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Abstract

Background: Within the last decade a large number of noncoding RNA genes have been
identified, but this may only be the tip of the iceberg. Using comparative genomics a large number
of sequences that have signals concordant with conserved RNA secondary structures have been
discovered in the human genome. Moreover, genome wide transcription profiling with tiling arrays
indicate that the majority of the genome is transcribed.

Results: We have combined tiling array data with genome wide structural RNA predictions to
search for novel noncoding and structural RNA genes that are expressed in the human
neuroblastoma cell line SK-N-AS. Using this strategy, we identify thousands of human candidate
RNA genes. To further verify the expression of these genes, we focused on candidate genes that
had a stable hairpin structures or a high level of covariance. Using northern blotting, we verify the
expression of 2 out of 3 of the hairpin structures and 3 out of 9 high covariance structures in SK-
N-AS cells.

Conclusion: Our results demonstrate that many human noncoding, structured and conserved
RNA genes remain to be discovered and that tissue specific tiling array data can be used in
combination with computational predictions of sequences encoding structural RNAs to improve
the search for such genes.

Background

The sequencing of the human genome marked the starting
point of a very difficult task: to make sense of the enor-
mous amount of information stored in the genome by
annotating the functionally important regions. Emphasis
was initially put on the protein coding DNA sequences,
which are generally well conserved and can easily be con-
verted into the corresponding protein sequence. However,
in recent years it has become clear that large parts of the
noncoding DNA present in the human genome is func-

tional and that noncoding genes may be as abundant as
protein coding genes [1].

Central to this realization has been the sequencing of
additional mammalian genomes. Comparative genomics
have demonstrated that the fraction of the human
genome that is under purifying selection is much larger
than the part that makes up the protein coding sequence,
suggesting that many non protein coding regions of the
genome have important functions [2]. Conserved
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sequence elements in promoter, intron and untranslated
regions (UTRs) control transcription and processing of
mRNAs [3]. Moreover, distant enhancer elements also
influence transcription over long distances.

In fact, such noncoding enhancer elements are the most
highly conserved regions of the human genome [4].
Another class of conserved noncoding sequence is the
RNA genes that are transcribed, but does not encode any
protein. Instead the functions of these genes depend on
the RNA itself, which can be unstructured or adopt func-
tional secondary structures through internal base pairing
or pairing to other RNA molecules.

In this way RNA can act as enzymes, structural scaffolds
and cofactors for proteins. Structural RNA gene sequences
are often less well conserved than protein coding and reg-
ulatory sequences, since it is the RNA secondary structure
that is conserved rather than the primary sequence.
Recently, computational methods that can detect the sig-
natures of conserved RNA structure in aligned DNA
sequences have been developed and have revealed that
the human genome contains many thousands of potential
structural RNA genes [5,6]. Some of these can be assigned
to known RNA gene families such as tRNA, rRNAs, snoR-
NAs and miRNAs, while others have no assigned func-
tions. A common theme seems to be that many
noncoding RNA genes have a very restricted expression.
Often, they have low or no EST coverage, but this does not
necessarily mean that they are not expressed and nonfunc-
tional [7]. An interesting example of this is the noncoding
RNA (ncRNA) HARI1F that has undergone strong positive
selection in the human lineage and are expressed only in
Cajal-Retzius neurons in the developing human neocor-
tex from 7 to 19 gestational weeks [8]. Such spatial and
temporal restricted expression makes it a daunting task to
verify expression of computationally predicted structural
RNAs [9]. This may be especially true for RNA genes
expressed in the brain, which is a very complex organ esti-
mated to have thousands of different cell types.

Advances in array technology have allowed unbiased
genome wide analysis of RNA transcription using tiling
arrays of overlapping probes spanning the entire euchro-
matic part of the human genome [10,11]. These RNA
expression studies demonstrate that a large proportion of
the human genome is transcribed and that the transcrip-
tion is more complex than previously anticipated with
extensive use of alternative promoters, splicing and poly-
adenylation. So far tiling array analysis has been per-
formed on RNA from a limited number of cell lines, but
these experiments nevertheless indicate that large parts of
the human genome are transcribed. These findings are
supported by findings from large scale cDNA cloning
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efforts that also find high transcriptional diversity and
many ncRNAs [12].

