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Abstract

Background: The t(12;21)(pl3;q22) translocation is found in 20 to 25% of cases of childhood B-
lineage acute lymphoblastic leukemia (B-ALL). This rearrangement results in the fusion of ETV6
(TEL) and RUNXI (AMLI) genes and defines a relatively uniform category, although only some
patients suffer very late relapse. TEL/AMLI-positive patients are thus an interesting subgroup to
study, and such studies should elucidate the biological processes underlying TEL/AMLI
pathogenesis. We report an analysis of gene expression in 60 children with B-lineage ALL using
Agilent whole genome oligo-chips (44K-G4112A) and/or real time RT-PCR.

Results: We compared the leukemia cell gene expression profiles of 16 TEL/AMLI-positive ALL
patients to those of 44 TEL/AMLI-negative patients, whose blast cells did not contain any additional
recurrent translocation. Microarray analyses of 26 samples allowed the identification of genes
differentially expressed between the TEL/AMLI-positive and negative ALL groups. Gene
enrichment analysis defined five enriched GO categories: cell differentiation, cell proliferation,
apoptosis, cell motility and response to wounding, associated with 14 genes -RUNXI, TCFLS,
TNFRSF7, CBFA2T3, CD9, SCARBI, TP53INPI, ACVRIC, PIK3C3, EGFL7, SEMA6A, CTGF, LSPI, TFPI —
highlighting the biology of the TEL/AMLI sub-group. These results were first confirmed by the
analysis of an additional microarray data-set (7 patient samples) and second by real-time RT-PCR
quantification and clustering using an independent set (27 patient samples). Over-expression of
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RUNXI (AMLI) was further investigated and in one third of the patients correlated with cytogenetic

findings.

Conclusion: Gene expression analyses of leukemia cells from 60 children with TEL/AMLI -positive
and -negative B-lineage ALL led to the identification of five biological processes, associated with 14
validated genes characterizing and highlighting the biology of the TEL/AMLI-positive ALL sub-group.

Background

Acute lymphoblastic leukemia (ALL) is the most common
childhood malignancy and is diagnosed in about 500
children in France every year [1]. Most of these malignan-
cies (80%) involve the B lineage (B-ALL) and children
have a good expected outcome on most treatment proto-
cols. However, B-ALL is a heterogeneous disease, and ther-
apeutically relevant standard and high-risk group
categories (SR and HR) have been defined according to
characteristics at diagnosis (age, white blood-cell counts,
central nervous system involvement, and cytogenetic
abnormalities of the leukemia cell clone). In pediatric
ALL, thet(12;21)(p13;q22) chromosomal translocation is
the most frequent and is found in about 25% of B-ALL
cases; this translocation involves the fusion of the ETV6
(TEL) and RUNX1 (AMLI) genes. Most treatment proto-
cols result in a good outcome for TEL/AML1-positive ALL
patients, but TEL/AMLI translocation is not currently used
as a stratifying marker in most therapeutical protocols [2-
5]. Thus, clinical features of TEL/AMLI-positive patients
determine whether they are in the SR or HR category. The
TEL/AML1 fusion may therefore not be the single key
molecular event causing leukemia spread, and if this is the
case, TEL/AML1-positive ALL might involve other critical
gene modifications; any such modifications remain to be
documented [6,7].

DNA-based microarrays can be used to study the expres-
sion levels of thousands of genes and to screen genes with
different expression profiles in a single experiment. We
therefore used this method to investigate the molecular
pathways characterizing TEL/AMLI-positive leukemia.
This approach, using either one-color (Affymetrix) or two-
color (NCBI) microarray technologies, has been widely
used for refining the diagnosis of ALL and for predicting
the response of ALL patients to treatment [8-10]. The first
studies described gene expression patterns that could be
used to distinguish leukemic blast lineages [11,12], and
subsequent studies identified various gene expression sig-
natures characterizing relevant clinical leukemia subtypes,
in particular the E2A/PBX1, BCR/ABL, TEL/AML1 and MLL
rearrangements [13-15].

