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Abstract
Background: Microarrays are a popular tool used in experiments to measure gene expression
levels. Improving the reproducibility of microarray results produced by different chips from various
manufacturers is important to create comparable and combinable experimental results. Alternative
splicing has been cited as a possible cause of differences in expression measurements across
platforms, though no study to this point has been conducted to show its influence in cross-platform
differences.

Results: Using probe sequence data, a new microarray probe/transcript annotation was created
based on the AceView Aug05 release that allowed for the categorization of genes based on their
expression measurements' susceptibility to alternative splicing differences across microarray
platforms. Examining gene expression data from multiple platforms in light of the new
categorization, genes unsusceptible to alternative splicing differences showed higher signal
agreement than those genes most susceptible to alternative splicing differences. The analysis gave
rise to a different probe-level visualization method that can highlight probe differences according
to transcript specificity.

Conclusion: The results highlight the need for detailed probe annotation at the transcriptome
level. The presence of alternative splicing within a given sample can affect gene expression
measurements and is a contributing factor to overall technical differences across platforms.

Background
Microarrays have become a widely used tool to measure
gene expression levels on a genome-wide basis and are
available from a number of manufacturers. Each platform
incorporates proprietary technology, with differences in
probe design, probe bioinformatics, probe creation and
deposition, reagents and protocols across platforms intro-
ducing variability into expression analysis. A large body of
work has studied the reproducibility of microarray data

and therefore the interchangeability of commercial plat-
forms. A dialogue over data sets, analysis methods, and
concordance measures has evolved, but no clear consen-
sus on the level of agreement or disagreement in expres-
sion results has been reached.

It is generally understood that differences between plat-
forms exist. The source of contention is the interpretation
of the magnitude of these differences. Some conclude
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from the data that microarray results are sufficiently com-
parable across platforms [1,2]. Others caution that the
technological differences have not yet been sufficiently
resolved to combine experimental results from different
platforms [3,4]. Regardless of the overall interpretation,
both sides hypothesize that some of the differences may
be attributable to the presence of splice variants [5-9].

Although alternative splicing is a logical source of cross-
platform differences, there has been no direct evidence to
show that this is the case. Studies have indicated 40% or
more of all human genes are alternatively spliced [10,11]
and expression measurement differences may arise when
probes on different platforms target differentially
expressed splice variants of the same gene. It has been pre-
viously demonstrated that a sequence matching method
between probes increases cross-platform consistency and
reproducibility [12]. Others have matched probes to
genes and shown that annotation discrepancies affect
analysis [13]. Here, we combine the two ideas to provide
evidence for alternative splicing based cross-platform dis-
agreement.

We created an in-depth probe/genome/transcript annota-
tion using the AceView transcript database. AceView is a
comprehensive annotation of transcripts and genes that
incorporates data from GenBank, dbEST and RefSeq [14].
It has been shown to offer a richer view of the transcrip-
tome, with 3 to 5 times more high-quality transcript forms
than UCSC known genes, RefSeq or Ensemble [14]. Cap-
turing transcript diversity is important because probes
may be derived from the same loci, but match different
transcript sequences due to alternative splicing.

Using this new annotation, we categorized genes on each
platform according to their susceptibility to splice variant
differences and measured their cross-platform agreement
in a biological data set using a traditional correlation
measure and a Euclidean distance measure. The novel
usage of the distance measure lends itself to a visualiza-
tion that can show alternative splicing differences or other
poorly performing probes.

Results
Matching platform-specific probes to AceView and RefSeq 
Transcripts
We created a transcript-level annotation of microarray
probes to study the effects of alternative splicing on cross-
platform microarray discordance. Microarray probe
sequences from Affymetrix (U95Av.2 GeneChip, 25 mer
oligonucleotide probes), Agilent (Human 1, cDNA
probes) and Codelink (Uniset Human I Bioarrays, 30 mer
oligonucleotide probes) were aligned to the genome and
annotated as matching transcripts through shared
genomic coordinates from the AceView and RefSeq [15]
transcript databases (see Methods). Table 1 shows the
results of both the genome and transcript mappings.

Greater than 95% of all probes on the three platforms had
genome alignments. Overall, 73%, 94% and 90% of Agi-
lent, Codelink and Affymetrix probes, respectively, had
AceView transcript alignments. The comparatively fewer
alignments for Agilent stem from the strict coordinate
restrictions we placed on the multiple-exon cDNA
genome alignments. A detailed account of probe align-
ment conditions is available [see Additional file 1].

As anticipated, more probes were found to match to
AceView transcripts than RefSeq transcripts, with 21%,
11% and 13% more total probes for Agilent, Codelink
and Affymetrix, respectively. The rest of our analysis was
therefore conducted using AceView data. Agilent and
Codelink utilize single probes to target a gene and gener-
ate expression measurements. The Affymetrix U95Av2
chip is different. It targets a gene with a probe set consist-
ing of up to 16 probes and summarizes the probe set to
generate expression measurements. To create a transcript-
level annotation of probe sets, a probe set was said to tar-
get a transcript if 5 or more probes matched it. An internal
study showed five probes are necessary for reliable sum-
marization measurements [see Additional file 2]. Of the
12453 Affymetrix probe sets, 11564 matched at least one
transcript with 5 or more probes.