We have combined data from structural RNA gene predic-
tion [9] with tiling array data from the neuroblastoma cell
line SK-N-AS [10,13] to identify novel structural RNA
genes expressed in this cell line. Using this strategy, we
identify thousands of human candidate RNA genes that
are most likely expressed in SK-N-AS cells. The list of can-
didates can be found at the CRUFTS homepage [14]. For
verification of expression we focused on candidates hav-
ing energetically favorable hairpin structures or a high
level of covariance. Using northern blotting, we verify the
expression of 2 out of 3 of the hairpins structures. Moreo-
ver, 3 out of 9 of the structures with high covariance could
be detected by northern in SK-N-AS cells.

Results and discussion

The identification of ncRNAs has been facilitated by com-
parative genomics and development of methods to detect
RNA expression on a genome wide scale. In this work we
combine genome tiling array expression data [10,13] with
genome sequence conservation [2] and secondary struc-
ture information [15] in an effort to identify novel
ncRNAs in the human genome.

The genome tiling array data is derived from phase 2 of
Affymetrix tiling array studies [10]. Here, 10 chromo-
somes (6,7, 13, 14, 19, 20, 21, 22, X and Y) of the human
genome, corresponding to ~30% of the non-repetitive
portion of the genome, are tiled upon microarrays at 5
base-pair intervals. Only non-repetitive regions are tiled
due to the risk of cross hybridisation and the difficulty of
determining which genomic region a multi-copy tran-
script is derived from. For this study we have used data
from the neuroblastoma cell line (SK-N-AS) that was ana-
lyzed using a hidden Markov model trained to discrimi-
nate between transcribed and untranscribed regions [13].
The combined conservation and secondary structure track
is derived from a study using structural information on
the conserved fraction of the human genome [2,16]. The
method is based upon a secondary structure prediction
algorithm for folding sequence alignments [17] com-
bined with an algorithm (called RNAz) [9] that has been
trained to discriminate between sequence alignments of
ncRNA sequences and their randomized counterparts [9].

We intersected 88,319 genomic regions predicted to be
expressed in SK-N-AS cells by tiling array analysis [10,13]
with 91,677 genomic regions predicted to contain con-
served secondary structure (Figure 1)[18]. To improve
sensitivity, we used the least conservative prediction of
secondary structure for the intersection. To further
improve the predictions, we obtained multi-species align-
ments from UCSC table browser [19] of human (hg17),
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chimpanzee (panTrol), dog (canFam1), mouse (mm5),
rat (rn3), chicken (galGal2), zebrafish (danRerl) and
Fugu (fr1) for the regions that showed evidence of both
expression and structure. These alignments were re-scored
with RNAz using more stringent settings. This produced
32,439 CRUFTS (Conserved RNAs of Unidentified Func-
tion that are Transcribed and Structured), which when
collapsed into overlapping regions these map to 6,534
unique genomic regions.

To investigate if the CRUFTS contained already known
ncRNAs, we used available annotations of human ncRNAs
[20-24]. The ncRNAs used were: Xist, Telomerase RNA,
HVG-1,2&3, H19, RNase MRP, RNase P, tRNAs, Pseudo-
tRNAs, TRNAs, small cytosolic RNAs (SRP, hY1, hY3, hY4,
hY5), miRNAs and snoRNAs. The classical ncRNAs such
as TRNA, tRNA, SRP etc. are classified as repeats by Repeat-
Masker [25] and are therefore not present in the CRUFT
dataset. Also, some rRNA, tRNAs and SRPs were absent in
the final set due to difficulties of producing correct

Multispecies conservation
1,601,903 alignments
(82.6 MB)

Tiling array expression data
from SK-N-AS cell line
(381.1 MB)

l RNAz l ExpressHMM

Secondary Structure
91,677 structured alignments 88,319 transfrags
(12.4 MB) (44.4 MB)

