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Abstract
Background: Marfan syndrome (MFS) is a heritable connective tissue disorder caused by
mutations in the fibrillin-1 gene. This syndrome constitutes a significant identifiable subtype of
aortic aneurysmal disease, accounting for over 5% of ascending and thoracic aortic aneurysms.

Results: We used spotted membrane DNA macroarrays to identify genes whose altered
expression levels may contribute to the phenotype of the disease. Our analysis of 4132 genes
identified a subset with significant expression differences between skin fibroblast cultures from
unaffected controls versus cultures from affected individuals with known fibrillin-1 mutations.
Subsequently, 10 genes were chosen for validation by quantitative RT-PCR.

Conclusion: Differential expression of many of the validated genes was associated with MFS
samples when an additional group of unaffected and MFS affected subjects were analyzed (p-value
< 3 × 10-6 under the null hypothesis that expression levels in cultured fibroblasts are unaffected by
MFS status). An unexpected observation was the range of individual gene expression. In unaffected
control subjects, expression ranges exceeding 10 fold were seen in many of the genes selected for
qRT-PCR validation. The variation in expression in the MFS affected subjects was even greater.
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Background
Aneurysm and dissection are major diseases of the aorta
and are often asymptomatic until a life-threatening event
like ischemic organ damage or rupture occurs. Marfan
Syndrome (MFS) is a diverse yet clinically recognized sub-
group of people at risk for aneurysm, including dissecting
aneurysm, and constitutes a significant fraction (esti-
mated at 5–7.5% [1,2]) of all individuals with ascending
and thoracic aortic aneurysmal disease. MFS incidence is
estimated to be 1 in 5–10,000 [3]. Our long-term goal is
to develop an assay that will identify people at risk for
aneurysm before the disease process has reached an
advanced state. This report is a small step in that direction.

In this study, we focus on individuals diagnosed with
Marfan syndrome. The prevalence of MFS combined with
its clinical recognition makes it an excellent model system
for studies on aneurysmal disease. MFS is an autosomal
dominant heritable disorder caused by mutations in the
fibrillin-1 (FBN1) gene [4,5], with more than 500 unique
mutations identified [6]. FBN1 mutations show a high
degree of penetrance but considerable inter- and intra-
familial variability in their phenotype [3]. The variable
penetrance suggests that environmental factors and/or
disease modifying genes also contribute to the phenotype.
Neonatal MFS correlates to mutations within exons 24–
32 and MFS defined by mutations in exons 59–65 carry a
reduced risk of aortic pathology. Large-scale comparisons
between MFS individuals with premature termination
mutations and cysteine substitutions in FBN1 revealed
significant differences in ocular, skeletal and hypermobil-
ity features but no difference in the frequency of ascend-
ing aortic aneurysm [7,8]. Apart from these observations,
determining the nature of the mutation (a time and labor
intensive process) does not improve prediction of the
severity of the disease, the risk of aneurysm development
or of its progression [7,9]. These limited genotype-pheno-
type correlations suggest that genes other than FBN1 may
significantly influence the phenotype, and their identifica-
tion may lead to a more informative test of risk.

Fibroblasts are not smooth muscle cells. However, in cul-
ture they display a stable phenotype with stress fibers
composed of cytoplasmic actins and a splice variant of cel-
lular fibronectin [10]. The increased mechanical stress on
dermal fibroblasts seeded at low density produces a cell
culture population consisting of 70–80% myofibroblasts.
The term "myofibroblast" was proposed over 30 years ago
to describe the fibroblasts that appeared in granulation
tissue at the sight of open wounds [11]. Recently, it has
been recognized that Thy-1 surface expression defines a
subpopulation of fibroblasts capable of differentiating
into myofibroblasts [12]. We can detect Thy-1 expression
in both affected and unaffected skin fibroblasts by array
and have confirmed that observation by quantitative real

time polymerase chain reaction (qRT-PCR, data not
shown). Thus, the skin cultures we used were "myofibrob-
last" like.

In the last several years, use of DNA microarrays to ana-
lyze gene expression has emerged as a promising technol-
ogy for disease classification and prognosis and for
identification of genes that could be potential causes, bio-
markers or drug targets [13,14,14-18]. However, there are
limits to the sensitivity of microarrays for detecting genes
expressed at low levels as well as additional confounding
problems associated with arrays [19-23]. Consequently,
in common with most recent studies [20,24], we go
beyond mere classification by independently validating
expression levels using quantitative qRT-PCR and validat-
ing the results in a second population.

In the present study, we used total RNA in oligo dT primed
cDNA reactions to identify an expression phenotype asso-
ciated with the MFS genotype in cultured skin fibroblasts.
Our results show a clearly recognizable expression pheno-
type in cultured fibroblasts. We of course do not expect
exactly the same expression phenotype in aortic smooth
muscle cells, but we do expect some overlap in the per-
turbed pathways, as they share the same root cause. Some
of the identified genes, including elastin and several colla-
gens, are obvious targets for roles in the development and
maintenance of the extracellular matrix environment and
cell-matrix contacts. Additional genes validated by qRT-
PCR analysis, including the vitamin D receptor, pro-
grammed cell death-10 and the LIM domain only 7, may
represent genes that will provide new insight into the dis-
ease process. Our ability to detect a MFS expression phe-
notype in cultured fibroblasts provides both a simple
method for large-scale screening and a basis for mechanis-
tic studies of the genes identified as differentially
expressed.