We carried out a prospective multicentric study on child-
hood B-ALL leukemia to elucidate the molecular processes
involved in TEL/AML1-positive leukemia. All the patients
included in this study received treatment according to the

French FRALLE 2000 trial. We used Agilent whole-
genome oligo-chips (44K-G4112A) to compare the gene
expression signatures of TEL/AMLI-positive patients to
those of TEL/AMLI1-negative patients with no recurrent
chimeric products irrespective of their clinical risk cate-
gory. Previous microarray gene expression studies [13-15]
had revealed the effect of chromosomal alteration on
transcription profiles, so we excluded from our cohort
those patients with other recurrent chromosomal translo-
cations or fusion transcripts (BCR/ABL, E2A/PBX1, MLL
rearrangements). We then searched for the biological
pathways associated with genes differentially expressed in
TEL/AML]1-positive leukemia (ETV6/RUNXT).

Results

Patient selection

Sixty patients with B-lineage ALL who were treated
between 2002 and 2005 according to the FRALLE 2000
protocol were included in the study. The clinical and bio-
logical characteristics of the 60 patients are summarized
in Table 1. Microarray data were obtained for 33 patients;
the patients were grouped into two sets (Set-A and B)
according to inclusion date. Genes of interest were
selected using data Set-A and tested using data Set-B. Set-
A comprised 26 patients included over the three-year
period up to December 2004: 19 of these patients, includ-
ing six presenting a TEL/AML] rearrangement, were in the
standard-risk group (SR), and seven, including one pre-
senting a TEL/AML1 rearrangement, belonged to the high-
risk group (HR). Set-B comprised seven patients included
in 2005: five, including one presenting a TEL/AMLI rear-
rangement, belonged to the SR group; and two, including
one presenting a TEL/AML]1 rearrangement, belonged to
the HR group. In addition to microarray investigations
with these patients, we performed Quantitative-RT-PCR
with samples from an independent set of 27 patients (Set-
C), including seven TEL/AMLI-positive patients. None
had CNS involvement. With the exception of two TEL/
AML1-negative patients (SR-52 and HR-58), all patients
were good early responders to treatment, and other than
the TEL/AMLI1-negative HR patient 21, all Set-A patients
were in a first complete remission phase, with a median
follow-up of 46 months, at the time of the study.
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Table I: Characteristics of the patients of the three sets (n = 60)

Patient Sex Age at diagnosis (years) WBC (Count x 10%/1) Recurrent Rearrangement Risk group
Set A
| F 5 83.1 none HR
2 F 7 21.6 none SR
3 M 2.5 4.5 TEL/AMLI SR
4 F 1.5 1.2 none SR
5 M 4 18.5 TELIAMLI SR
6 F 2.5 525 none HR
7 F 2 54 none SR
8 F 8 0.9 none SR
9 M 3 7.8 none SR
10 M 3 54 none SR
Il F 2 7.2 none SR
12 F 6 18.4 TELIAMLI SR
13 F 4 24.3 TELIAMLI SR
14 F 5 4.5 none SR
15 M 13 3.9 none HR
16 F 2 3.6 none SR
17 M 4 47 TEL/AMLI SR
18 M 10 35.8 TELIAMLI HR
19 F 3 14.9 none SR
20 F 14 82 none HR
21 M 6 68 none HR
22 F 10 150 none HR
23 M 2 15.4 TELIAMLI SR
24 M 3 2.9 none SR
25 M 3 5.4 none SR
26 F 3 41 none SR
Set B
27 F 7.5 4 none SR
28 M 6 26.2 none SR
29 M 15 4.2 none HR
30 F 2 2.2 none SR
31 F 3 22.6 none SR
32 M 2 130 TELIAMLI HR
33 M 2.5 1.3 TEL/AMLI SR
Set C
34 F 9 1.4 none SR
35 M 5 12.1 TELIAMLI SR
36 M | 34.3 none SR
37 F 6 17.9 none SR
38 M 3 33 none SR
39 F 3 7.3 none SR
40 F 6 1.9 TELIAMLI SR
41 F 6 375 TELIAMLI SR
42 M 5 4.2 none SR
43 F 6 38.7 TEL/AMLI SR
44 F 6 2.7 none SR
45 F 3 13 none SR
46 M 5 1.3 none SR
47 M 3 16.5 TELIAMLI SR
48 M 3 6.8 TELIAMLI SR
49 F 5 9.8 none SR
50 M | 6.8 none SR
51 M 7 36.9 none SR
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Table I: Characteristics of the patients of the three sets (n = 60) (Continued)