Merge
Datasets

Structured alignments
with evidence for expression

Expressed regions

RNAz
Re-scoring

CRUFTS

6,534 Conserved RNAs of
Unidentified function that
are transcribed and structured
(1.31 MB)

l Filtering

1,593 filtered CRUFTS
(0.36 MB)

Experimental validation
Northern blotting

Expression of 5/12 tested
CRUFTS detected in SK-N-AS

Figure |

Strategy used to identify structural non coding RNA genes
Schematic representation of the work-flow used to identify
and verify CRUFTS. Multispecies conservation data [2],
structured alignments [43] and the tiling array data [10,13]
have all been published. For details and references see main
text.
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genome alignments for these regions, which is critical for
secondary structure prediction with RNAz. In subsequent
versions of the genome alignments (17-way and beyond)
these difficulties appear to have been overcome [26,27].
Ofthe 32,439 CRUFTS, 240 overlap the remaining known
ncRNAs in our control data set (see Table 1), consistent
with not all of these being expressed in the SK-N-AS cell
line and not all ncRNA being detected by the RNAz algo-
rithm. Moreover, it is noteworthy that the SK-N-AS tiling
array data used for our analysis is based on hybridization
of ¢cDNA originating from polyA selected RNA to the
array, which probably excludes some ncRNAs from the
CRUFTS dataset. All in all, after removing the known
ncRNAs and CRUFTS overlapping 3' UTRs, we have 5,629
potential novel non-overlapping ncRNAs in the CRUFTS
dataset. To further refine the dataset and reduce the
number of false positive among the CRUFTS, we com-
pared a number of parameters for the CRUFTS with those
from the known ncRNAs (Figure 2). We find that the
CRUEFTS have a mean pairwise identity (PID) distribution
that is similar to that of the control ncRNA set, except that
many more CRUFTS have structures that have PIDs above
95% (Figure 2A). Previously, it has been shown that sec-
ondary structure signals are largely lost below 65% iden-
tity and above 95% identity there is little supporting
information from mutational analysis [28]. Moreover, the
RNAz algorithm detects many structures having PID
above 95% and it is currently not known, if these repre-
sent new structural RNAs that are more highly conserved
than known ncRNAs or false positives [29]. We also noted
that that CRUFTS generally have sequence coverage in
fewer species than the known ncRNAs (Figure 2B), which
reflects that the ncRNAs in the known ncRNA set are well
conserved. The covariance and RNAz SVM probability dis-
tributions of the CRUFTS are similar to the corresponding
distributions of the ncRNAs (Figure 2C and 2D), but the
known ncRNAs cluster in the RNAz high probability frac-
tion. After considering the distributions of these different
statistics, we applied the filters shown in Table 2 to enrich
for CRUFTS resembling the known ncRNAs in the dataset.
These filters resulted in a 10-fold reduction of the amount
of data (from 32439 to 3243 CRUFIS or 6534 to 1593
non-overlapping regions) and increased the enrichment
of known ncRNAs 2.17 fold, which is highly significant (p
= 6.6e-8) (see Table 1). Of the 1593 non-overlapping
regions present in the filtered CRUFTS dataset, 1314 are
potential novel ncRNAs (i.e. not a known ncRNA and not
located in an 3 ' UTR).

To further characterize our CRUFTS data set we mapped a
number of other genome annotations to the CRUFTS.
Using annotations from the Refseq database [30] and the
human EST database, we find that CRUFTS overlapping
with known ncRNA are enriched in intergenic regions and
regions that have mRNA/EST evidence, but no overlap-
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Table I: Enrichment of known ncRNAs in subsets of CRUFTS
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Scheme/Overlap ncRNA Enrichment

ncRNA Families

All 1.00 (1.00)

Filtered (Table 2 parameters) 2.17 (6.630e-08)

135 miRNA, 21 rRNA, 58 snoRNA, 9 snRNA,
17 Mt-tRNA
miRNA, rRNA, snoRNA, snRNA, Mt-tRNA

mRNA/EST 0.64 (1.000) miRNA, snRNA, snoRNA
mRNAV/EST (no UTR or exon) 2.00 (7.000e-05) miRNA, snRNA, snoRNA
5'UTR 0.97 (0.5806) miRNA