Results
An overview of our experimental design is shown in Fig-
ure 1. In brief, we analyzed total RNA from 36 subjects by
spotted membrane DNA macroarray. We used Research
Genetics spotted cDNA membrane arrays to analyze gene
expression in fibroblast cultures, 17 with characterized
mutations in the FBN1 gene (7 missense, all cysteine sub-
stitutions, 9 nonsense and 1 multi-exon deletion; 14 of 17
had an aortic phenotype) and 19 unaffected controls
(details in Table 1). We selected differentially expressed
genes between MFS and unaffected samples based on esti-
mated False Discovery Rate (FDR)[25]. We calculated the
4132 p-values for the two-sample t-tests associated with
the expression differences between affected and control
for each gene on the array. At a q-value (estimated FDR)
threshold of 0.001, 283 genes (265 with identifiable
unique Unigene ID numbers) out of a total of 4132 are
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selected as differentially expressed in MFS vs. unaffected.
The top ranking genes based on ratio are listed in Table 2
[see Additional File 1 for the entire list]. At the same q-
value threshold, we found 175 differentially expressed
genes (165 with unique Unigene ID) between missense
and unaffected samples, and 111 differentially expressed
genes (106 with unique Unigene ID) between nonsense
and unaffected samples. The q-values are only approxi-
mate, since their validity depends on various assumptions
such as normality of the expression levels within groups.
To globally assess the reliability of these test results while
making fewer statistical assumptions, we performed a per-
mutation test (see Methods) to determine if the large
number of significant genes we found could easily have
arisen by chance. Of 50,000 random permutations for
MFS and unaffected samples, no permutations have more
than 283 differentially expressed genes, making the array
results highly statistically significant, with an empirical p-
value smaller than 0.00002. Furthermore, the only per-
mutations exhibiting a substantial number of significant
genes were those permutations that happened to separate
most of the MFS subjects from most of the unaffected con-
trols. Over forty five thousand permutations showed no
significant genes, and the average number called signifi-
cant was only 0.45, making it very likely that our esti-
mated false discovery rate of 0.001 is conservative. [See
Additional File 1 for the complete 4132-gene dataset.]

Quantitative RT-PCR
We performed duplicate quantitative RT-PCR assays on
total RNA from 74 subjects (Table 1) to measure the con-
centration of 12 mRNAs [see Additional file 2]. We chose
10 genes based on the degree of ratio change, small q-
value and the availability of Applied Biosystems predeter-
mined assay reagents (PDARs). We included two addi-
tional genes, GUSB and TBP as internal references.
Behaviors of these genes in the array are summarized in
Table 3. The qRT-PCR data for a given subject are generally
positively correlated with the array results for the same 10
genes from the same RNA sample, with a mean Spearman
(rank) correlation of 0.46 (0.35 among unaffected sub-
jects, 0.52 among MFS subjects). Figure 2 summarizes
qRT-PCR results for all 74 subjects, and Table 4 addition-
ally summarizes qRT-PCR results for the array and new
subjects separately.

It is noteworthy that the expression values in the qRT-PCR
assays do not appear to be normally distributed. E.g., box-
and-whisker plots of normally distributed data analogous
to Figure 2 would be expected to show less than 1% of the
samples as "outliers" (the triangles plotted outside the
"whisker" ranges, which encompass ± 2.7 times the esti-
mated standard deviation), whereas Figure 2 has 3.7 times
as many outliers among the UC samples and 9.4 times as
many among MFS samples (also see Table 5). In response
to this apparent non-normality, we used the non-para-
metric Wilcoxon rank sum test to evaluate the significance
of gene expression differences between groups, a more
conservative choice than the usual t-test in such a circum-
stance. Under the null hypothesis that data for the two
groups are sampled from the same (unspecified) continu-
ous distribution, the test is sensitive to a shift in the loca-
tion (e.g. mean and median) of the distributions (but not
necessarily sensitive to a shift in variance, as seen in most
genes here).

Table 4 shows that when all of the samples are combined,
6 of 10 genes were validated. Under the null hypothesis
that the genes are independent and not influenced by MFS
status, the chance that the qRT-PCR results would confirm
6 of 10 predictions as being statistically significant (Wil-
coxon p value < 0.05) is less than 2.8 × 10-6. Fold changes
and Wilcoxon p values for all 10 genes are shown in Table
4 based on all 74 subjects and separately, on 30 of the
original 36 array subjects and 32 new subjects (Table 1).
Among 10 genes selected based on the array experiments,
8 show consistent direction of difference by qRT-PCR on
the same array subjects, and 5 of these 8 genes are statisti-
cally significant. Similarly, 6 of these 10 genes show the
same direction, and are significant, when tested on new
subjects, as are 6 of 10 when tested on all subjects. Four of
the 10 genes are significant in all three sets of subjects

Overview of the experimental designFigure 1
Overview of the experimental design. We used spotted 
membrane DNA arrays to characterize gene expression 
from MFS samples with known FBN1 mutations and from 
unaffected control samples. Following analysis of both 
groups, we selected a set of genes for validation by qRT-PCR, 
using a majority of the original samples. A new population of 
16 probable MFS, all with an aortic phenotype, and 16 UC 
samples were used to test independently whether the 
selected genes were differentially expressed between the 
two groups. See Table 1 for details about subjects included in 
each experiment.

