dividing cells of higher eukaryotes, whereas CLS
is believed to better model the ageing of post-mitotic cells
[3-5]. RLS was the first paradigm to be used for ageing
studies. Currently about 50 genes have been implicated in
determining RLS. In comparison, fewer genes have been
shown to regulate the chronological ageing. Recent stud-
ies have indicated three nutrient responsive yeast kinases:
Sch9, PKA, and TOR, as major regulators of both types of
ageing. Sch9 is a yeast kinase homologous to mammalian
serine/threonine protein kinase Akt. Inactivation of Sch9
increases RLS by 30-40% [6] and extends CLS by nearly
three folds [4]. Down-regulation of PKA activity obtained
by introducing mutations in RAS2 and CYRI (encoding
proteins that regulate PKA activity) approximately dou-
bles the CLS of yeast [4,5]. Recently, two high-throughput
screenings were performed in yeast to identify genes that
determine RLS and CLS, respectively. The first screening
identified 10 gene deletions that increase RLS, and 6 of
them (including the deletion of TOR1) correspond to
genes encoding proteins in the TOR pathways [7]. The
other screening identified several TOR-related gene dele-
tions that increase CLS [8]. In yeast, as well as in higher
eukaryotes, Sch9, PKA, and TOR coordinate signals from
nutrients to regulate ribosome biogenesis, stress response,
cell size, autophagy, and other cellular processes [9-12].
Of more importance, mutations that decrease the activity
of the orthologs of these proteins in higher eukaryotes
also extend life span, suggesting that the roles of these
kinases in the regulation of life span are conserved along
evolution [13-17].

Although the roles of Sch9, PKA, and TOR on life span
extension are not fully understood, it is known that some
stress response genes down-stream of these pathways are
required for longevity. In the ras2A cells, the CLS exten-
sion is mediated by stress resistance transcription factor
Msn2 and Msn4, which induce the expression of genes
encoding for several heat shock proteins, catalase (Ctt1)
and superoxide dismutase (Sod2). Transcription regula-
tion of these genes by Msn2/Msn4 depends on the exist-
ence of a stress response element (STRE) in their promoter
regions [5]. Sod2 is required for life span extension in
ras2A and sch9A and over-expression of Sod2 extends lon-
gevity [18]. Moreover, longevity in the sch9A cells depends
on the activity of Rim15 kinase [4]. The kinase Rim15 is
known to integrate signals from TOR, PKA, and Sch9 [19],
and activates Gisl, a transcription factor, which regulates
genes containing a PDS (postdiauxic shift) element and is
involved in the induction of theromotolerance and starva-
tion resistance by a Msn2/Msn4-independent mechanism
[20].

To better understand the function of Sch9, PKA and TOR
kinases in yeast life span extension, we measured the gene
expression profiles of wild type yeast as well as three long-
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lived mutants: sch9A, ras2A, and tor1A using the Affyme-
trix microarray technology. In this paper, we aim to
address the question: what are the transcription factors
that are involved in the longevity of these mutants? A
number of methods have been proposed to answer this
question. A straightforward method is to identity a set of
differentially expressed or co-expressed genes, and then
search their promoter sequences for known transcription
factor binding sites or use de nova motif finding method
to identify enriched motifs [21]. However, results
obtained by this method are sensitive to the selection of
the reference set, the cutoff value and some other factors.
To overcome this problem, a systematic and statistical
approach called PAP (promoter analysis pipeline) is pro-
posed, which suggests an integrated model considering all
of the promoters and characterized transcription factors in
a genome [22]. Other two methods, REDUCER [23] and
MOTIF REGRESSOR [24], identify regulatory motifs in
response to a condition by associating log expression
value of a gene with the motif abundance or motif-match-
ing score in its promoter region using a linear model. In
this paper, we apply two systematic strategies, as does
PAP, to infer the regulatory transcription factor associated
with longevity in sch9A, ras2A, and tor1A cells. The first
strategy is based on motif analysis. We perform de novo
identification of motifs from all the yeast promoter
sequences and then test the enrichment of them in the up/
down-regulated genes of long-lived mutants using gene
expression in wild type yeast as control. The second strat-
egy is based on the ChIP-chip data that measures the con-
nectivity of transcription factors with genes. We seek the
transcription factors that are significantly associated with
up/down-regulated genes in the long-lived mutants. The
schematic representation of our transcriptional inference
in the long-lived yeast mutants is shown in Figure 1.
According to our analysis, several transcription factors
including Msn2/Msn4 and Gis1 are likely to function at
the down-stream of the Sch9, PKA, and TOR pathways
and may account for the longevity of the corresponding
long-lived mutants. Furthermore, our analysis suggests
that it is useful to combine microarray gene expression
profiles with other data sources such as ChIP-chip data or
promoter sequences to extract more biological informa-
tion.