Intron 0.97 (0.1148) miRNA, rRNA, snoRNA, Mt-tRNA
3'UTR 0.00 (1.000) -

Intergenic 1.21 (4.448e-03) miRNA, rRNA, snRNA, snoRNA
EvoFold 4.67 (5.271e-06) miRNA

InDel selection 1.74 (<2.2e-16) miRNA, rRNA, snoRNA

InDel selection (no miRNA) 0.46 (0.4115) rRNA, snoRNA

Transposonfree (10 k) 0.51 (0.9786) miRNA

Transposonfree (5 k) 1.17 (0.09059) miRNA, rRNA, snoRNA

Covariance top 300
RNAZz probability top 300

4.05 (4.277e-04)
6.76 (8.367¢-09)

miRNA, snoRNA, snRNA
miRNA

Enrichment values of known ncRNAs in each filtering method or genome annotation. Column 2 contains the degree of enrichment of the known
ncRNAs for each dataset compared to the "All" CRUFTS dataset. P-values for the enrichment were calculated using Fishers' exact test. In the final
column, the ncRNA families contained within the annotation is indicated. See text for details and references.

ping exon or a UTR sequence (see Table 1). This corre-
sponds to what one would expect given the types of
ncRNAs in the control ncRNA set and suggests that
CRUFTS located in intergenic regions and having mRNA/
EST evidence, but no overlapping exon or a UTR sequence
are more likely to represent true ncRNA genes.

Of particular interest is a study by Pedersen et al. that
implemented a probabilistic approach (called EvoFold)
based on phylogenetic stochastic context-free grammars
to predict conserved secondary structures in the human
genome [6]. In contrast to the RNAz algorithm, EvoFold
does not use folding energy to predict RNA structures, but
rather calculates the probability of an RNA structure,
while taking the phylogeny into consideration. We find
that the EvoFold and RNAz CRUFTS enrich for known
miRNAs (Table 1, p = 5.2e-6), showing that these two
structural RNA gene finders complement each other and
that the CRUFTS overlapping EvoFold predictions are
more likely to be miRNAs than the CRUFIS in general.
Many of the CRUFTS are located in intergenic regions that

Table 2: Parameters used for filtering the CRUFTS

Feature Threshold
RNAalifold covariation measure <0
Number of species >4

65% < and < 95%
>0.90

Mean pairwise sequence identity
RNAz SVM probability

have no known function. Two approaches that have the
potential to detect genomic regions that are under purify-
ing selection have recently been published [31,32]. Lunter
et al. searched the genome for insertion and deletion
(indel) free regions [31] and found clear evidence of puri-
fying selection against indels in many regions of the
genome. Interestingly, the majority of indel free regions
are located outside protein coding genes and most known
miRNA genes are located within indel free regions [31].
We find that CRUFTS that overlap an indel free region of
the genome are significantly enriched in known ncRNA
(Table 1, P-value < 2e-16). These observations suggest that
the CRUFTS that overlap indel free regions of the human
genome are more likely to be ncRNAs (and miRNAs in
particular) that have important functions sensitive to
insertions and deletions in the sequence. Simons et al.
have made a similar analysis of transposon-free regions of
the human genome [32]. As shown in Table 1 the CRUFTS
overlapping transposon-free regions were only slightly
enriched for ncRNAs (P = 0.09 for the 5 kb regions), indi-
cating that the known ncRNA are rather insensitive to
insertion of transposons in a 5 kb window containing the
ncRNA. All the CRUFT datasets and the annotation of
these can be accessed at the CRUFTS homepage [14].