52 M 2
53 M 7
54 M 9
55 F 3
56 F 6
57 M 3
58 M 10
59 M 6
60 M 35

1.6
135
24
10.2
9.3
6.9
96
1.4
83.6

none SR
TEL/AMLI SR
none SR
none SR
none SR
none SR
none HR
none SR
none HR

WBC: white blood cell count; F:Female, M:Male

HR and SR are respectively high risk and standard risk groups according to the FRALLE 2000 trial.
* HR: age > 10 years, or white blood cell count > 50 x 101, or central nervous system involvement, or t(9;22), or t(4;1 1) or MLL rearrangement,

or hypoploidy (< 44 chromosomes)

* SR: | <age < 10 years, and white blood cell count < 50 % 10%/1, and no central nervous system involvement, and none of the following cytogenetic

features: t(9;22), t(4,11) or MLL rearrangement, hypoploidy

* TEL/IAMLI-positive ALL and TEL/AMLI-negative ALL can be assigned to HR or SR categories, according to clinical features.

Gene expression patterns clearly distinguished TEL/

AML | -positive leukemia from leukemia without recurrent
chromosomal abnormalities

To identify genes with expression profiles that differenti-
ate TEL/AMLI-positive patients from TEL/AMLI-negative
patients with no recurrent chromosomal abnormalities
we used data Set-A. We selected 10761 gene signals that
displayed log-ratio intensities that were significantly dif-
ferent from the mean (PvalueLogRatio < 0.01) for at least
one array. Only 10416 gene signals, those present on at
least 70% of the Set-A arrays, were retained for SAM anal-
ysis. Two preliminary two-class SAM were performed,
comparing TEL/AMLI1-positive patient data to either TEL/
AMLI1-negative HR or SR patient data to assess specific
sample behavior in a more homogeneous situation than
the pooled TEL/AMLI1-negative HR and SR group [16].
Interestingly, we found that patient 18, the only TEL/
AML1-positive HR patient (who was initially excluded
from SAM analysis because he belonged to both groups)
segregated with the TEL/AML1-positive SR group and not
with the HR patient group. This is consistent with the
fusion transcript affecting the gene expression profile
(data not shown). Similarly, we found that patient 9, a
TEL/AMLI-negative patient, clustered within the TEL/
AML1 branch and that patient 17, a TEL/AMLI-postive
patient, did not segregate into the TEL/AML1 branch. RT-
PCR, using a different set of primers in a different labora-
tory, confirmed the presence of a TEL/AML] transcript in
patient 17 and its absence from patient 9; this indicates
some heterogeneity in the TEL/AML1 group (data not
shown). To avoid heterogeneity bias associated with par-
ticular patients and to highlight general processes,
patients 9 and 17 were withdrawn from the two-class SAM
gene-selection step comparing the TEL/AMLI-positive
group with the TEL/AML1-negative group. However, the
data for these two patients were included in the final HC
representation. To increase the robustness of gene-selec-
tion step, two cut-offs were applied successively, consist-