Results and discussion

Microarray data

We extract RNA samples from day 2.5 cells of wild-type as
well as three long-lived yeast mutants: sch9A, tor1A, and
ras2A, and measured expression levels of 5841 genes using
the Affymetrix Yeast2.0 array. It should be noted that all
these yeast strains are cultured in minimal medium SDC
(synthetic dextrose complete)according to the standard
methods for chronological life span measurement [2]. In
the SDC medium, a substantial proportion of yeast cells
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Figure |
Scheme of transcriptional inference in the long-lived yeast
mutants.

are still dividing before day 2. At older ages, such as day
3-5, most of the cells become hypometabolic, which is
associated with a dramatic drop in transcription. There-
fore, we harvest mRNA at day 2.5 so that we can extract
enough mRNA for microarray experiment while avoid the
noise introduced by the transcriptional activities of divid-
ing cells. We compute the log expression ratios for all the
genes in each mutant with respect to the wild-type. The
expression profile for sch9A, tor1A, and ras2A show strong
similarity with one another, suggesting that Sch9, TOR,
and PKA may control the expression of a common set of
genes that are crucial for the chronological ageing.

Motif enrichment analysis

We identify 539 putative regulatory motifs from
sequences that include up to 800 bp upstream of all yeast
genes. Among these putative motifs, 49 can be associated
with a transcription factor according to literature or data-
base [25]. Generally, if the activity of a transcription factor
is changed as a consequence of some biological events,
such as the deletion of SCH9 gene, we will expect to see an
enrichment of its binding motif in the promoter regions
of up-regulated or down-regulated genes. Motivated by
this rationale, we performed enrichment analysis for these
539 putative regulatory motifs. First, we obtain the up-reg-
ulated and down-regulated gene sets for each mutant
(with respect to the wild type) by setting the threshold to
1.8 fold. Then, for each of these gene set, we test the
enrichment of a given motif in their promoter regions.
These tests are carried out for all the 539 predicted motifs
and a p-value of enrichment significance is assigned to
each motif. Finally, we perform multiple testing correc-
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tions by calculating the corresponding g-values for all
these enrichment tests.

In the up-regulated gene set for sch9A, ras2A, and tor1A
(fold change with respect to wild type greater than 1.8),
we identify 13, 5, and 8 enriched motifs out of the 537
motifs, respectively, at a significance level of 0.001 (q-
value < 0.001). If we set the significance level to 0.01, the
numbers of enriched motifs increase to 77, 43, and 43,
respectively. Among these significant motifs, 14 can be
associated with known transcription factors including
Msn2/Msn4 and Gisl. In the down-regulated gene set for
sch9A, ras2A, and tor1A (fold change with respect to wild
type greater than -1.8), no motif is found to be enriched
after multiple testing correction even at a significance level
of 0.01. The predominance of enriched motifs in up-regu-
lated gene sets suggests that the life span extension of
these mutants is mediated by activation rather than
repression of some transcription factors.

Significantly enriched motifs

Table 1 shows the motifs that are enriched in the up-regu-
lated gene set for at least one out of the three mutants and
whose function or associated transcription factor is
known. As shown, motifs associated with transcription
factors Fhll, Msn2/Msn4, and Gisl are significantly
enriched in up-regulated gene set for all the three long-
lived mutants. The first transcription factor, Fhll, is
known to regulate the transcription of ribosomal protein
(RP) genes via TOR and PKA in yeast [10]. In sch9A, ras2A,
and tor1A, 233, 444, and 234 genes are up-regulated by at
least 1.8 fold relative to wild type. Among them, 29, 27,
and 27 are cytosolic RP genes, suggesting a significant
enrichment of cytosolic RP genes in their up-regulated
gene sets (p-values are 4.9E-15, 6.0E-7, and 3.4E-13,
respectively). Although supported by the data, the up-reg-
ulation of RP genes is unexpected, considering that PKA
and TOR are positive regulators of RP genes [10,12]. It is
possible that RP gene expressions change along the chron-
ological ageing process, and they are more expressed at
day 2.5 in mutants compared the wild type. In addition,
other factors than Fhl1l may be involved in the regulation
of RP genes as well. The second transcription factor, Msn2
and the partially redundant factor Msn4, regulate the
expression of many stress-responsive genes, including
genes encoding heat shock proteins, catalase, and Sod2
[26,27]. Double deletion mutant msn2msn4A is highly
sensitive to different stresses, including heat shock, car-
bon source starvation, and oxidative stresses. Activity of
Msn2/Msn4 is negatively regulated by PKA kinase by
nuclear exclusion [28-30]. Moreover, Msn2/Msn4 is
required for the life span extension in mutations that
decrease the activity of Ras2 (ras2A) or Cyrl (cyrl::mTn)
[4,5]. The third transcription factor, Gisl, is also nega-
tively regulated by the PKA activity, and mediates gene
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Table I: Significantly enriched motifs with known transcription factors in the up-regulated gene sets