New subjects 
16 MFS (clinical criteria) 

16 UC

cDNA Array
17 MFS

19 UC

qRT-PCR
42 MFS

32 UC

Original subjects 
27 MFS (known mutations) 

21 UC
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Table 1: FBN1 mutations [8, 60, 61-3]

MFS Affected (known mutations) Unaffected Controls (UC)

Subject Sex Age Mutation Platform Ref. Subject Sex Age Platform

1 FB 969 F 53 C628X A T 30 UC 1 F 74 T
2 FB 992 M 49 R861X A T 30 UC 2 F 34 T
3 GD 1051 F 45 PTC ex 24 A T DMUP UC 3 F 34 A T
4 FB 1234 F 34 N1157X A T 30 UC 4 F 34 A T
5 FB 773 F 48 D1191X A T 30,61 UC 5 F 38 A T
6 FB 857 M 16 R1192X T 30 UC 6 F 35 A T
7 FB 751 F 54 L1412X T 30 UC 7 F 15 A T
8 FB 997 F 48 R1523X T 30 UC 8 F 11 A
9 FB 1286 F 33 R2057X A T 30 UC 9 F 5 A

10 FR 60 M 7 PTC ex 63 A T DMUP UC 10 F 25 A T
11 GD 021 M 17 PTC ex 63 A T DMUP UC 11 F 49 A
12 GD 032 F 9 PTC ex 64 A DMUP UC 12 F 40 A
13 FB 836 F 31 C832Y A T 8,61 UC 13 M 72 A T
14 FB 837 M 10 C832Y A T 8,61 UC 14 M 49 A T
15 FB 783 F 33 C1117Y A T 61 UC 15 M 36 A T
16 FB 984 M 22 C1171R T 8 UC 16 M 43 A T
17 FB 1069 F 4 C1326R T 8 UC 17 M 35 A T
18 FB 1040 F 29 C1361Y A T 8 UC 18 M 15 A T
19 FB 882 F 27 C1402W T 8 UC 19 M 71 A T
20 FB 881 M 24 C1589F A T 61 UC 20 M 14 A T
21 FB 1627 M 34 C2038Y A T UFUP UC 21 M 50 A
22 FB 829 M 21 C2053F T 62
23 FB 1211 M 20 C2111R A T UFUP
24 FB 1359 M 28 C2686F T 62
25 FB 890 F 4mo del ex 44-46 A T 63
26 FB 774 F 40 del ex 42-43 T 63
27 FB 970 M 38 del ex 54 T 63

Average Age 29 Average Age 37

Additional MFS Affected (unknown mutations) Additional Unaffected Controls (UC)

Subject Sex Age Platform Subject Sex Age Platform

28 MFS 1 M 37 AF T UC 22 M 25 T
29 MFS 3 M 25 AF T UC 23 F 56 T
30 MFS 4 F 45 AF T UC 24 M 39 T
31 MFS 5 F 68 AF T UC 25 F 38 T
32 MFS 6 M 48 AF T UC 26 F 59 T
33 MFS 7 F 29 AF T UC 27 M 30 T
34 MFS >8 M 44 AF T UC 28 M 32 T
35 MFS 9 F 55 AF T UC 29 M 55 T
36 MFS 10 F 17 AF T UC 30 M 43 T
37 MFS 11 F 42 AF T UC 31 F 58 T
38 MFS 12 M 32 AF T UC 32 F 52 T
39 MFS 13 F 47 AF T UC 33 F 23 T
40 MFS 14 M 17 AF T UC 34 F 55 T
41 MFS 17 M 53 AF T UC 35 M 38 T
42 MFS 18 M 38 AF T UC 366 F 36 T
43 MFS 20 M 46 AF T UC 37 F 41 T

Average Age 40 Average Age 43
Total: 17 42 Total: 19 32
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showing that the array experiments were effective in
detecting MFS associated genes.

The two genes marked N/A show marginally statistically
significant changes in Array Subjects but very highly sig-
nificant changes in the opposite direction in New Sub-
jects. One of these genes is Fibrillin-1, the key gene
implicated in MFS. In our array experiments, FBN1 was
significantly repressed (1.89 fold, q = 2.52 × 10-10; Table
4) and qRT-PCR confirmed that its (geometric) mean
level was 1.47 fold lower in MFS based on (predomi-
nantly) the same subjects (p = 0.052, Table 5 "Array Sub-
jects"). However, qRT-PCR shows that in "New Subjects"
this gene is significantly more highly expressed in MFS
than controls (2.71 fold higher, p = 3.3 × 10-9). Viewed
another way, over all subjects, the difference in mean
FBN1 levels between affected and unaffected subjects is

not statistically significant, but 22 of 42 MFS subjects have
values more extreme than the most extreme value in the
unaffected samples (9 lower, 13 higher). It seems likely
that MFS subjects exhibit considerable heterogeneity in
FBN1 mRNA levels and our original and new subject pop-
ulations may not be equivalent samples. As was previ-
ously shown, nonsense mutations lead to nonsense-
mediated decay of the mutant mRNA and reduced fibril-
lin protein synthesis [26-28]. On the other hand, all the
known FBN1 missense mutations used in this study are
cysteine substitutions in calcium-binding EGF domains.
FBN1 transcript levels and fibrillin protein synthesis were
normal in these cells [8,26,27]. As the distribution of
mutations types in the second set of clinically identified
MFS subjects is unknown, they may not replicate the dis-
tribution of the two mutation classes in the original MFS
subjects. An additional factor is a difference in cell culture