Next, we wanted to experimentally verify the expression of
some of the CRUFIS in the SK-N-AS cell line. When
CRUFTS were ranked on the RNAalifold measure of cov-
ariance [17] known ncRNAs including miRNAs, snoRNAs
and snRNAs were enriched in the top 300 rankings (p =
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4.3e-4)(see Table 1 and Figure 3A). We choose 9 struc-
tures from the top 25 CRUFTS ranked on covariance and
designed complementary probes for northern blotting.
Using RNA enriched for small RNAs and isolated from SK-
N-AS cells, three out of the nine selected CRUFTS could be
repeatedly detected by northern blotting using LNA mod-

ified DNA probes (Figure 3B). As a positive control we
used the U68 H/ACA snoRNA, which ranked high on the
covariance sorted list. A list of these investigated CRUFTS
along with their predicted structures and the probes
sequences can be found in Additional file 1 and is exem-
plified for C3462 in figure 3C. The CRUFTS that were not
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C.FAM AGCACGUUCACAACAUCACABUABCCCCUGBEBCAGGG. GOUGGA GGAUGUC GUGGGC
M.MUS AGUGCGCUAAGGACAUCACABUABCCUCUGEBECUGAG. GAACEGGGBAGGAUGAC CUGGGC
R.NOV AGUGCAUUAAGGACAUCACABUABCGUCUGBECCEAG. GAGUEC-GGBAGGAUGGC GUGGGC
R.MAC AGCUCAUUAAGAACAUCACABUABCCCCUGEBEBCAGGG. Ul GGACAGC GUGGGC
P.TRO AGCUCAUUAAGAACAUCACABUABCCCCU C GGACAGC GUGGGC
(R R ))))))))))))))eee)))e))))))e))eee)))eeens ))))))) e
R
Ce/u
A.U
Figure 3

Experimental verification of CRUFTS showing high RNAz covariance. A) Histogram showing enrichment of known ncRNAs in
the top 300 CRUFTS sorted on covariance. B) Northern blots with specific LNA modified DNA probes for three high covari-
ance CRUFTS. The U68 snoRNA was used as positive control. C) Alignment and conserved secondary structure of the
CRUFTS C3462. The location of the probe used for detection is indicated. The positions in the alignments and the secondary
structure are color-coded according to the conservation of the basepair interaction following the RNAz conventions [9].
Green indicates that 3 different types of pairs (e.g. G-C in human, G-U in dog and A-U in zebrafish) support the interaction.
Yellow color coding indicates that the base pair is supported by 2 types of pairs and red that only a single pair-type supports
the interaction. The intensity of color coding is fated with the number of sequences in conflict with the predicted interaction.

detected by our northern blots may represent sequences  SK-N-AS cells at levels below the detection level of our
that are not RNA genes or RNA genes that are expressed in ~ northern blots.

Page 6 of 11

(page number not for citation purposes)



BMC Genomics 2007, 8:244

A

Histogram of filtered ncRNA rankings on SVM probability

= MiRNA = snoRNA
urRNA = snRNA
Mt-tRNA

ON&O)(X)SB
100 (I
(]
|
]
500 I-
700 [HH
I-
[}
]
=
==
400 I-:l
600 [EJ

o
o
(o)
3

—

rank on SVM probability

IIIIIIIII_II_i___
o
o
o
()

http://www.biomedcentral.com/1471-2164/8/244

B

MiR-20 C2780-1 C2780-2

J 90 nt
80 nt 75-80 nt

UUUUUCUCCCU
UUUUUCUCCCU
UUUUUUCUCCU
UUUUUCUCCUU
UUUUUUCUCCU
UUUUUCUCCUU
Uuuuuuuuuuy
CUUUUCUCUUUUU

C4801-1 C4801-2

C2780-2

3'-GCGATGTCGTCAGCGTCAGAGG-5"

ARy
Al

Al
Al

cgacccca
QaaaQQqQ

U
UGGUG U

------- CCCCCCCCECECECCCCCCCCCCCeesesee) )N CCCCeece))))eeeenennnns

C2780:
C2780-1
3'-GAGACGCCTGACGCTCGACACC-5"
CEVPEEEETEEET T
H.sap  UCCGGC G GUAGAG-C
P.tro  UCCGGC G GUAGAG-C
R.mac  UCCGGC G GUAGAG-C
R.nor AACAGC G GUAGAU-C
M.mus AACAGC G GUAGAU-C
O.cun ACCAGC G GUAGAG-C
B.tau UCCAAC CGCG! GCAGAGCC
C.fam UCCAGC [ACAGG! GGUAGAG-CU.
Figure 4