Consensus Sequence Transcription Factor sch9A/wt ras2A/wt torlAlwt
p-value q-value p-value q-value p-value q-value
RTGT-YGGRTG FHLI 1.4E-07 2.1E-05 6.3E-05 0.0011 4.0E-08 9.4E-06
AGGGG MSN2/MSN4 5.4E-08 1.1E-05 7.6E-05 0.0013 1.3E-07 2.1E-05
AWAGGGAT GISI 3.9E-05 9.3E-04 3.1E-04 0.0029 2.5E-05 7.2E-04
ARGGGG MSN2/MSN4 0.0012 0.0065 0.0096 0.021 1.8E-04 0.0022
RYGWCASWAAW SUMI 0.28 0.15 9.1E-04 0.0052 6.2E-04 0.0043
GACACAAAA NDT80 0.0099 0.021 0.0082 0.019 0.0020 0.0084
GY-TSKCACGTG-G PHO4 0.0039 0.012 2.0E-04 0.0023 0.0059 0.016
A-CACCC-TT AFTI 0.0020 0.0082 0.0052 0.015 0.014 0.025
AMAA-TGTGG MET4 0.24 0.14 4.6E-05 0.0010 0.029 0.038
CGCATMCCCCAC MIGI 0.026 0.036 4.4E-04 0.0037 0.057 0.056
MWGTGTGGCR MET3I 0.046 0.050 7.7E-04 0.0048 0.059 0.058
RRTCACGTG CBFI 0.59 0.25 2.9E-04 0.0028 0.076 0.067
GAW-TTCTAGAA HSFI 0.029 0.038 0.0022 0.0090 0.23 0.13
ACCYT-AGGTT ZAPI 0.13 0.096 | 4E-04 0.0018 0.24 0.14

expression during nutrient limitation [20]. Enrichment of
motifs associated with Msn2/Msn4 and Gis1 in the up-
regulated gene set suggests the important roles played by
stress response genes in life span extension of the three
long-lived mutants: sch9A, ras2A, and torlA.

Other than Fhl1, Msn2/Msn4 and Gis1 binding motifs,
motifs associated with other transcription factors are also
enriched in the up-regulated gene set of sch9A, ras2A or
tor1A. For example, the binding motif of transcription fac-
tor Hsfl, which is also involved in stress response, is sig-
nificantly enriched in ras2A (g-value is 0.0090) [31,32];
the binding motif of transcription factor Migl, which is
involved in glucose repression, is significantly enriched in
ras2A (qg-value is 0.0037) [33]; the binding motif of tran-
scription factor Sum1, which is a dominant suppressor of
mutant of silent information regulator genes, is signifi-
cantly enriched in ras2A (g-values is 0.0052) and tor1A (q-
values is 0.0043) [34,35]. Further studies of these tran-
scription factors under the sch9A, ras2A, or tor1A back-
ground may shed new light on the mechanism of
enhanced longevity in these mutants.

Stability of enrichment analysis

To show the effect of threshold setting, we performed
motif enrichment analysis using different threshold val-
ues for up-regulation and down-regulation. For a wide
range of thresholds from 2-fold to 1.4-fold, our analysis
achieves similar results. First, the total number of signifi-
cantly enriched motifs in the up-regulated gene set does
not change much with different thresholds. Secondly, we
identify almost the same set of significant enriched motifs
using different thresholds. Thirdly, we do not identify any
significantly enriched motifs in the down-regulated gene
sets using all these threshold values.