Table 3: Data summary of genes selected for validation by qRT-PCR

SwissProt Accession Gene name PDAR MFS NI UC NI Ratio MFS/UC q value

VDR:P11473 vitamin D receptor Hs00172113_m1 59 84 1.42-1 3.94E-11
FBN1:P35555 fibrillin 1 Hs00171791_m1 124 233 1.89-1 2.52E-10
INHBA:P08476 inhibin, beta A Hs00170103_m1 72 117 1.61-1 3.48E-10
ELN:P15502 elastin Hs00355783_m1 35 117 3.34-1 2.19E-08
COL1A2:P08123 collagen, type I, alpha 2 Hs00164099_m1 3663 6582 1.80-1 4.48E-06
PCOLCE:Q15113 procollagen C-endopeptidase Hs00170179_m1 134 168 1.26-1 2.99E-04
PLOD2:O00469 lysine hydroxylase 2 Hs00168688_m1 92 75 1.22 3.00E-04
PDCD10Q9BUL8 programmed cell death 10 Hs00200578_m1 534 464 1.15 1.29E-03
PTGES:O14684 prostaglandin E synthase Hs00610420_m1 185 108 1.72 1.36E-03
LMO7:Q8WWI1 LIM domain only 7 Hs00245600_m1 50 45 1.13 5.07E-03

We selected 10 genes for validation based on their performance on the array. Column headings are as in Table 2, except PDAR: Applied 
Biosystems predetermined assay reagent identifier.

Table 2: Top 15 genes identified by ratio from the array dataset

UG cluster ID SwissProt Accession Gene name MFS NI UC NI Ratio MFS/UC q-value

Hs.146688 PTGES:O14684 Prostaglandin E synthase 185 108 1.71 1.36E-03
Hs.90303 TSC2:P49815 Tuberous sclerosis 2 60 37 1.64 1.26E-04
Hs.1872 PCK1:P35558 Phosphoenolpyruvate carboxykinase 1 249 157 1.59 4.11E-03
Hs.310545 SYT1:P21579 Synaptotagmin I 109 69 1.57 2.60E-03
Hs.144700 EFNB1:P98172 Ephrin-B1 296 191 1.56 4.84E-03
Hs.334534 GNS:P15586 Glucosamine (N-acetyl)-6-sulfatase 173 112 1.54 5.23E-05
Hs.386283 ADAM12:O43184 Meltrin L 44 73 1.65-1 5.08E-09
Hs.516646 CREB1:P16220 CAMP responsive element BP 1 193 339 1.76-1 1.96E-05
Hs.489142 COL1A2:P08123 Collagen, type I, alpha 2 3663 6582 1.80-1 4.48E-06
Hs.146447 FBN1:P35555 Fibrillin 1 124 233 1.89-1 2.52E-10
Hs.250581 SMARCD2:Q92925 SWI/SNF D2 1532 2963 1.93-1 5.99E-06
Hs.432862 MARCH-VI:O60337 RING-CH protein VI 2091 4245 2.03-1 4.97E-09
Hs.55967 SHOX2:O60902 Short stature homeobox 2 58 137 2.38-1 1.13E-12
Hs.443625 COL3A1:P02461 Collagen, type III, alpha 1 638 1538 2.41-1 2.06E-04
Hs.252418 ELN:P15502 Elastin 35 117 3.34-1 2.19E-08

Unigene ID identifies significant, differentially expressed genes based on expression ratio criteria. The top 6 down regulated and 9 up regulated 
genes are included. The normalized intensity (NI) from the phosphorimager scan is listed to give a sense of the expression range. The q values are 
computed based on t test p values. In this and subsequent tables, we show all ratios less than 1 as reciprocals. The entire 4132 gene list has been 
deposited into GEO (the Gene Expression Omnibus), accession number GSE8759.
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passage number. Nearly all the UC and all new MFS sub-
jects were used at passage 2 while the original MFS cul-
tures were used between passage 3 and 6. The second gene
marked N/A in Table 4 is procollagen C-endopeptidase
(PCOLCE), another gene with a clear mechanistic role in
maintenance of the extracellular matrix [28]. It is plausi-
bly co-regulated with FBN1, showing a moderately strong
correlation to FBN1 in our qRT-PCR data. Given these
uncertainties as to the homogeneity of our subject popu-
lation with respect to these two genes, we considered that
overall ratios and p-values were potentially misleading;
hence we chose to omit them.

A surprising result of the qRT-PCR measurements, evident
in Figure 2 and analyzed in more detail in Table 5, are the
variability of expression of these genes, both in unaffected
and especially in MFS subjects. We looked at both the full
range of the data and at the interquartile range (IQR; the
range between the 25th and 75th percentiles, quantifying
the spread in the central majority of the population, a sta-
tistic that is very robust to the influence of outliers). In
general, most genes in UC samples show interquartile
ranges of at most 3-fold, with two showing roughly 4-fold
changes (LMO7, VDR). IQR for MFS samples is similar,
with a slight tendency to higher variability (e.g., higher
mean and quartiles, and 6 of 10 showing greater variabil-
ity across MFS samples than UC) and a few dramatic
exceptions (VDR 11 fold; ELN 24 fold). Variability is more
pronounced over the full range. In the UC samples the
majority vary by 16–230 fold, and one by more than 1000
fold. MFS subjects show greater variability than UC sam-
ples in at least 8 of the 10 genes. The least variable gene
(PDCD10) changes by more than 64-fold across MFS sub-
jects, the majority vary by more than 225-fold, with some
(ELN and INHBA) showing subject-to-subject differences
exceeding 1600-fold. Controlling for age, sex, or mis-
sense/nonsense mutations did not reduce the marked var-
iability. (The effect of cell passage number (see Methods)
could not be tested.)