Genes categorized by susceptibility to alternative splicing 
based differences
To detect the effects of splice variation on gene expression
measurements, we categorized each gene by probe specif-

Table 1: Number of probes on each platform with AceView and RefSeq genome and transcript alignments

Unique Probes Genome Alignments AceView Alignments RefSeq Alignments

Agilent 13335 12676 (95%) 9698 (73%) 6901 (52%)
Codelink 9969 9855 (99%) 9330 (94%) 8243 (83%)
Affymetrix 199015 193006 (97%) 179740 (90%) 153611 (77%)

"Unique probes" is the number of probes on each platform that had sequences to be aligned. The other alignment categories indicate the number 
of probes that had a specific alignment.
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icity against known splice variants as annotated in
AceView. Genes most susceptible to expression measure-
ment differences from splice variants are those in which
the probes from each of two different platforms interro-
gate mutually exclusive, or disjoint, sets of transcripts.
Genes that are not susceptible to these measurement dif-
ferences are those in which probes on both platforms tar-
get the same, or equal, sets of transcripts. In between the
two extremes are genes that are susceptible to splice vari-
ants, but the effect of which cannot be measured because
the platforms target common transcripts as well as tran-
scripts specific to each platform. Using our transcript
annotation results, we categorized genes commonly tar-
geted by each pairwise platform combination based on
their susceptibility to alternative splicing. To match the
Affymetrix gene expression data used below, the Affyme-
trix probe set annotation was used, as described above.
The number of genes in each category for Affymetrix/Agi-
lent, Affymetrix/Codelink and Agilent/Codelink is shown
in Table 2.

Correlation measure of alternative splicing discordance
We looked for overall splice variant differences utilizing
gene expression data from a previous biological experi-
ment. RNA was obtained from PANC-1 cells of a pancre-
atic ductile cell phenotype and an early stage of their
differentiation to a pancreatic islet phenotype (see Meth-
ods). Five technical and biological replicate microarray
experiments were run on each platform and their results
were averaged to produce a single fold change value for
each gene. We analyzed the expression data by creating
scatter plots of the log2 fold changes for genes in the equal
and disjoint transcript sets for each pairwise platform
combination, shown in Figure 1. Only genes that were sta-
tistically significant at p-value < 0.05 on at least one plat-
form were included in our analysis. Table 3 shows the
computed Pearson and Spearman correlation coefficients
for each of the disjoint and equal gene groups.

There is a drastic drop in the correlation coefficients from
the equal to the disjoint transcript sets for all three plat-
form pairs; the difference being 0.263, 0.484 and 0.38 for
Pearson and 0.253, 0.465, and 0.41 for Spearman from
the Affymetrix/Agilent, Affymetrix/Codelink and Agilent/
Codelink comparisons, respectively. As genes with dis-
joint transcript sets are most susceptible to alternative
splicing based differences and genes with equal transcript
sets are unsusceptible to alternative splicing based differ-
ences, the drop in the correlation coefficients between
these two groups suggests alternative splicing is a contrib-
uting factor to platform discordance.

Distance measure of alternative splicing discordance
A distance measure provides an alternative view of the
data to confirm the correlation coefficient results. We cal-
culated the log2 fold change of experimental versus con-
trol groups for each of the five replicates individually,
creating a vector of the five fold change values for each
gene on each platform. Using log2 fold change places each
platform into a common measurement space. We then
calculated the Euclidean distance between expression vec-
tors from different platforms for the genes in the equal
and disjoint transcript sets. Unlike the previous scatter-
plots, no restriction was made on statistical significance of
the gene. Next, we plotted a cumulative distribution func-
tion (CDF) of all calculated distances for each grouping to
highlight the differences attributable to alternative splic-
ing, shown in Figure 2(a,c,e).

A curve that rises steeply and is shifted to the left repre-
sents a distance distribution that includes smaller dis-
tances than a curve shifted farther to the right. Smaller
distances between expression vectors across platforms
indicates higher agreement. The CDF curve for probes
with equal transcript sets (impervious to alternative splic-
ing based differences) is shifted to the left and rises faster
than the CDF curve for disjoint transcripts sets (most sus-

Table 2: Pairwise platform gene classification based on susceptibility to alternative splicing

Platform A Platform B Common 
Genes

Equal A = B Disjoint 
A � B = 

Ø

A\B ≠ Ø B\A ≠ Ø

Affymetrix Agilent 5804 1964 158 1599 3461
Affymetrix Codelink 6429 2808 85 2526 2623