As shown in Figure 2, Gisl and Msn2/Msn4 binding
motifs exhibit significant enrichment in the up-regulated
gene sets corresponding to different thresholds. Gener-
ally, a smaller threshold results in larger up- and down-
regulated gene sets, based on which the enrichment anal-
ysis is more reliable and sensitive. As shown in Figure 2,
the significance level of motif enrichment increases with
the decrease of the threshold, suggesting a higher sensitiv-
ity for larger gene set. On the other hand, the threshold
should be high enough to ensure that most genes in the
up- or down-regulated gene set reflect real biological
expression difference rather than background noises.

ChIP-chip based analysis
In the motif enrichment analysis, those 539 motifs are
identified from DNA sequence using a de novo method.

Gis1 Msn2/4
g ® g Jeo_
] [ -
Z_ < Z_ ® :3\::!f=-.=':.
<) > Y “e-9=90
o o
J o J o A
T T T T T T T 1
1.4 1.6 1.8 2.0
Threshold Threshold
Figure 2

Effect of cutoff value on enrichment analysis result.
The left and the right panel show the enrichment of Msn2/
Msn4 and Gisl in the up-regulated gene set in three long-
lived mutants. The x-axis is the threshold for up-regulation.
The y-axis is the negative log transformed p-value. The red,
green, and blue line correspond to sch9A, ras2A, and tor/ A
mutant, respectively.

Page 4 of 10

(page number not for citation purposes)



BMC Genomics 2007, 8:219

The presence of a motif in the up-stream region of a gene
is determined computationally and many of them may
not be functional binding sites of transcription factors.
For example, based on the computation, we find that
1849 out of the 5841 yeast genes have at least one Gisl
binding sites in their promoter (800 bp up-stream of
translation initiation site) region. It is possible that the in
silico method overestimates the number of genes regulated
by a specific TF. If we know the target genes regulated by a
transcription factor, we do not need to rely on computa-
tion methods for target gene identification and we may
improve the accuracy of transcription inference.

The ChIP-chip experiment provides us with the informa-
tion about the interaction between transcription factors
and genes on a genomic scale. In yeast, the genomic occu-
pancy of 203 transcription factors in rich media condi-
tions was determined in a systematic ChIP-chip
experiment [36]. For some of the transcription factors,
their target genes in different experimental conditions,
such as in heat shock, rapamycin treatment etc, were also
determined. Based on the ChIP-chip data, we define 350
gene sets, each corresponding to a transcription factor
under a specific condition. Among them, 203 gene sets
correspond to target genes of these 203 transcription fac-
tors in YPD medium; the rest of them correspond to ChIP-
chip results under other conditions. We performed gene
set enrichment analysis (GSEA) for these 350 transcrip-
tion factor gene sets (TF gene sets) [37]. GSEA analysis is
a permutation based method to test if a set of genes tend
to have high rank or low rank in a rank list, e.g. log expres-
sion rank list. In this work, we use GSEA analysis to test
whether genes in a TF gene set tend to have high or low log
expression values. By using this method, we identify 46 TF
gene sets that are significantly enriched in at least one of
the three long-lived yeast mutants at a FDR of 0.01. The
accuracy of p-value assigned by GSEA analysis depends on
the number of permutations which can not be too large
considering the computation complexity. To obtain a
more accurate p-value and to infer whether a gene set is
positively or negatively affected, we carry out the Wil-
coxon rank test to the 46 TF gene sets.

We compare the log expression values of genes in a TF
gene set with the whole genome expression background
(all the other genes) using the Wilcoxon rank test. In com-
parison with the wild type, if the target genes of a tran-
scription factor tend to be up-regulated in a long-lived
mutant according to the test, then we may infer that the
activity of this transcription factor is positively affected in
the mutant. Conversely, if the target genes of a transcrip-
tion factor tend to be down-regulated, then we infer that
the activity of this transcription factor is negatively
affected. In total, we identify 29 positively affected TF gene
sets involving 22 transcription factors from 7 ChIP-chip
experiment conditions (see Table 2), and 6 negatively
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affected gene sets involving 5 transcription factors from 2
ChIP-chip experiment conditions (see Table 3). The ChIP-
chip experiment conditions includes YPD (rich nutrient
medium), H202Hi (highly hyperoxic, 4 mM H202),
H202Lo (moderately hyperoxic, 0.4 mM H202), SM
(amino acid starvation, 0.2 mg/ml sulfometuron methyl),
Acid (acidic medium, 0.05 M succinic acid), RAPA (nutri-
ent deprivation, 100 nM rapamycin), BUT14 (filamenta-
tion inducing, 1% butanol).