For the long term, this variability emphasizes the impor-
tance of studies involving carefully targeted and/or large
subject populations, and of developing simple assays for
relevant phenotypic predictors, since small samples may
be non-representative. For the purposes of the present
study, variability complicates interpretation of the results
for similar reasons. For example, in our previous discus-
sion of FBN1 we remarked that it did not meet our crite-
rion for a statistically significant shift in expression level
in the "All Subjects" grouping, although it remains likely
that FBN1 level is influenced by MFS status and specific
types of FBN1 mutations. Similar remarks apply to other
genes, where increased variability across MFS subjects sug-
gests these genes are involved in disease processes, but not
by a mechanism that consistently elevates or consistently

Validation by quantitative qRT-PCRFigure 2
Validation by quantitative qRT-PCR. The figure 
presents a summary of the 10 genes selected for validation 
by qRT-PCR. Above each gene name are two "box-and-
whisker" plots of expression levels for that gene across 32 
unaffected control (UC) samples (left plot of each pair, blue, 
up-triangles) and 42 MFS affected samples (right, red, down-
triangles). Vertical axis is log10 ratio of expression level to the 
median UC level. Each "box" shows the inter-quartile range 
(IQR), i.e., the range between the 25th and 75th percentiles of 
the log ratios; the horizontal line in each box is the 50th per-
centile (median). (Median log ratio for UC is always zero, by 
definition.) "Whiskers" (vertical lines) extend from each box 
to the most extreme values within 1.5 times the IQR from 
the box; in normally distributed data this would on average 
encompass 99% of the values. Triangles mark more extreme 
points. The lower curve shows log10 (p-value) for a Wilcoxon 
rank sum test of the null hypothesis that the UC and MFS dis-
tribution are identical; horizontal line marks the p = 0.05 sig-
nificance level. 6 of 10 genes have p-values < 0.05 by this test. 
Most genes exhibit noticeably greater variability across the 
MFS samples than across UC samples, although the Wil-
coxon test is not sensitive to this. To highlight one example, 
for Elastin (ELN), the middle 50% of the UC sample log ratios 
fall between -0.23 and +0.14 (i.e., the 25th and 75th percen-
tiles of the values fall 1.70-fold below and 1.38-fold above the 
median, respectively), and all but 4 fall between -0.58 and 
+0.34 (4-fold below and 2.2-fold above median). In contrast, 
median Elastin level is 26 fold lower in MFS samples, only 
four MFS samples are above the UC median, and the null 
hypothesis has a p-value of 1.6 × 10-8.
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represses expression. These large variations in expression
may limit the extent of our interpretations and will
require more focused studies and/or additional statistical
power before an association with the MFS phenotype can
be established firmly. Alternatively the expression distri-
bution might be influenced by other factors such as the

genotypes of FBN1 or disease modifying genes that we
have not yet identified.

Discussion
We conducted a small-scale gene expression analysis in
MFS affected subjects. We hypothesized that subsets of the

Table 5: Gene variability by qRT-PCR

Interquartile range Full range # Outliers

Gene UC MFS MFS/UC UC MFS MFS/UC UC MFS

COL1A2 2.9 1.9 0.7 19.2 66.1 3.4 0 6
ELN 2.4 24.3 10.4 1190.4 1687.3 1.4 4 0
FBN1 1.6 3.3 2.0 4.4 69.3 15.6 0 2
INHBA 2.2 3.7 1.7 124.5 2218.2 17.8 4 3
LMO7 4.7 2.0 0.4 25.9 141.1 5.4 0 7
PCOLCE 2.6 1.8 0.7 5.9 295.5 50.3 0 5
PDCD10 1.8 1.4 0.8 103.6 64.7 0.6 1 6
PLOD2 2.0 3.1 1.5 16.0 251.2 15.7 1 3
PTGES 2.8 3.7 1.3 31.7 225.0 7.1 1 1
VDR 3.9 11.3 2.9 230.3 233.0 1.0 1 0
min 1.6 1.4 0.4 4.4 64.7 0.6 0.0 0.0
median 2.5 3.2 1.4 28.8 229.0 6.3 1.0 3.0
mean 2.7 5.7 2.2 175.2 525.1 11.8 1.2 3.3
max 4.7 24.3 10.4 1190.4 2218.2 50.3 4.0 7.0
# > 1 6 8

For the 10 genes validated by qRT-PCR, we summarize variability across 32 UC and 42 MFS samples. Interquartile Range: fold change between the 
25th and 75th percentiles. Full Range: fold change between the most extreme pair of samples. #Outliers: number of outliers (triangles in Figure 2). If 
the data were normally distributed, approximately 1% of the points would so identified, i.e., on average 0.32 per gene for UC and 0.42 per gene for 
MFS samples.

Table 4: QRT-PCR validation and phenotype prediction

qRT-PCR results: MFS/UC ratio (Wilcoxon p-value)

Gene symbol Array ratio Array subjects New subjects All subjects

VDR 1.42-1 4.59-1 (9.5e-5) 1.25 (8.1e-1) 2.53-1 (7.3e-3)
FBN1 1.89-1 1.47-1 (5.2e-2) 2.71 (3.3e-9) N/A
INHBA 1.61-1 2.20 (1.1e-1) 1.06-1 (6.7e-1) 1.05 (5.0e-1)
ELN 3.34-1 12.53-1 (2.4e-3) 9.68-1 (2.3e-4) 15.04-1 (1.6e-8)
COL1A2 1.80-1 1.24-1 (1.1e-1) 2.41-1 (2.3e-8) 2.27-1 (1.4e-4)
PCOLCE 1.26-1 1.27-1 (5.8e-2) 2.02 (4.6e-6) N/A
PLOD2 1.22 3.01 (3.8e-4) 1.69 (8.2e-3) 1.85 (2.7e-4)
PDCD10 1.15 1.98 (1.9e-6) 1.65 (4.8e-3) 1.41 (5.0e-5)
PTGES 1.72 3.42-1 (5.8e-4) 1.88 (9.3e-3) 1.68-1 (6.8e-2)
LMO7 1.13 2.01 (1.0e-3) 4.67 (3.0e-6) 2.77 (1.7e-6)