ent with a 1.7-fold change, to exclude genes that varied
little between the samples, (FC > 1.7), with or without a
Q-value filter (Qvalue < 0.02) limiting the number of
genes selected (Figure 1). This gave two TEL/AML1 gene
sets, one of 181 genes and the other of 103 genes. These
gene sets were used for hierarchical clustering representa-
tion of patient Set-A. Because the Set-A cohort was small,
we validated our second selection (181 genes) by estimat-
ing the Benjamini and Hochberg false discovery rate
(FDR): this value was consistently low (3.19% indicating
only six false positives among the 181 genes designated as
significant, data not shown). Both gene sets (181; 103)
were able to cluster the TEL/AML1-positive Set-A patients,
other than patients 9 and 17, in one branch. Hierarchical
clustering highlighted 74 distinct genes among the 181
selected and they were separated into two clusters (data
not shown). With the group of 103 selected genes, hierar-
chical clustering highlighted two clusters (44 distinct
genes) able to group TEL/AMLI-positive ALL (each cluster
corresponds to a single branch of the hierarchical tree in
which intercluster distance directly correlates with dissim-
ilarity in gene expression) (Figure 2A). A resampling-
based procedure (bootsrapping) was used to assess repro-
ducibility (data not shown). Only these two restricted
gene sets, of 74 and 44 genes, which correspond to a dif-
ferent profile of expression behavior associated with the
presence of a TEL/AML1 chromosomal rearrangement,
were able on their own to cluster the TEL/AMLI Set-A
patients as previously and the TEL/AMLI1 Set-B patients
into one branch. They were also able to segregate, with
100% reproducibility, the TEL/AML1 Set-A and -B patients
together in the same branch, with the exceptions of
patients 9 and 17 (Figure 2B).

Identification of genes characterizing pathways specific to
TEL/AML I -positive lymphoblasts

We investigated the molecular pathways depicting TEL/
AMLI1-positive lymphoblasts by characterizing the TEL/
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Analysis flowchart: overview of the strategy used for gene selection using Set-A microarray data. At each level,
the data set was filtered to remove genes that showed poor robustness and no significant difference in expression level
between the TEL/AMLI-positive and the TEL/AMLI-negative ALL subclasses. SAM denotes Significant Analysis of Microarrays.
Two groups of genes (according to the filters applied) were selected and functionally annotated. Nine of the 16 genes were
selected for RT-PCR validation on the basis of their biological relevance.

AML1 gene sets of 74 and 44 genes identified above
according to their gene ontology (GO) annotations. Five
enriched GO categories were revealed: cell differentiation,
cell proliferation, apoptosis, cell motility and response to
wounding. Cell motility only concerned the set of 74
genes, whereas the other biological processes were
obtained with both 74 and 44 gene sets. Sixteen anno-
tated genes were associated with these biological proc-
esses (Figure 3): the literature indicates that 14 genes may
be involved in B lymphoblast cell biology, but that the
other two genes, MDK and NTNG2, are not. Both these

genes are mainly expressed in the nervous system. Their
expression in TEL/AML1-positive B-lymphoblast cells may
thus be a consequence of the alteration of cell differentia-
tion and proliferation process rather than indicating that
they have a particular function in the TEL/AML1 process.
Therefore, we did not include them in subsequent analy-
ses and focused on the 14 apparently biologically relevant
genes (Table 2). Over-expression of RUNX1, CBFA2T3,
TCFL5, TNFRSF7 and concomitant under-expression of
CD9 characterize cell proliferation and differentiation
processes in the hematopoietic lineages. Over-expression
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A

Cluster
“down”

Cluster
“up”

TEL/AMLI- TEL/AMLI-
B negative positive patients

70004 tn::

TEL/AML1 branch

Figure 2

TEL/AMLI gene expression signature of Set-A patients. (A) Two-class SAM was applied to Set-A data. The data were
filtered on the basis of a difference greater than 1.7 fold and a Q value less than 2%, leaving 103 clones (1000 permutations,
median false positive = 4) associated with a TEL/AMLI signature. Clustering analysis of Set-A patients segregates TEL/AML/[-pos-
itive patients together, except for patient |17 who clusters with patient | | in a distinct branch and for patient 9 who does not
present a TEL/AMLI fusion transcript, and segregates with TEL/AMLI-positive ALL. Gene expression is visualized, with green
and red representing down and up-regulated genes, respectively. Gray corresponds to missing data (absence of signal) as
described in "Patients, Materials and Methods". The color scale above the dendrogram extends from 0.125 to 8.0 times the
mean (-3 to +3 in log2 space). Two gene clusters (indicated by black arrows), consisting of either up-regulated genes or down-
regulated genes, differentiate TEL/AMLI-positive and -negative ALL. Gray arrows indicate the branches, which were unable on
their own to segregate TEL/AMLI positive patients. (B) Support tree of Set-A and Set-B patients using the 55 clones (44 distinct
genes) identified by the clustering analysis. Resampling with replacement was conducted on experiments and genes for 100
iterations. The branches of the resulted tree are colorized to denote the percentage of times a given node was supported over
the resampling trials. Two branches still distinguished TEL/AMLI-positive ALL from TEL/AMLI-negative ALL with 100% repro-
ducibility when Set-B samples have been added to Set-A. Two stable clusters of genes (up- and down-regulated genes) were
identified and further explored by functional analysis.
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Gene name [Representative public ID] Fold Change q value
Genes overexpressed in TELIAMLI positive ALL