Among the positively affected transcription factors shown
in Table 2, many are related to stress or drug resistance,
such as Msn2, Cin5, Pdrl, Smpl, Rim101, Yap6, and
Xbpl. For example, Smp1l, positively affected in all of
these long-lived mutants especially in sch9A and torlA,
was reported to be involved in regulation of the response
to osmotic stress [38,39]. Some cell cycle related transcrip-
tion factors such as Fkh2, Stb1, Swi4 and Yap5 are also
positively affected. Sok2, a negative regulator of cyclic
AMP-dependent protein kinase [40,41], and Nrgl, a tran-
scriptional repressor for glucose-repressed genes [42], are
highly affected in ras2A and moderately affected in sch9A
and tor1A, suggesting that they may act down-stream of
Ras2, Sch9, and Torl to mediate the transcription
response in low-nutrient environment. Consistently with
the results from motif enrichment analysis, we again find
Fhll to be positively affected in all the three mutants.
Moreover, two additional transcription activators for
ribosome genes, Rap1 and Sfp1, are also identified.

Despite that many transcription factors are positively
affected in the long-lived mutants, we identify only a few
negatively affected TF gene set using ChIP-chip based
analysis (see Table 3), similar to the results by motif
enrichment analysis. Hap4 forms a glucose-repressed
complex with Hap2, Hap3, and Hap5, which functions as
a global positive regulator of respiratory gene expression
[43]. Rtg3 involves in the retrograde regulation in
response to a mitochondrial defect [44]. Abf1 is a multi-
functional global regulator for genes involved in a diverse
range of cellular processes including carbon source regu-
lation, nitrogen utilization, sporulation, meiosis, and
ribosomal function [45,46]. Gecn4 activates the expression
of amino acid biosynthetic genes in response to amino
acid starvation [47]. The decrease of activity of these tran-
scription factors might reflect the reduced respiration and
low metabolic rate in the long-lived mutants [43-47]. In
support of this hypothesis, we find many genes involved
the oxidative phosphorylation and the TCA pathway (tri-
carboxylic acid cycle) are down-regulated. Interestingly,
Rtg3 and Gcn4 are shown to be activated by TOR inhibi-
tion in previous studies [48,49]. We note that our infer-
ence is about association but not about causality by
nature. The inconsistency of our results with previous
studies may indicates that confounding factors exist and
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Table 2: Positively affected transcription factors in the long-lived mutants. The "num" column indicates the number of target genes of
a transcription factor under a specific condition at the 0.01 significance level according to the ChlIP-chip data.

Transcription Factor Condition Num sch9A/wt rasAlwt torlAlwt
p-value g-value p-value q-value p-value g-value
CIN5 H202Hi 177 0.0022 0.012 7.5E-06 1.1E-04 0.0025 0.013
CIN5 H202Lo 315 4.5E-05 4.7E-04 2.4E-07 5.1E-06 0.0021 0.011
CINS YPD 274 0.0036 0.037 8.6E-07 3.5E-05 5.1E-04 0.0071
FHLI H202Hi 188 0 0 8.8E-09 2.3E-07 2.2E-16 1.2E-14
FHLI RAPA 214 0 0 5.6E-16 2.8E-14 0 0
FHLI M 287 0 0 I.5E-12 5.5E-11 0 0
FHLI YPD 207 0 0 1.8E-14 I.7E-12 0 0
FKH2 H202Hi 331 0.0015 0.0087 I.3E-05 | .6E-04 1.4E-05 1.7E-04
GAT3 YPD 176 1.8E-14 1.7E-12 2.7E-08 1.4E-06 0 0
MET3I YPD 69 0.041 0.24 I.1E-04 0.0021 1.8E-04 0.0030
MET32 SM 93 | .4E-04 0.0012 1.8E-06 2.8E-05 1.4E-05 1.7E-04
MSN2 Acid 145 9.1E-04 0.0058 1.2E-05 | .6E-04 6.8E-07 1.2E-05
NDDI YPD 190 0.037 0.23 2.8E-04 0.0041 8.2E-05 0.0017
NRGI H202Hi 275 0.0087 0.035 5.5E-05 5.5E-04 0.088 0.22
NRGI H202Lo 122 0.12 0.27 3.9E-06 5.8E-05 0.0081 0.033
PDRI YPD 163 3.6E-06 1.3E-04 2.0E-04 0.0031 4.0E-06 1.3E-04
PUT3 H202Lo 156 4.7E-05 4.9E-04 2.4E-04 0.0019 0.0015 0.0086
RAPI| SM 387 0 0 5.7E-09 |.6E-07 I.1E-16 6.8E-15
RAPI YPD 408 0 0 2.4E-10 |.6E-08 2.2E-16 3.2E-14
RGMI YPD 107 2.3E-06 8.4E-05 3.1E-04 0.0045 4.0E-07 1.8E-05
RIMIOI H202Lo 142 0.15 0.32 4.4E-04 0.0032 0.032 0.098
SFPI SM 114 2.3E-15 9.9E-14 2.3E-07 5.1E-06 7.8E-16 3.6E-14
SMPI YPD 181 |.2E-04 0.0022 0.0032 0.033 1.9E-04 0.0030
SOK2 BUTI4 211 0.043 0.12 8.4E-05 7.9E-04 0.0045 0.020
STBI YPD 89 0.16 0.6l 0.036 0.23 3.6E-05 9.3E-04
SWi4 YPD 252 0.0074 0.070 8.9E-05 0.0018 |.4E-06 5.5E-05
XBPI H202Lo 173 0.027 0.087 3.5E-05 3.8E-04 0.023 0.076
YAP5 YPD 167 I.7E-10 1.2E-08 3.7E-06 |.3E-04 6.7E-12 5.8E-10
YAP6 YPD 167 0.0037 0.038 1.6E-09 9.9E-08 1.0E-05 3.0E-04