Agilent Codelink 5183 1648 196 1450 3173

Let A be the set of transcripts a probe(set) on platform A targets
Let B be the set of transcripts a probe(set) on platform B targets
Equal A = B : Number of genes in which platform A and B target equal transcript sets.
Disjoint A � B = Ø: Number of genes in which platform A and B target disjoint transcript sets.
A\B ≠ Ø: Platform A and B target the same gene, but platform A targets extra transcripts that B does not.
B\A ≠ Ø: Platform A and B target the same gene, but platform B targets extra transcripts that A does not.
Note: The total number of classified genes can exceed the number of common genes because a gene may be a member of both A\B = Ø and B\A = 
Ø.
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ceptible to alternative splicing based differences) for all
pairwise platform combinations. Thus, equal transcript
sets tend to have smaller distances and higher agreement
than disjoint transcript sets, indicating a distinct alterna-
tive splicing effect in platform discordance.

To establish a baseline for comparison, we randomly
paired expression vectors from genes on different plat-
forms and calculated the distances. A CDF of distances
from unrelated expression vectors provides an unbiased
worst-case distribution and the baseline CDF is plotted in
Figure 2. By comparison, if two platforms agreed com-
pletely, the CDF would be a unit step function. Platform
distance distributions based on equal and disjoint gene
sets fall in between the two extremes, as the baseline CDF
is shifted to the right, establishing the distance for unre-
lated measurements.

Probe-level distance measure
Agilent and Codelink both use single probes to target a
gene, but the Affymetrix U95Av2 genechip utilizes probe
sets consisting of 16 probes to target a gene. Probe set gene
expression measurements are statistical summarizations
of member probes, which can be influenced by dead
probes, cross-hybridization and other effects [16,17]. In
order to generate a clearer view of expression measure-
ments and agreement levels, we thought to analyze probe-
level expression vectors instead of probe set summariza-
tions for Affymetrix platform combinations.

We conducted a similar analysis as before, creating a vec-
tor of fold change values from the five replicates for each
individual probe. To better isolate the effects of alternative
splicing, we reduced the effect of cross-hybridization by
removing from the analysis the 6.5%, 3.1% and 3.5% of
individual Affymetrix, Agilent and Codelink probes,

respectively, that matched multiple AceView gene sym-
bols. Probe cross-hybridization results, as implied by
sequence, are shown in Table 4.

For all genes shared between platforms, individual probe-
probe comparisons using the probe annotations were
made for equal or disjoint transcript set targeting. By
examining all possible combinations of individual
probes, it was hoped that details masked by the probe set
annotation would become apparent. We created CDFs of
all of the probe distances in each category and established
a baseline by randomly pairing probe expression vectors,
shown in Figure 2(b,d). The alternative splicing effect is
again apparent, with a left shift of probe distance CDFs for
the equal transcript set versus disjoint transcript set.

Kolmogorov-Smirnov Test
The Kolmogorov-Smirnov test is used to determine if two
samples are drawn from the same underlying distribution.
We used it to test whether the Equal-Disjoint, Equal-Ran-
dom and Disjoint-Random CDF combinations for each of
the platform pairs differ from each other. Table 5 illus-
trates the test results, laid out to match the ordering of the
platform pairings in Figure 2. At p < 0.05, we reject the
null hypothesis of drawing from the same distribution for
all CDF combinations except for Disjoint-Random on
Affymetrix probeset/Codelink (c). We accept that the
Equal, Disjoint and Random distance distributions are
different from each other, except in the case of Disjoint-
Random for Affymetrix/Codelink (c), where we cannot
reject the null hypothesis that they are the same.

The distance distributions are different, indicating the
shifts towards smaller distances and better agreement are
meaningful in Figure 2. However, the disjoint transcript
set in any pairwise combination involving Affymetrix

Log2 fold change for equal and disjoint genes in each pairwise platform combinationFigure 1
Log2 fold change for equal and disjoint genes in each pairwise platform combination. Each mark corresponds to a 
gene shared by two platforms. The diamonds are those genes that have equal transcript sets targeted by both platforms. The 
triangles are those genes that have disjoint transcript sets targeted by both platforms.
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probes (b, d) is not appreciably better than random,
unlike the probe set-level CDFs, indicating Affymetrix's
reliance on probe sets and robust algorithms for accurate
expression measurements.

Individual gene expression visualization
We generated a distance matrix containing all pairwise
probe distances for each gene. By turning the matrix into
a heatmap colored by distance, with probes ordered by
their position along the transcript, clusters of probes with
signals showing high agreement and similar patterns
show up as darker blocks along the main diagonal. Figures
3 and 4 are examples of the visualization for the genes
thioredoxin-like 2 (TXNL2) and flap structure-specific
endonuclease 1 (FEN1), respectively. TXNL2, otherwise
known as PICOT (protein kinase C interacting cousin of
thioredoxin) is a hypertrophy-inducible, PKC-inhibiting
negative regulator of hypertrophy. No biological function
has as yet been ascribed to be splice-variant specific. FEN1
removes 5' overhanging flaps in DNA repair and processes
the 5' ends of Okazaki fragments in lagging strand DNA

synthesis. The top part of each figure shows the AceView
transcript forms and where the probes align.