Experimental verification of CRUFTS showing high RNAz SVM probability. A) Histogram showing enrichment of known
ncRNAs in the top 300 CRUFTS sorted on RNAz SVM probability B) Northern blots with specific LNA modified DNA probes
for three high covariance CRUFTS. The U68 snoRNA is the positive control. C) Alignment and conserved secondary structure
of the CRUFTS C3462. The location of the probe used for detection is indicated. The positions in the alignments and the sec-
ondary structure are color-coded according to the conservation of the basepair interaction following the RNAz conventions
[9]. Green indicates that 3 different types of pairs (e.g. G-C in human, G-U in dog and A-U in zebrafish) support the interac-
tion. Yellow color coding indicates that the base pair is supported by 2 types of pairs and red that only a single pair-type sup-
ports the interaction. The intensity of color coding is faded fates with the number of sequences in conflict with the predicted

interaction.

Alternatively, they may be expressed as part of long RNA
transcripts that would not be detected in our northerns or
be processed into smaller RNAs not targeted by our
probes. The three CRUFTS that are detected by our probes
do not match any of the profiles in the RFAM database
and do not resemble any previously described ncRNA
gene. The probes hybridize to RNAs in the range between
70 and 95 bp. This size range is typical of C/D snoRNAs
[23], but none of the candidates have canonical CD boxes,

indicating that these CRUFTS expressed in the SK-N-AS
cell line are not snoRNAs, but belong to currently unchar-
acterized ncRNA genes families. The C4796 CRUFTS is
located intergenic, whereas C6194 and C3462 are located
introns of latent transforming growth factor beta binding
protein 2 (LTBP2) and transmembrane protease, serine 6
(TMPRSSG6), respectively. All the three detected covariance
CRUFTS are located in indel free regions [31]. UCSC
screenshots of the genomic neighborhoods of the
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detected covariance CRUFTS can be found in Additional
file 2.

The RNAz algorithm is dependent on folding energy and
since miRNA genes generally form stable secondary struc-
tures consisting of a hairpin, RNAz shows high sensitivity
for miRNA genes [9,33,34]. When the CRUFTS were
sorted according to their RNAz SVM probability, known
and predicted miRNA genes were enriched in the top 300
ranking (p = 8.4e-9, see Figure 4A, Table 1) and many
structures with miRNA like hairpins can be observed. We
found that three of the CRUFTS within the TOP 300 RNAz
SVM rankings overlapped with miRNAs candidates that
previously have been predicted by phylogenetic shadow-
ing by Plasterk and coworkers [35] and also the indel free
regions described by Lunter et al. [31]. Using LNA modi-
fied DNA probes complementary to each side of these
hairpin structures (2 probes for each candidate structure,
see Figure 4C and Additional file 1), two of the three
probe pairs hybridized specifically to SK-N-AS RNA
enriched for small RNAs (Figure 4B).

However, the signals observed with these probes were all
in the 75-90 nt. range and we see no signal in the size
range of mature miRNA. This was not due to loss of small
RNAs in our RNA preparation, since a known miRNA
(miR-20) was detected with a miR-20 specific probe (Fig-
ure 4A). The fact that we observe a signal of similar size
with probes targeted to both sides of the putative miRNA
hairpins indicates that the probes do detect a pre-miRNA
like RNA hairpin expressed in the SK-N-AS cell line.

During the course of this study, expression of the mature
form of CRUFTS C4801 (candidate 225 from Berezikov et
al., [35]) has been verified by cloning from mouse brain
and by a modified microarray-based detection system
(RAKE) [36]. Previously, it has been observed that
miRNA-138 accumulates in the pre-miRNA form in the
cytoplasm in some tissues and are only processed to the
mature form in restricted tissues [37]. We have tested a
panel of cell lines originating from different tissues with
probes for C2780 and C4801 and find that 75-90 nt
RNAs are detected in most cell lines and tissues, but no
RNAs corresponding to mature forms (~21 nts.) (Addi-
tional file 4). It is therefore possible that miRNA process-
ing of C4801 and possibly C2780 is regulated and occurs
only in restricted tissues. However, we cannot completely
rule out that we fail to detect the mature miRNA forms of
these CRUFTS miRNA candidates because our northern
probes do not have sufficient overlap with the mature
form of the miRNA. UCSC screenshots of the genomic
neighborhoods of the detected hairpin CRUFTS can be
found in Additional file 3 online. Interestingly, C4801 is
located close to miR-99b, miR-125a and miR-let-7e on
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chromosome 19, suggesting that C4801 is a new member
of this miRNA cluster.