Overall Significance Array subjects New subjects All subjects
5 (6.4e-5) 6 (2.8e-6) 6 (2.8e-6)

Column 2: average MFS/UC ratio from array experiments. Remaining columns: ratios of geometric mean transcript abundances of MFS affected vs 
unaffected control for three subject groups, and Wilcoxon p values for the null hypothesis of no between group differences. The three groups are: 
(1) "Array Subjects": 30 of the original 36 array subjects (16 known FBN1 mutations and 14 unaffected controls); (2) "New Subjects": 32 new 
subjects including 16 MFS based on clinical criteria and 16 unaffected controls; and (3) "All Subjects": 42 MFS affected compared to 32 unaffected (all 
of the above groups plus 10 additional characterized FBN1 mutations and 2 additional controls). (See Table 1 for subject details.) Bold: array 
validation or significant p value (p < 0.05). Italic: significant p-value but difference opposite to the expected direction. N/A: see text. The bottom 
section of the table provides a summative assessment: the (binomial) p-value of the observed number of significant qRT-PCR validations (p < 0.05) 
under the null hypothesis of no between-group differences.
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expression phenotype might indicate genetic and epige-
netic factors that are causal or predictive of the MFS dis-
eased state, and more generally, of the aneurysmal state.
To conduct this test, we hypothesized that primary cul-
tures of skin fibroblasts derived from punch biopsies
could be a simple, robust model. An important advantage
to using this system is the ability to collect samples from
large numbers of both affected and unaffected subjects.
Fibroblasts express FBN1, and distinct fibrillin protein
phenotypes have been identified in fibroblast cultures
from MFS individuals [26,27,29]. The protein profiles
have been linked to distinct classes of FBN1 mutations
and clinical phenotypes [8,30].

We used spotted membrane DNA array screening to iden-
tify gene expression changes associated with FBN1 muta-
tions. The most important outcome of this study is the
identification of a small number of differentially
expressed genes that distinguished skin fibroblasts of MFS
affected individuals from the fibroblasts of unaffected
controls. Our DNA array experiments identified a subset
of genes that were validated in a new group of subjects.
Due to the size of our study we chose to focus on the
expression pattern of affected vs. unaffected and chose 10
genes for validation.

We can speculate on how a number of the validated genes
could contribute to the MFS phenotype in a mechanistic
way. MFS is a heritable fibrillinopathy where defects in the
synthesis and/or assembly of fibrillin-1 microfibrils lead
to impairment in the elastic fibrils that confer resilience
and recoil in elastic tissues [31,32]. For over a decade it
was thought that the microfibrillar component of elastic
fibers provided a three-dimensional scaffold for the
assembly of elastin in the process of elastogenesis [33].
The histopathological abnormalities of aneurysmal ves-
sels include abnormal extracellular matrix protein accu-
mulation, fragmentation and disorganization of the
elastic fibers in the medial layer of the vascular wall, and
a generalized loss of elastin content [31,32]. Analysis of
mouse models of fibrillin-1 deficiency suggested that the
primary defect is not in elastogenesis but rather in elastic
fiber homeostasis [34]. Characterization of the mouse
model led to a model of acquired elastolysis [35] with evi-
dence suggesting that the altered elastic fiber structure
could change the expression phenotype of the underlying
vascular smooth muscle cells, resulting in the increased
expression of several proteases. A number of investigators
have identified the association of specific types of FBN1
mutations with an increased susceptibility to protease
digestion [9] and with the ability of FBN1 fragments to up
regulate protease expression in culture [36]. In contrast,
our study identifies elastin as one of the most significantly
regulated genes in the affected cell lines. Surprisingly, elas-
tin mRNA is markedly decreased (Table 4; 15.0-1, p = 1.6

× 10-8) suggesting a very early defect in elastogenesis that
starts at the level of elastin transcription or the regulation
of elastin message stability. Interestingly, the vitamin D
receptor was also significantly decreased in MFS subjects
(Table 4; 2.5-1, p = 7.3 × 10-3). Vitamin D is known to
decrease elastin mRNA by decreasing message stability in
cultured cells [37]. Vitamin D treatment also is known to
decrease both elastin content and the number of elastic
lamellae in the aortas of animals treated pre and post-
natally [38].

Recent publications have also described an increasing role
for transforming growth factor beta (TGF-beta) in the
expression of the MFS phenotype. Mutations in both TGF-
beta receptors have been identified in humans with herit-
able forms of aneurysm [39-41]. In a mouse model of
MFS the mutant phenotype includes developmental
abnormalities of the distal alveolae of the lung, associated
with increased TGF-beta protein and activity [42,43]. Our
arrays did not detect any significant difference in TGF beta
expression level, while a related family member, INHBA,
was not validated by the qRT-PCR analysis. More recently,
TGF-beta antagonists, including a neutralizing antibody
to TGF-beta and losartan (an angiotensin II type receptor
ATI blocker) were able to prevent and reverse aneurysmal
progression in the same mouse model [44]. We found sig-
nificant differences in the expression of a number of genes
in this pathway including VDR (Table 4; 2.53-1, p = 7.3 ×
10-3) and TSC2 (Table 2; 1.64, q = 1.3 × 10-4). The vitamin
D receptor (VDR) is a negative regulator of TGF-beta tran-
scriptional activation [45] and as mentioned above is sig-
nificantly decreased in MFS skin fibroblasts. In contrast,
the tuberous sclerosis complex 2 (TSC2), a potent activa-
tor of TGF-beta transcription, is expressed more highly in
MFS fibroblasts (Table 2; 1.64, q = 1.3 × 10-4). Another
gene, LMO7 (a protein that connects the nectin-afadin
and E-cadherin-catenin systems through alpha-actinin
and therefore regulates cell adhesion) [46] is induced by
TGF-beta and is significantly elevated in MFS fibroblasts
(Table 4; 2.77, p = 1.7 × 10-6). The behavior of all three
genes is consistent with enhanced TGF-beta activity that
could contribute to the aneurysmal phenotype if smooth
muscle cell loss or differentiated phenotype contributes to
the pathological process.