TXNL2 is a case of disjoint transcript sets being targeted by
Affymetrix and Agilent. The Affymetrix probe set targets
TXNL2.cAug05 (outlined in blue). Two Agilent probes tar-
get TXNL2.bAug05 (outlined in green). In the heatmap,
the Agilent probes clearly form a dark cluster distinct and
distant from the Affymetrix probes. Examining the log2
signal intensities, Agilent shows a clear separation
between the control and experimental groups while
Affymetrix shows no pattern at all. Agilent microarray
results indicate that TXNL2 is downregulated, with fold
changes of -1.78 (p = 0.003) and -1.67 (p = 0.007).
Affymetrix microarray results indicate no change, with a
fold change of -1.04 (p = 0.632).

These results were validated by PCR experiments. Real-
time PCR showed a fold change of -1.70 (p = 0.014) for
the transcripts targeted by Agilent. The transcript targeted
by Affymetrix failed to amplify after 40 cycles. The lack of

Table 4: Percentage of probes cross-hybridizing to multiple AceView gene symbols

Platform Number of Probes with AceView 
Alignments

Number of probes matching a 
unique AceView Gene Symbol

Percent probes matching multiple 
symbols

Affymetrix 179740 168001 6.53%
Agilent 9698 9397 3.10%

Codelink 9330 9000 3.54%

Table 3: Pearson correlation coefficients for equal and disjoint gene groups

Equal

Pearson Spearman

Platform A Platform B N r 95% CI P-value r 95% CI P-value

Affymetrix Agilent 966 0.769 .742 < p < .794 <0.0001 0.783 .757 < p < .8058 <0.0001
Affymetrix Codelink 1263 0.73 .703 < p < .755 <0.0001 0.745 .719 < p < .769 <0.0001

Agilent Codelink 908 0.662 .624 < p < .697 <0.0001 0.652 .613 < p < .688 <0.0001

Disjoint

Pearson Spearman

Platform A Platform B N r 95% CI P-value r 95% CI P-value

Affymetrix Agilent 101 0.506 .344 < p < .638 <0.0001 0.53 .373 < p < .658 <0.0001
Affymetrix Codelink 49 0.246 -0.03 < p < .493 0.0889 0.28 -0.0009 < p < 0.521 0.051

Agilent Codelink 114 0.282 .104 < p < .443 0.0023 0.242 .061 < p < .408 0.0095

r – correlation coefficient
95% CI – rho is the 95% confidence interval around r calculated using Fisher's transform
p-value – value for testing the hypothesis of no correlation against the alternative that there is a non-zero correlation
n – number of genes in each pairing used in correlation calculation
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CDFs of cross-platform distancesFigure 2
CDFs of cross-platform distances. a) CDF of gene-level distances for the Affymetrix/Agilent combination. b) CDF for 
probe-level distances for the Affymetrix/Agilent combination. c) CDF for gene-level distances for the Affymetrix/Codelink 
combination. d) CDF for probe-level distances for the Affymetrix/Codelink combination. e) CDF for probe-level distances for 
the Agilent/Codelink combination (probe-level after cross-hybridizing probes were removed). Genes with equal transcripts 
show higher agreement than genes with disjoint transcripts in terms of distance between log2 fold change expression vectors 
across platforms, as shown in 2a and 2c. The equal CDF rises faster and is farther to the left because a higher percentage of 
distances are small. Disjoint transcripts are more agreeable than random genes for the same reason, indicating transcript forms 
are regulated together better than random. Individual probe distances, shown in 2b, 2d and 2e, show the same pattern as the 
gene-level CDFs with equal, disjoint and random following each other in decreasing agreement. Affymetrix disjoint probes are 
not much improved over random, unlike the gene-level CDFs, indicating Affymetrix's reliance on redundant probe sets to 
obtain accurate expression data
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amplification corroborates the low signal intensity and
lack of signal pattern in the microarray data, meaning the
Affymetrix transcript is likely not present in the sample.
Therefore TXNL2 represents a gene whose discordant
expression measurements are attributable to alternative
splicing, because each platform targets mutually exclusive
transcripts with different, validated results. There were
three additional transcripts for which we could adequately
design a real-time PCR assay and for which probe align-
ments are shown [see Additional file 3]. In the first case,
CDC42 was significantly downregulated when assayed by
Codelink (-1.65, p = 0.00298; variants e, f) but unchanged
by Affymetrix (1.10, p = 0.04; variant d). Surprisingly, we

were not able to validate either result by real-time PCR
(variants e, f: 1.82, p = 0.07; variant d: 2.97, p = 0.02), sug-
gesting a false positive result for Codelink and a false neg-
ative one for Affymetrix. In two other cases where
increased transcript expression was detected by Affymetrix
(CALM1 (variant b), 1.94, p < 0.003) and by Codelink
(FMO5 (variants a, d), (2.23 p < 0.001), both were vali-
dated by real-time PCR (2.73, p = 0.003; 3.01, p < 0.001).
Correspondingly, results from the Agilent platform
showed no change for different variants of both genes,
(1.11, p = 0.45; -1.26, p = 0.59 for CALM1 (variant a) and
FMO5 (variant c), respectively). Nevertheless, we further
determined by real-time PCR that these specific variants