further investigation is necessary to understand the com-
plete story.

Comparison of the two methods

The results from motif based analysis and ChIP-chip
based methods are roughly consistent with each other in
the following way: (1) the transcription factors identified
by motif based analysis tend to have small p-values in
results of ChIP-chip based analysis, and vice versa; (2)
both methods identify much more positively affected
transcription factors, whereas no or only a few negatively

affected transcription factors are identified; (3) both
methods suggest stress response transcription factors may
play important roles in the chronological life span exten-
sion of the mutants; (4) the transcription activator Fhl1 is
found to be strongly associated with life span extension by
both methods. On the other hand, there is also some
inconsistency between the two methods, which may arise
from the following reasons: (1) only about 50 motifs can
be associated with known transcription factors according
to literatures and transcription factor databases; (2) the
binding information is not available for some transcrip-

Table 3: Negatively affected transcription factors in the long-lived mutants. The "num" column indicates the number of target genes
of a transcription factor under a specific condition at the 0.01 significance level according to the ChlIP-chip data.

Transcription Factor Condition Num sch9A/wt ras2A/wt torl Alwt
p-value g-value p-value g-value p-value q-value
ABFI YPD 549 |.9E-04 0.012 6.1E-07 9.6E-05 1.6E-07 3.2E-05
GCN4 RAPA 324 0.77 0.90 0.031 0.26 1.3E-09 4.2E-07
GCN4 YPD 143 0.16 0.43 0.0031 0.052 9.2E-11 3.6E-08
HAP4 YPD 126 4.2E-06 5.5E-04 0.0013 0.040 1.2E-05 0.0011
INO2 YPD 114 1.2E-05 0.0011 0.0038 0.056 0.0014 0.040
RTG3 RAPA 158 0.0016 0.038 9.9E-05 0.0059 1.3E-05 0.0010
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tion factors in the ChIP-chip data, such as Gis1; (3) The
binding targets for some transcription factors are condi-
tion-dependent and none of the condition in the ChIP-
chip data match our microarray experiment condition
perfectly. As more data sets related to transcription factors
are available, we would expect to improve substantially
the accuracy of the analysis. For example, a perfect match
between the conditions for microarray and ChIP-chip
experiment would improve the results. We could infer the
activity of more transcription factors by using the motif
based method with the accumulation of binding informa-
tion in the transcription databases, such as the TRANSFAC
[50]. Fortunately, these kinds of data and information are
accumulating rapidly and we can make more reliable
inference based on new available data.