Other studies have used strategies that a similar to ours in
order to identify novel ncRNAs. Babak et al. [38] used the
QRNA algorithm [39] to search for ncRNAs in human-
mouse pairwise alignments from intergenic and intronic
regions conserved between human and mouse and rat. A
custom mouse DNA array with 6 probes for each of 3,478
predicted ncRNAs was hybridized with RNA from 16
mouse tissues.

The 55 candidates that showed the highest signal on the
array were chosen for northern blotting, which confirmed
the expression of 8 candidates. Surprisingly, none of these
candidates could be detected in human tissues, leading
the authors to speculate that conserved and transcribed
intergenic and intronic regions are not independent func-
tional elements, but may have species or lineage specific
functions [38]. Babak et al. also investigate the overlap
between their candidates and tiling array data [10] and
find that they do not overlap more than what would be
expected by chance. Our study is not directly comparable
with the study of Babak et al. We have used multiple align-
ments and RNAz [9] rather than pairwise alignments and
QRNA [39] to predict conserved secondary structure.
Moreover, we use the properties of the predicted second-
ary structures and the tiling data for filtering our predic-
tions before verifying expression by northern blotting.
These differences may explain that we have a higher suc-
cess rate in our northern verifications. In another study,
Washietl et al. used RNAz [9] and EvoFold [6] secondary
structure predictions to identify potential ncRNAs in the
ENCODE regions [29]. From a selection of 175 high-scor-
ing predictions that was aided by visual inspection, 43
were detected by RT-PCR on RNA isolated from 6 different
tissues. Interestingly, the predictions that are supported by
tiling array expression were more likely to yield positive
RT-PCR results (29% compared to 19% without support
from tiling) [29]. These results support our finding that is
possible to enrich for structural RNA genes by combining
RNA structure predictions with tiling array data.

Conclusion

We have integrated tiling array expression data with differ-
ent annotations derived from comparative genomics to
search for structural RNA genes that are expressed in the
human neuroblastoma cell line SK-N-AS. In this way, we
identified several thousand genomic regions (CRUFTS)
that are strong candidates for being structural RNA genes.
Using northern blotting, we verified the expression of 5
out of 12 investigated CRUFTS in the SK-N-AS cell line.
Three of the verified CRUFTS can not be assigned to exist-
ing ncRNA families and could belong to novel ncRNA
classes. The remaining two CRUFTS, which were detected
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by northern blotting, probably belong to the miRNA fam-
ily. Our results indicate that many human noncoding,
structured and conserved RNA genes remain to be discov-
ered and that tiling array data can be used in combination
with computational predictions of structural RNAs to
detect novel ncRNA genes. Our strategy could easily be
applied to other tiling array datasets and new annotations
from comparative sequence analysis and should facilitate
the identification of novel ncRNAs. The CRUFTS data can
be accessed at the CRUFTS homepage [14].

Methods

Bioinformatic analysis

To produce a set of predictions enriched for both novel
and known ncRNAs, we located overlapping regions of a
conserved, structured RNA-like and an unbiased transcrip-
tion annotation. The essential features of our pipeline are
outlined in Figure 1. Beginning with the 88,319 genomic
regions from the least conservative mammalian RNAz
annotation [9,40] and 93917 genomic regions from the
ExpressHMM analysis of Affymetrix phase 2 human
genome tiling arrays [13,41], we produced a dataset using
the UCSC table browser [19] of 4,160 genomic regions
that overlapped both the RNAz and expressHMM predic-
tions.