Visualization of TXNL2Figure 3
Visualization of TXNL2. Top: UCSC Genome Browser view of TXNL2 probe alignments alongside AceView transcripts. 
The probes and transcripts they target are outlined by color; Agilent is green, Affymetrix is blue. Bottom Left: Heatmap visual-
ization of the gene according to pairwise Euclidean distance. The Agilent probes, outlined in green, form a dark block, indicat-
ing their measurements are close together. The Affymetrix probes do not show any grouping pattern. Bottom Right: Log2 
signal intensity of the replicates. The Affymetrix probes, outlined in blue, show low signal intensity and a random distribution of 
control and experimental signals from probe to probe, which explains the lack of visual pattern in the heatmap. The Agilent 
probes, outlined in green, show clear separation between the control and experimental groups, indicating a downregulation of 
TXNL2. Real-time PCR showed the Affymetrix transcript to be absent in the sample, while the Agilent transcripts were vali-
dated to be downregulated, explaining the signal patterns.
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were also upregulated (8.06, p < 0.001; 2.69, p < 0.001).
These results demonstrate that additional factors clearly
contribute to the dissociation of results across platforms,
and that splice variants may only play a partial role in
explaining these differences.

One of these factors might be the existence of poorly per-
forming probes possibly resulting from failure to hybrid-
ize, or susceptibility to cross-hybridization. FEN1 is an
example of a visualization revealing poorly performing
probes. A group of four Affymetrix probes, outlined in
green, are distant from all of the other probes for the gene,
including the Agilent and Codelink probes (probes 17
and 18 respectively). Due to an existing non-disclosure
agreement with GE Healthcare, we are unable to show the
position of the Codelink probe on the genome, but it is in
the vicinity of Affymetrix probe 41583_at-4021. The
group of four probes shows poor or no separation in the
log2 signal intensity between the control and experimen-
tal groups, unlike the other probes that show clear down-
regulation. This difference is not due to transcript
specificity and highlights the fact that individual probes
can misbehave for other reasons.

Discussion
Mapping probes to transcripts via the genome yields more
information and is more complex than a direct probe/
transcript mapping. Genome coordinates show the cause
of alignment failures, such as probes aligning to an intron.
In addition, genome builds are more stable than tran-

script databases and allow for enhanced future study. For
instance, a probe may have been designed using proprie-
tary transcript sequences or map to an unexplored area
where tiling arrays indicate transcriptional activity
[18,19]. While we may miss some alignments involving
rare non-standard introns or some Agilent cDNA clones
due to our algorithm, we maintain a high stringency of
matches between genome coordinates, probes, and tran-
scripts.

The algorithms that generate genomic alignments and
transcript annotations differ for the three platforms. They
serve as an abstraction layer to transform the different
probe designs from each platform into commonly compa-
rable annotation data. Annotation quality is the key factor
when investigating alternative splicing disagreement.
Although we maintain a high stringency in the align-
ments, the Agilent cDNA probes have lower transcript
hybridization specificity than Affymetrix or Codelink due
to their length. Therefore, under actual hybridization con-
ditions, Agilent may target more transcripts than our
purely sequence-based annotation indicates. While this
may slightly impact the Agilent results, our annotation
provides a good starting point for alternative splicing
analysis. For instance in TXNL2, Agilent and Affymetrix
target disjoint transcripts based on sequence alone. It is
possible that Agilent could bind to the Affymetrix tran-
script, TXNL2.cAug05, though we do not know for sure.
Even so, we were able to assay the terminal exon exclusive
to Affymetrix to show splicing-based disagreement.

Table 5: Kolmogoriv-Smirnov Test Statistics

Affymetrix/Agilent (a) Affymetrix/Agilent (b)

p K-S Stat p K-S Stat

Equal-Disjoint <0.0001 0.2173 Equal-Disjoint <0.0001 0.0953
Equal-Random <0.0001 0.2118 Equal-Random <0.0001 0.1464
Random-Disjoint 0.0033 0.1266 Random-Disjoint <0.0001 0.0554

Affymetrix/Codelink (c) Affymetrix/Codelink (d)

p K-S Stat p K-S Stat

Equal-Disjoint 0.0025 0.1845 Equal-Disjoint <0.0001 0.1272
Equal-Random <0.0001 0.1598 Equal-Random <0.0001 0.14
Random-Disjoint 0.3013 0.098 Random-Disjoint 0.0041 0.0188

Agilent/Codelink (e)

p K-S Stat

Equal-Disjoint <0.0001 0.148
Equal-Random <0.0001 0.2173
Random-Disjoint 0.0001 0.0941
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Screening for such candidate genes most susceptible to
alternative splicing requires at least a detailed sequence-
based annotation.