Condition dependent of transcription factor binding

According to the genome-wide binding behavior across
different conditions, transcription factors could catego-
rized into four major classes: conditional invariant, condi-
tional enabled, conditional expanded, and conditional
altered transcription factors [36]. For conditional invari-
ant transcriptional factors, their target gene are highly
overlapped in different conditions and therefore the
ChIP-chip result may be used to infer transcription for
microarray data under other conditions. For example,
Fhl1 is shown, according to our analysis, to be associated
with expression changes in the sch9A, ras2A, and tor1A
mutants, although the condition and cell status of the
microarray and ChIP-chip experiments are quite different.
However, for some other transcription factors, the tran-
scription inference of their activity depends strongly on
the experiment conditions. Table 4 shows the Wilcoxon
test results for Msn2 and Msn4 target gene sets corre-
sponding to different ChIP-chip experiment conditions.
As can be seen, the number of binding targets of Msn2 and
Msn4 changes dramatically in different conditions and
consequently their activity changes in the long-lived

http://www.biomedcentral.com/1471-2164/8/219

mutants inferred by the Wilcoxon rank test are quite dif-
ferent. For example, Msn2 is inferred to be positively
affected in ras2A based on the ChIP-chip result under
Acid, H20O2Hi, and H202Lo conditions. But it is nega-
tively affected, if the inference is based on ChIP-chip result
under RAPA condition. For these reasons, results based on
ChIP-chip data should be carefully examined, but in at
least two situations it would provide valuable informa-
tion for transcription inference: (1) when the transcrip-
tion factor of interest binds with a relatively invariant set
of target genes in different conditions; (2) when the exper-
iment conditions for ChIP-chip and microarray experi-
ment are equivalent or similar.

Conclusion

We have demonstrated how to infer the activity modifica-
tion of transcription factors in the long-lived mutants
with respect to wild-type yeast by integrating microarray
expression data with promoter sequence data and ChIP-
chip data. Both the motif and ChIP-chip data based anal-
ysis suggest that some transcription factors related to
stress response or ribosomal genes may play important
roles in the yeast chronological ageing. Interestingly,
based on our analysis, the activities of Msn2/Msn4 and
Gisl are positively regulated in all the three mutants:
sch9A, ras2A, and tor1A, which is consistent with previous
studies. Moreover, we find some other interesting tran-
scription factors that may also involve in the transcription
regulation at the downstream of Sch9, PKA and TOR path-
ways. Finally, our analysis provides a framework for tran-
scription inference by integrating microarray data with
other data sources.

Methods

Microarray experiment and data processing

Gene expression in four yeast strains, wild type, sch9A,
ras2A, and torl1A, is measured using DNA microarray anal-
ysis. Yeast cells from all strains are cultured in nutrient

Table 4: Transcription inference of Msn2 and Msn4 based on ChIP-chip binding data from different conditions. Positive and negative
effect is shown in normal and italic font, respectively. The "num" column indicates the number of target genes of a transcription factor
under a specific condition at the 0.01 significance level according to the ChIP-chip data.

Transcription Factor Condition Num sch9A/wt ras2A/wt torlAlwt
MSN2 YPD 43 0.33 0.04 0.43
Acid 145 9.1E-04 1.2E-05 6.8E-07
RAPA 101 0.14 0.033 0.24
H202Hi 114 0.014 0.0031 0.016
H202Lo 140 0.18 0.004 0.019
HEAT 24 0.0/ 0.14 0.37
MSN4 YPD 145 8.5E-04 0.21 7.9E-06
Acid 37 0.13 0.018 0.067
RAPA 131 0.19 0.14 0.31
H202Hi 169 0.084 6.7E-04 0.033
H202Lo 67 0.19 0.0036 0.048
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limited SDC (synthetic dextrose complete) medium, col-
lected at day 2.5, then used to extract total RNA by the acid
phenol method. Total RNA from independent cultures of
each strain is used as a template to synthesize comple-
mentary RNA (cRNA). The cRNA is hybridized to Affyme-
trix GeneChip Yeast 2.0 Array to obtain the measurement
of gene expression. For each strain, the experiment is
repeated for 3 times, each obtained from independent
population of corresponding strain. The Bioconductor
Afty Package is adopted to process the microarray data
[51]. The "Invariant Set" approach is used for normaliza-
tion at the probe level, and the "Model based" method is
used to summarize and obtain expression for each probe
set [52]. High consistency is achieved between the repli-
cates from the same strain, with the Pearson correlation
coefficients greater than 0.96 at the gene level.