Scavenger receptor class B, member | (SCARBI) [NM_005505] 2.12 < 0.0l
Tumor necrosis factor receptor superfamily, member 7 (TNFRSF7) [NM_001242] 1.99 < 0.0l
Tissue factor pathway inhibitor (lipoprotein-associated coagulation inhibitor) (TFPI) [NM_006287] 2.71 < 0.0l
Activin A receptor, type IC (ACVRIC) [NM_145259] 1.95 < 0.0l
Tumor protein p53 inducible nuclear protein | (TP53INP1) [NM_033285] 2.53 <0.01
Core-binding factor, runt domain, alpha subunit 2; translocated to, 3 (CBFA2T3) [NM_005187] 3.45 < 0.0l
Runt-related transcription factor | (acute myeloid leukemia I; amll oncogene) (RUNXI) [NM_001754] 1.75 < 0.0l
cDNA FLJ 14565 fis, clone NT2RM4000233, highly similar to Mus musculus semaphorin Vla. [AK027471] 2.60 < 0.0l
Transcription factor-like 5 (basic helix-loop-helix) (TCFL5) [NM_006602] 2.85 < 0.0l
Phosphoinositide-3-kinase, class 3 (PIK3C3) [NM_002647] 2.17 < 0.0l
Connective tissue growth factor (CTGF) [NM_001901] 1.93 0.023
EGF-like-domain, multiple 7 (EGFL7) [NM_016215] 1.81 0.039
Genes underexpressed in TELIAMLI positive ALL

CD?9 antigen (p24) (CD9) [NM_001769] 372 <0.0l
Lymphocyte-specific protein | (LSP1) [NM_002339] 2.82 0.017

The expression of all the selected genes differs by than |.7-fold between TEL/AMLI-positive ALL and TEL/AMLI-negative ALL groups.

of the SCARB1, TP53INP1, ACVR1C and PIK3C3 genes
correlates with cell survival. Over-expression of the EGF7,
SEMAGA and CTGF genes with concomitant under-

Response to wounding

Cell  proliferation  and
positive  regulation  of

PIK3C3 cellular metabolism

SCARBI
TP53INP1

CBFA2T3
RUNX1
(NTNG2)

Apoptosis

Cell Differentiation

Figure 3

Schematic representation of selected genes for TEL/
AMLI with associated enriched GO terms. Representa-
tion of enriched GO term analysis (p < 0.05) obtained by
comparison of the TEL/AMLI gene set to the Webgestalt pre-
stored human genome gene set. Each circular area repre-
sents groups of genes, sharing common properties within rel-
evant biological processes. Five discrete enriched GO
categories are identified: cell differentiation, cell proliferation,
apoptosis, cell motility and response to wounding. Enriched
GO categories are represented by |6 annotated genes. Six
(in bold) of these |16 genes had been previously identified,
and two, in brackets, were not used for further analysis
because of their tissue-specific expression patterns.

expression of the LSP1 and CD9 genes is characteristic of
cell migration and response to wounding.