The drop in correlation coefficients of expression meas-
urements across platforms from genes impervious to alter-
native splicing based differences to those genes most
susceptible to alternative splicing based differences seems
to indicate alternative splicing plays a role in platform dis-
cordance. Although correlation coefficients are widely
used measures of platform concordance, the large drop
was not necessarily supported by a corresponding visual

change in the distribution of data points underlying the
coefficient calculations.

We verified the correlation coefficients by using a distance
measure derived from gene and probe-level log2 fold
change data from replicate samples. Instead of using other
fuzzy measures such as percent gene list overlap to meas-
ure improvement, our distance measure provides a clearer
measure that cuts to the signal differences attributable to
alternative splicing. The CDF shows that probes that target
equal transcripts have fold changes that on average are
closer and more agreeable between the two platforms
than probes with disjoint transcripts. A key point is that

Visualization of FEN1Figure 4
Visualization of FEN1. Top: UCSC Genome Browser view of FEN1 probe alignments alongside AceView transcripts. The 
four misbehaving probes are outlined in green. Bottom Left: Heatmap visualization of the genes according to pairwise Euclidean 
distance. Probes 1–16 are Affymetrix, 17 is Agilent, and 18 is Codelink. Probes 5–8 (green outline) are distant from the rest of 
the probes in the set, creating a white cross in the symmetric matrix. The rest of the probes are all in high agreement with 
each other with short distances between expression vectors. Bottom Right: Log2 signal intensity of the replicates. The signal 
intensities of the misbehaving probes, outlined in green, do not show the same high degree of separability between the control 
and treatment groups that is exhibited by the rest of the probes. The signal intensity graph confirms that these probes behave 
differently and should form their own cluster, as found in the heatmap.
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the CDFs were generated without any arbitrary p-value or
fold change filtering of the probes. Since we are not con-
cerned with methods to improve concordance, we did not
utilize any filtering method or thresholding that could
change the interpretation of microarray results. The CDF
differences show that alternative splicing is a layer on top
of the basic platform technology differences that contrib-
utes to platform discordance, independent of any post-
processing method.

While alternative splicing clearly affects platform discord-
ance, making a broad-based quantification of its effects is
difficult. First, alternative splicing is tissue dependent
[20]; not only do the variants need to be differentially
expressed, but the genes affected will change in each
experiment. While we categorized genes based on their
susceptibility to alternative splicing differences, the
majority of genes have both common and specific tran-
script targets on each platform, making it difficult to iso-
late the effect of alternative splicing from the underlying
technological discordance represented in the common
transcripts. Though it is not possible to establish a univer-
sal boundary on alternative splicing's contribution to dis-
cordance in this study, we have provided evidence for its
existence.

Basic platform technology differences are revealed in the
CDFs for genes with equal transcript sets on any two plat-
forms compared. These genes are unsusceptible to alterna-
tive splicing differences, yet the CDF does not
approximate a stair-step function that would indicate
complete agreement. Other platform differences may
include high probe/mRNA secondary structure, difficul-
ties in labelling and other design and protocol considera-
tions. Therefore underlying platform-based differences
exist and are unexplainable by alternative splicing alone.
In this respect, our inability to validate some of our dis-
cordant microarray results demonstrates that clearly other
factors exist. To aid in understanding this phenomenon,
our distance measure also offers a way to visually examine
similarly performing probes. In a heatmap of pairwise
probe distances for a gene, clusters of probes became vis-
ually apparent based on shared signal intensity patterns
according to positional ordering. The presence of clusters
of "close" probes provides both insights into probe per-
formance behaviour and a sanity check on the distance
measure itself. However a more in-depth study using
other clustering techniques on different factors could
show probes grouped together on the basis of GC content
or hybridization conditions, revealing the causes of differ-
ing probe behaviour for the same transcripts.

In addition to probe design-dependent differences in sen-
sitivity and specificity, systematic and random sources of
variability unrelated to probe sequence can contribute to

an "intrinsic" level of discordance across expression
arrays. For instance, context-dependent differences in
expression data have been reported across generations of
Affymetrix arrays with identical probe sequences [21].
Moreover, a study by the MAQC consortium showed that
cross-site concordance rates for a single array platform was
~50–65% for the most highly ranked differentially
expressed genes when two related samples were compared
[[22], Fig. S2]. This within-platform agreement rate is
noteworthy compared to the ~40% cross-platform agree-
ment rate previously reported [6,9,23]. In our current
analysis, more detailed ANOVA models were used to
describe and subsequently remove non-biological sources
of variability specific to each platform, such as batch
effects due to RNA extraction and array- and dye-specific
bias. Assuming that systematic errors typical of a microar-
ray experiment can be accounted for in this manner, the
remaining discordance is still only partly explained by the
presence of splice variants. In this regard, a similar re-anal-
ysis of other multi-platform datasets would be highly
interesting and our code is made available for this pur-
pose [see Additional file 4].