The Yeast 2.0 Array contains probe sets for both two yeast
species: S.cerevisiae and S.pombe. Probe sets for S.pombe are
excluded and only probe sets for S.cerevisiae are consid-
ered in later analysis. To calculate the gene expression
change between two strains (each has 3 replicates), we
compute the fold change for each pair of comparison. 3 x
3 comparisons result in 9 ratios, which are average to get
the mean fold change (FC) of each probe set. For all the
S.cerevisiae probe sets, the mean FC is calculated in three
comparisons: sch9A/wt, ras2Afwt, and torlA/wt. Most
genes are represented each by a single probe set in Yeast
2.0 Array. For genes represented by more than one probe
sets, we average the mean FCs of probe sets associated
with them to obtain the gene level expression change.

Motif identification and prediction

To obtain the potential regulatory motifs, we refer to the
methods used by Beer et al. and downloaded the motif
data from [53]. Beer et al. identified the significantly
enriched motifs in the promoter regions of all yeast genes
using AlignACE software [54,55]. The promoter region
was defined as the DNA sequence from translation initia-
tion site up to 800 bp upstream. Based on their motif data,
we identify 539 significant motifs from the promoter
regions after removing the redundancy. Among these
motifs, 48 are associated with known transcriptional fac-
tors according to literatures.

Motif enrichment analysis

We use the so-called motif enrichment analysis to identify
the motifs associated with gene expression change
between two yeast strains, i.e. sch9A/wt. If a motif is
indeed related to expression change in sch9A/wt, for
example, as a consequence of activation/repression of its
associated transcription factor in sch9A, we would expect
to see the enrichment of genes with the motif in the up/
down- regulated gene set. Specifically, we use the Fisher

http://www.biomedcentral.com/1471-2164/8/219

exact test to identify significant enriched motifs in a up/
down- regulated gene sets.

Suppose among all the N yeast genes, M genes contain a
pre-defined motif, the remaining N - M genes do not con-
tain this motif. We denote X as the number of genes that
contain a given motif in a gene set of size K, and X follows
a Hypergeometric distribution. That is,

For each motif we calculate the p-value defined as Pr(X >
x|M, N - M), which is the probability of observing x or
more genes with the motif in their promoter regions. We
test the significance of enrichment for all the 539 motifs
in the up- and down-regulated gene sets of sch9A/wt,
ras2A/wt, and tor1A/wt. To correct for the multiple testing,
we compute the g-value using the "qvalue" package for R
software [56].

GSEA analysis

Gene set enrichment analysis is an approach to testing
whether a set of genes, as a whole, are up-regulated or
down-regulated compared to other gene sets [37]. Give an
expression profile, we rank the log expression value of all
the genes e;, i = 1, ... N in the decreasing order as denoted
by L = {g,, & .-, 8}, where N is the total number of
genes in the list. Then we evaluate the fraction of genes in
a gene set S of size Ny, (hit) weighted by absolute expres-
sion values, and the fraction of genes not in S (missing)
present up to a given position i in the list L as following:

2 m where N —Z|e~|
Np' k= a

Ppjy =
g;eS,j<i 'R g;jes
1
Diss = Z N-—N.
—4iYH

8;€S,j<i
The maximum deviation from zero of Py, - P,;. is defined
as enrichment score (ES) for the gene set S. Finally, the
expression profile is permutated for many times to com-
pute permutated ES values and the significance is deter-
mined by the percentage of permutated ES values that are
larger or equal to the real ES value. In this paper, we do
10,000 permutations to estimate the significance of
enrichment for a gene set. Again g-values are calculated
for multiple testing correction.
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ChIP-chip based analysis

The ChIP-chip data are available from [57]. They contain
DNA binding information for 203 yeast transcription fac-
tors, where each TF-gene association is assigned a P-value.
It is noted that the binding information are only available
for these 203 TFs under the YPD condition. For some of
the transcription factors, binding information under other
conditions are also available. Based on the ChIP-chip
data, we define 350 TF gene sets: S;, S,, ..., S350, €ach con-
taining the target genes of a transcription factor under a
condition at the 0.01 significance level. To infer whether a
transcription factor is significantly affected, we first per-
form GSEA analysis for these 350 TF gene sets using the
above described methods. Then for the significant gene
sets resulting from GSEA analysis, we further compare the
gene expression of its associated gene set S; with the back-
ground gene expression denoted by G - S;, where G is the
gene set containing all the yeast genes. We use the Wil-
coxon rank test to calculate the p-value (one sided). If the
expression levels of a gene set are significant higher than
the background expression, we denote the corresponding
transcription factor as positively affected. Similarly, if the
expression level of a gene set is significant lower than the
background expression, we denote the corresponding
transcription factor as negatively affected.
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