Our data also identify several matrix metalloproteases,
including ADAM12 (Table 2; 1.65-1, q = 5.1 × 10-9),
MMP1 (1.14, q = 2.1 × 10-2) and the metalloproteinase
inhibitor TIMP3 (1.39-1, q = 6.0 × 10-6), with significant
differences in expression between the unaffected and
affected group. Several collagens including COL 3A1
(Table 2; 2.41-1, q = 2.1 × 10-4), COL1A2 (Table 4; 2.27-1,
p = 1.4 × 10-4) and the lysine hydroxylase PLOD2 (Table
4; 1.85, p = 2.7 × 10-4) (which forms hydroxylysine resi-
dues in collagen which serve as attachment sites for carbo-
Page 8 of 13
(page number not for citation purposes)



BMC Genomics 2007, 8:319 http://www.biomedcentral.com/1471-2164/8/319
hydrates that contribute to the stability of the
intermolecular collagen cross-links) are also significantly
changed. The appearance of these genes suggests a broad
change in the extracellular fibrillar structure and composi-
tion in affected cells. Many of these matrix proteins and
modifying enzymes are regulated by TGF-beta.
[47,44,48].

PDCD10 (programmed cell death gene 10) is increased in
the MFS samples (Table 4; 1.41, p = 5.0 × 10-5). PDCD10
was recently identified as one of three genes responsible
for a heritable form of cerebral cavernous malformations
(CCM3) characterized by abnormally enlarged capillary
cavities causing seizures and hemorrhages [49]. These vas-
cular malformations appear to result from a failure in vas-
cular morphogenesis and/or remodeling. In CCM, the
endothelial tubes continue to expand and stabilizing per-
icytes are not recruited. The result is a vessel with an enor-
mously dilated lumen and increased fragility [50].

When we initiated these studies we had two important
concerns. First, a priori, it is not obvious that cultured skin
fibroblasts would exhibit significant expression differ-
ences for other genes in MFS subjects. However, the skin
is one of the connective tissues affected in MFS, and our
experiments confirm a significant MFS expression pheno-
type in cultured fibroblasts. The second concern is that
these differences may not be relevant to aneurysmal dis-
ease, believed to be largely a disease of smooth muscle
cells. Obviously, we cannot be sure that the gene changes
discovered in fibroblasts are the same gene changes found
in aortic smooth muscle cells, but, given that the two cell
types share commonalities in their morphology, extracel-
lular matrix environment and the common fibrillin
defect, it is reasonable to suspect that they also share some
relevant core changes in fibrillin-related pathways. While
our fibroblast study cannot answer this question, it did
identify some differentially expressed genes whose known
roles are suggestive of involvement in SMC tissue failure.
A third concern arose during the course of the study –
namely, the large sample-to-sample variation in gene
expression levels. This variability needs to be recognized
as an important confounding factor in expression analysis
studies. It also supports our decision to use skin fibrob-
lasts rather than aortic SMC as our sample source.

Conclusion
Our ultimate goal is to use genome-wide expression anal-
ysis to identify and classify people at risk for developing
aneurysms of the ascending thoracic aorta. Our prelimi-
nary data support the idea that there are common mecha-
nisms triggered by mutations in FBN1 that lead to
identifiable differences in gene expression between unaf-
fected control and MFS affected cultured fibroblasts. Some
of these changes appear to be downstream from TGF-beta

activation. While the limited phenotype described here is
only a partial description of the potential "mutation asso-
ciated" expression profile, the results suggest that a com-
plete genomic screen of several hundred MFS vs.
unaffected cell lines, using FBN1 mutation detection,
microarray expression analysis and qRT-PCR validation of
possible biomarkers, could lead to the identification of
genes that contribute to the mechanistic events that initi-
ate vessel wall destruction.

Methods
Cell culture, RNA isolation, and array hybridization
Study participants were recruited under an institutional
review board approved protocol and informed consent. A
skin punch biopsy was used to establish a fibroblast cell
culture. Unaffected control subjects were selected from
patients visiting dermatology clinics. All of the cell strains
(in the array group, between passage 2 and 6 and in the
New Subject group, passage 2) were grown to confluence
in SmGM2 +10% FBS + bullet kit containing recombinant
EGF, FGF and insulin (BioWhittaker). After reaching con-
fluence, the medium was modified to include ascorbic
acid at 50-μg/ml [51]. Fresh medium was added after 24
hours. At 48 h, total RNA was isolated using a guanidin-
ium iso-thiocyanate-phenol-chloroform extraction proto-
col [52]. Each sample was analyzed for quality and
quantity by UV spectroscopy and gel electrophoresis. For
hybridization to individual arrays, 1 μg of total RNA was
used to synthesize 33P-dCTP labeled first strand cDNA
with Invitrogen Superscript II. Generally, each sample was
labeled twice and hybridized to duplicate Research Genet-
ics GF211 arrays (4 arrays in all). Each array was hybrid-
ized with 30–60 million cpm of probe for 18 h then
washed extensively at 50°C in 0.5 × SSC +0.1% SDS. Mul-
tiple exposures were collected on a Storm phosphorim-
ager. Images were imported using Research Genetics
Pathways 3 software, and processed as described in "Array
Data Normalization."