As known transcript diversity increases, we expect the
number of genes with equal transcripts on both platforms
to decrease, raising the confidence of the annotation of
the remaining genes, producing lower distances and a
sharper CDF. Despite the certain existence of technical
variables affecting cross-platform concordance, we believe
inter-platform agreement rates can be further improved as
use of the transcriptome for probe annotation increases.
To further advance this goal, we have recently provided
custom chip-description-files and annotation files for a
transcript-based probe set redefinition of the human
Affymetrix arrays [24].

Conclusion
Using an in-depth transcript annotation, we categorized
genes as being either impervious or susceptible to alterna-
tive splicing cross-platform differences. Examining gene
expression data for these genes in two manners, we pro-
vided evidence that alternative splicing cross-platform dis-
cordance exists. Utilizing a distance measure, we were able
to create a gene visualization that can highlight probe dif-
ferences. Alternative splicing's contribution depends
heavily on the prevalence of alternative splicing in the
experimental data set and it is a factor adding to omni-
present and underlying technical differences.

Methods
Generating probe genome coordinates
All alignment code was run on the NIH Biowulf super-
computing cluster. Probes were aligned to Human
Genome Build (hg17, May 2004). Although a new
genome build was released in March 2006, the AceView
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transcript genome coordinates have not yet been updated
to reflect the new build.

Agilent
Agilent probe sequences were generously contributed by
Open Biosystems (Incyte clone database). Of the 13323
unique Agilent cloneIDs, sequences were available for
12955 clones. Of the 12955 clones, 10016 were anno-
tated as being a confirmed full length cDNA clone
sequence; the other 2939 were potential full length clones
with a 5' read. Of the 2939 potential full length probes, 12
had additional 3' read sequences. Potential full length
probes may have gaps that are not sequenced.

The Agilent probes were aligned to the genome using the
default parameters of the BLAT algorithm. Alignment
results were filtered using the following steps:

1. For each probe, the ratio between the number of match-
ing base pairs in the alignment and the number of base
pairs in the probe sequence had to be greater than 0.75 for
the highest scoring alignment. This requirement forces the
best alignment to match a majority of the probe sequence,
since BLAT produces many spurious short alignments
with 100% percent identity.

2. For each probe, accept any alignment whose score is
within 5% of the best alignment's score. This requirement
eliminates low quality alignments, while allowing for
finding coordinates of gene repeats.

Affymetrix and Codelink
Affymetrix probe sequences for the U95A.v2 chip were
downloaded from the Affymetrix website [25], yielding
sequences for 199015 unique probes after removing 69
probes associated with ALU repeats. Codelink probe
sequences for 9969 unique probes were obtained from GE
Healthcare.

Traditional sequence alignment algorithms, such as
BLAST are unsuited for aligning short probe sequences to
the genome because they work best with sequences greater
than 50 bp and require parameter tuning and post-
processing quality control for optimal results. Other pro-
grams that allow for fuzzy alignments to mimic hybridiza-
tion conditions, such as GCG's findpatterns or EMBOSS's
fuzznuc do not scale well with 200000 probes at the
genome level. We therefore created a custom alignment
procedure, written in perl. It is a cascade architecture that
progressively uses more computationally intensive align-
ment algorithms on the reduced subset of probes una-
ligned in the previous step, making efficient use of
computational resources. The algorithm consists of four
steps:

1. Exact alignments of probe sequences to the genome are
found using a hash table. A sliding window is passed over
the genome, querying the "dictionary" hash table for a
probe match using the window sequence as the key.

2. Probes without exact matches are then tested for align-
ment with single base pair mismatches, again using a hash
table approach with an expanded dictionary to include all
possible mismatch sequences. When windowing the
genome, a "don't care" term corresponding to an N nucle-
otide are substituted at each position in the window when
querying the hash table, effectively scanning the genome
n times, where n is the probe length.

3. Probes not aligned in either step above are subjected to
regular expression genome searches to determine whether
a probe spans an intron. To aid in intron search specifi-
city, intron feet are added to each regular expression
because 99% of all introns begin and end with the
sequence GT-AG or GC-AG. Only those probes found
with intron gaps of less than 60 kbp are accepted to elim-
inate spurious alignments. Regular expressions are slow
compared to hash-based approaches.

4. Any remaining probes are run through BLAT as a catch
all. A previous study (GE, personal communiqué) shows
that probes can tolerate up to 3 mismatches with the tar-
get sequence before there is significant signal degradation
due to failed hybridization. A conservative BLAT score cut-
off is used, equating to accepting either two mismatches
or a gapped intron alignment and one mismatch. BLAT is
only guaranteed to find perfect matches down to 33 bases
and therefore may miss some probes of interest due to
short probe length.