From these regions 7,703 alignments of genomic regions
from human (hgl7), chimpanzee (panTrol), dog
(canFam1), mouse (mm5), rat (rn3), chicken (galGal2),
zebrafish (danRerl) and Fugu (fr1) within the resulting
regions were obtained using the UCSC table browser.
These alignments were fed into the RNAz algorithm and
rescored using the following parameters. The alignments
were sliced into 120 long blocks with a step size of 20 and
only alignments with more than 65 columns were
reported. All slices with an SVM derived probability
greater than 0.5 were reported. Both strands of the
genome were tested for structure potential as the tiling
array data is not strand specific. This resulted in 32,439
genomic regions or 6,534 regions if overlapping predic-
tions are combined.

The accuracy of the predictions was evaluated using a
number of different annotations of human ncRNAs. Most
of the ncRNAs used (214 miRNAs, 17 miscellaneous
RNAs (Xist, Telomerase RNA, HVG-1,2 and 3, H19, RNase
MRP, RNase P), 636 tRNAs, 705 rRNAs, 1805 small cyto-
plasmic RNAs (SRP, hY1, hY3, hY4, hY5) and 1103 snoR-
NAs) were mapped onto the human genome by Jones &
Eddy [20]. In addition, we used the following ncRNA
annotations: the ENSEMBL v37 ncRNA track, which
annotates 4156 human ncRNAs [21], a set of 332 miRNAs
obtained from miRBase (ver 8.0) [22], 1435 snoRNAs
from snoRNA-LBME-db [23] and 441 tRNA and 170
Pseudo-tRNAs obtained from the genomic tRNA database
[24].
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Some predicted ncRNAs were also noted but these were
not used for evaluating the accuracy of the predictions.
These were 674, 133 and 975 miRNA candidates from
miRMAP [33], the colorectal miRNAome [42] and miRNA
shadowing [35] respectively. Overlaps with protein cod-
ing features were determined using the Refseq database
[30].

Cell culture

SK-N-AS neuroblastoma cells (ATCC # CRL-2137) were
cultured as mono-layers in Dulbecco's modified eagle
medium (Invitrogen) supplemented with 2 mM L-gluta-
mate (Invitrogen), 10% bovine fetal serum (Invitrogen)
and antibiotics (penicillin 50 units/ml and streptomycin
and 50 pg/ml, Invitrogen) at 37°C and 5% CO2. Cells for
RNA extraction were harvested at passages 8-20 at 90-
95% confluence.

Northern Blotting for small RNAs

RNA samples enriched for small RNAs were extracted
using the mirVana extraction kit according to the recom-
mendations of the manufacturer (Ambion). The integrity
and concentration of the RNA samples was evaluated by
spectrophotometry (Nano-drop ND-1000) and agarose
gel electrophoresis.

2 pug of the small-selected RNA samples were run on 12%
denaturing polyacrylamide gels together with the Decade
marker (Ambion) for about 3 hours at 250 V. The gels
were stained with ethidium bromide in 0,5 x TBE for 45
min. The RNA was blotted onto Hybond+ N membranes
(Amersham Biosciences) in a semidry blotter (BIO-RAD
trans-blot SD) at 20 V for 1 hour and crosslinked twice
with auto crosslinking settings in a UV Stratalinker 1800
from Stratagene. Crosslinked membranes were stored at
4°C.

20 pmol of LNA modified DNA oligos (Sigma-Proligo)
were end-labeled with o-32P UTP (3000 Ci/mmol, 10
mCi/ml, Amersham) using T4 PNK (Roche) and purified
through NucAway spin columns according to the recom-
mendations of the manufacturer (Ambion). 2-5 pl (of 20
pl total) of the eluates from the NucAway columns was
added to 10 ml of Ultrahyb-Oligo hybridization buffer
(Ambion) in hybridization tubes and used for hybridiza-
tion of the blotted membranes over night at 42°C in an
Apollo HP9300 hybridization oven. The blotted mem-
branes was washed twice at 68°C for 30 min in wash
buffer (2x SSC and 0,5% SDS). Films (Kodak) were
exposed to the blotted membranes 2-6 days at -80°C
using intensifying screens (Amersham). All northern blots
were replicated at least twice with independent RNA prep-
arations.
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