Quantitative RT-PCR
Validation of the array results was done using Applied
Biosystems pre-designed qRT-PCR primer and probe sets
(PDAR's, see ABI P/N 4333458_a.pdf for the complete
protocol). These assays use a standard PCR format where
all the assays are performed with the same PCR cycling
conditions. Quantification is based on calculating a ratio
to an included calibrator sample. Our calibrator was 50%
Stratagene Universal Target total RNA and 50% total RNA
pooled from the 36 array subjects listed in Table 1. We
synthesized first strand cDNA using random primers and
the ABI High Capacity cDNA Archive Kit (P/N 4322171).
Duplicate PCR reactions were set up in a final volume of
25 ul using 10 ng equivalents of input total RNA. We used
the ABI 7900 machine with the standard cycling protocol,
increasing the number of cycles to 40. GUSB and TBP were
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used as an internal reference in all of the samples and cal-
ibrator. The delta delta Ct method [54] was used to calcu-
late ratios of each gene in each sample against the
calibrator RNA. Both references gave similar results and
we present the GUSB quantification.

Array data normalization
Normalization refers to the process of attempting to cor-
rect for the many sources of systematic variation in cDNA
array. In outline, we do the following. The median of
log10-transformed expression values for each gene across
all exposures of all arrays is calculated, and serves as a
common baseline for comparison between experiments.
Then, for each exposure, we compute a smooth "local"
(loess) regression line between its log intensities and the
median levels. The resulting regression function trans-
forms the expression values of each exposure to the scale
of the common baseline while capturing nonlinear
effects. Finally, we combine data from multiple exposures
of an array by taking their medians. This technique builds
on earlier work [54,55] and more details are reported in
[56]. One innovation introduced here is the following: to
reduce the impact of outliers and differentially expressed
genes on the inferred levels of other genes, the loess
regression is based on only a "stable" subset of genes uni-
formly chosen across all intensity levels. Specifically, for
each gene we calculate the rank of its measured intensity
in each exposure, and the median absolute deviation
(MAD) of its rank across exposures. We sort all n genes by
increasing median intensity and partition them into n/5
groups of consecutive genes. From each group of 5, the
gene with the minimum MAD statistic is chosen. This
selection of n/5 genes comprises the stable subset of genes
on which our regression is based. Other approaches to
normalization based on stable genes have been proposed
[57,58] but those techniques seem more complex, and
choose stable genes in ways that potentially yield sparse
coverage of some regions of the intensity spectrum, conse-
quently increasing the influence of anomalous or differ-
entially expressed genes on the normalization in those
regions. As intensity-dependent non-linearity is a key con-
cern in our normalization, uniform representation of
intensities in the stable subset is valuable.

Correlation analyses and ANOVA tests identified possible
technical biases in a subset of hybridizations. As a conse-
quence, hybridization data from seven Marfan and two
unaffected samples were eliminated from further study
(indicated by blanks in the platform columns in Table 1).
Most of these subjects were included in the qRT-PCR anal-
ysis and appear in the "All Subjects" category of Table 4.

Differential expression and permutation analysis
We used standard t-test p-values to rank genes for evi-
dence of differential expression, coupled with FDR analy-

sis, and selected a conservative q = .001 cutoff threshold.
We chose the classical t-test for its familiarity and simplic-
ity. The non-parametric Wilcoxon rank sum test yielded
very similar gene rankings. We decided against the com-
monly used SAM-statistic [59] because of an interest in
genes with low expression levels. SAM is biased somewhat
against such genes [60].)

To avoid dependence on parametric assumptions about
the array data, we performed a permutation test to deter-
mine if the large number of significant genes we found
could easily have arisen by chance. For a comparison of
subject groups A and B, we combined A and B and then
randomly split the combined group into two groups A'
and B', such that groups A and A' are the same size, groups
B and B' are the same size, and the technical replicates of
any one sample are either all in A' or all in B'. Hence, the
disease status labels were randomly permuted to deter-
mine whether the true disease was responsible for the
observed result of 283 genes with q < 0.001. We then com-
puted the number of differentially expressed genes at the
same cutoff threshold (FDR < 0.001) in each such random
partition.

qRT-PCR data analysis
As part of the statistical analysis of the qRT-PCR data, we
performed per-gene regression tests for age, sex and/or
group effects on expression levels (in addition to MFS sta-
tus). There were no significant sex effects in any of the
tests. Age effects were marginally significant for two genes,
but not after Bonferroni correction, and furthermore
would not have altered the significance of MFS status even
if included. For some genes, inclusion of subject in "new"
vs. "original" subject groups (Table 1) was significant, but
again correction for this effect did not alter the signifi-
cance of MFS status. Hence, we have chosen to present
results only for the simplest model, which does not
attempt to adjust for any of these covariates.

Significance of differential expression was quantified by
Wilcoxon rank sum test; see Figure 2, Table 4. "Overall sig-
nificance" results reported in the last line of Table 4 follow
from a simple binomial model.

Abbreviations
MFS- Marfan Syndrome.

MS- Missense mutation.

NS- Nonsense mutation.

UC- Unaffected Control.

qRT-PCR- Quantitative Real Time Polymerase Chain
Reaction.
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FDR- False Discovery Rate.

SAM- Statistical Analysis of Microarrays.

IQR- Interquartile Range.

MAD- median absolute deviation.

PDAR- Pre-designed Assay Reagents.

PTC  –  Premature termination codon.

Del Ex – Deleted exon(s).
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