Matching probes to transcripts
Two transcript databases, AceView and Reference
Sequence (RefSeq) were used. AceView human Aug05
transcripts and genome coordinates were obtained from
the AceView website [26]. Genome coordinates of RefSeq
transcripts as determined by BLAT alignment were
obtained from UCSC on 12/29/05. Individual probes
were then matched to transcripts by comparing common
genome coordinates in an Oracle database query.

Experimental data
Expression data for all three platforms were obtained as
described in [9]. PANC-1 cells were grown in serum-rich
medium, trypsinized and collected immediately and at 24
h following transfer of these cells to serum-free medium.
Each one of the microarray platforms utilized a common
sample pool of RNA from control PANC-1 cells which
have a pancreatic ductal cell phenotype or from an early
stage of their differentiation to a pancreatic islet pheno-
type. RNA was labeled and hybridized to microarrays
Page 11 of 13
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from Affymetrix (U95Av.2 GeneChips, multiple 25 mer
oligonucleotide probe sets), Agilent (Human 1, cDNA
probes) and Amersham (Codelink UniSet Human I Bioar-
rays, 30 mer oligonucleotide probes) according to manu-
facturers' guidelines. For each time point, three arrays
were hybridized with RNA derived from one of the PANC-
1 cell cultures (technical replicates); the remaining two
microarrays were hybridized with RNA from two inde-
pendent cell cultures (biological replicates), thus generat-
ing five data points for each probe at each time point.

Raw data from Codelink was median-normalized as rec-
ommended by the manufacturer. Raw data from the Agi-
lent platform underwent lowess normalization via the
Feature Extraction Software. Affymetrix gene expression
measurements underwent quantile normalization and
summarization using RMA [27]. Experiment-wide system-
atic technical or "batch" effects such as that caused by
RNA extraction on different sample batches were removed
using Partek Genomics Suite [28].

For Codelink and Affymetrix GeneChip data, the follow-
ing ANOVA model was used: let Ygij be the base-2 loga-
rithm of the background-corrected measurement from
gene g (g = 1...n), treatment i (i = 1,..2), and RNA extrac-
tion batch j (j = 1,..2):

Ygij = μ + Ti + Rj + (TR)ij + ε

where T is the main effect for treatments, R is the main
effect for RNA extraction, and TR is the interaction effect
of RNA extraction and treatment, and ε is stochastic error.
Using this model, we were able to subtract the effect of
RNA extraction from the gene expression signal.

For the Agilent 2-channel array, the following ANOVA
model was used: let Ygij be the base-2 logarithm of the
background-corrected measurement from gene g (g =
1,...n), treatment i (i = 1,2), RNA extraction batch j (j =
1,2), configuration on slide k (k = 1,2), dye l (l = 1,2) and
array m (m = 1,...5).

Ygij = μ + Ti + Rj + (TR)ij + (C)k + (D)l + (AR)jm + ε

where T is the main effect for treatments, R is the main
effect for RNA extraction, and TR is the interaction effect
of RNA extraction and treatment, C and D are the effects
for configuration and dye respectively, and AR is the inter-
action effect of RNA extraction and array and ε is stochas-
tic error. Effects of RNA extraction, slide configuration
(left vs. right), dye, and array were removed. Cy5 and Cy3
channel signals were then averaged for each sample. All
raw and processed data are available in GEO (GSE7785).

Real-time PCR Expression Analysis
An inventoried assay for the gene TXNL2 was obtained
from Applied Biosystems (Hs01582641_g1) and was used
to test for the TXNL2.aAug05 and TXNL2.bAug05 tran-
scripts targeted by the Agilent probes. The assay's context
sequence is TGGATATTGTGAAGGAACTGAAAGA.

Custom designed PCR primers were synthesized by
MWG-BIOTECH Inc. (High Point, NC, USA). The forward
(CCCAAAGTGCTGGAATTTACAGGAGTGT) and reverse
(TGGTGAATGAGGCATCAGGAAGCTA) primers were
designed to target the same exon as the Affymetrix probe
set and align to TXNL2.cAug05. Melting point Tm temper-
atures (65.9°C and 64.8°C respectively) and %GC con-
tent (46.4% and 48.0% respectively) was checked using
Primer Express™ software package from Applied Biosys-
tems (Foster City, CA, USA).

Analysis
Equal and disjoint transcript sets for probes and genes
were determined using Access database queries examining
the transcript annotation data. The correlation, distance
measure and CDF analysis was conducted using built-in
Matlab functions, custom Matlab scripts, custom Perl
scripts and Microsoft Access databases to tie the data
together. Code and data are available as supplementary
files.
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Additional file 1
Probe alignment failure conditions. Provides examples of probes failing to 
align for various causes.
Click here for file
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Additional file 2
Minimum number of probes for reliable Affymetrix summarization meas-
urements. Graph showing the correlation coefficient versus number of 
probes in a probe set matching to RefSeq in a cross platform comparison 
between Affymetrix and Agilent.
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