Validation of biologically relevant genes

We validated the microarray results in two steps. First, we
used a new microarray data set (Set-B) to perform cluster-
ing analysis based on the 14 selected genes (RUNXI,
TCFL5, TNFRSF7, CBFA2T3, CD9, SCARBI1, TP53INP1,
ACVRIC, PIK3C3, EGFL7, SEMAGA, CTGF, LSP1, TFPI).
Confirming the Set-A results, the TEL/AMLI-positive ALL
patients were grouped together in one branch (Figure 4A)
separate from TEL/AMLI-negative ALL patients, whose
blast cells did not contain any recurrent chromosomal
translocation. Additionally, hierarchical clustering and
bootstrapping of data for Set-A and Set-B patients, using
these 14 genes, satisfactorily segregated the TEL/AMLI-
positive patients into one branch (Figure 4B). As in the
analysis described above, patient 9 (TEL/AMLI-negative)
and patient 17 (TEL/AMLI-positive) did not classify
according to their chromosomal rearrangement.

Second, gene expressions were quantified using real-time
RT-PCR with the independent Set-C patients. Nine genes
(TCFL5, PIK3C3, CBFA2T3, TNFRSF7, RUNX1, EGFL?,
TP53INP1, LSP1 and CD9) were chosen from the 14
selected above as being the most relevant biologically and
able on their own to segregate Set-A and -B patients into
appropriate clusters (TEL/AMLI-positive versus TEL/
AML1-negative; data not shown). Despite the genetic var-
iability observed within each group (highlighted by the
SD values), the mean gene expression values were signifi-
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Figure 4

Validation of the selected genes for TEL/AMLI using Set-B microarray data. (A) Hierarchical clustering analyses
(Euclidean distance and average linkage) of Set-B microarray data using the 14 selected genes for TEL/AMLI. Patients are segre-
gated according to the presence or absence of the TEL/AMLI rearrangement. (B) Support tree of Set-A and Set-B patients using
the 14 selected genes for TEL/AMLI. Two branches clearly distinguished TEL/AML[-positive ALL and TEL/AMLI-negative ALL
with 100% of reproducibility when resampling with replacement was conducted on experiments and genes for 100 iterations.

The expression levels of the RUNXI gene can explain the clustering of patients 9 and 7.
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cant according to Student's t-test, with either a P < 0.05 or
< 0.01. TCFL5, PIK3C3, CBFA2T3, RUNXI1, EGFL?7,
TP53INP1 and TNFRSF7 were over-expressed and CD9
and LSP1 under-expressed in the TEL/AMLI1-positive ALL
relative to the TEL/AMLI-negative subgroup, consistent
with the microarray findings (Figure 5A). Hierarchical
clustering of Set-C patient data using these nine genes seg-
regated TEL/AMLI-positive patients into one distinct
branch (Figure 5B).

Relationship between microarray data and cytogenetic
data

We then examined the cytogenetic data to document TEL/
AML1 (ETV6/RUNX1) patient clustering further. FISH
analysis revealed that patient 9, who did not display a
t(12;21) translocation but systematically clustered with
the TEL/AML1 branch, presented a tetrasomy of the AML1
(RUNX1) gene (Table 3). This over-represented RUNX1
gene is consistent with the over-expression of RUNX1 seen
on the microarray (log,-ratio = 0.59). Similarly, patient
17, who displayed a t(12;21) translocation and systemat-
ically clustered with the TEL/AMLI-negative subgroup,
had a low level of RUNX1 expression (log,-ratio = -1.31)
and only two RUNX1 gene copies (FISH), even though
three chromosomes 21 were detected (karyotype and
chromosome painting) (Table 3). FISH analysis of the
remaining TEL/AML1-positive patients (3, 5, 12, 13, 18,
23,35,40, 41, 43,47, 48 and 53) revealed the presence of
three RUNX1 gene copies in three patients (3, 13 and 23).
Patients 3, 5, 13, 17, 18, 40 and 43 presented a deletion of
the native TEL.

Discussion

The pediatric TEL/AML1-positive B-ALL subgroup displays
fairly uniform clinical features, making it appropriate for
studying the development of this sub-type of ALL. Com-
parison of gene expression profiles in TEL/AMLI-positive
patients with those in TEL/AMLI-negative patients, whose
blast cells do not contain any recurrent chromosomal
rearrangement, is potentially informative about the
molecular processes and pathogenesis of TEL/AMLI. We
first obtained microarray data for 26 B-ALL patients
included in our prospective study. These patients consti-
tuted a homogeneous group, receiving an identical treat-
ment according to the FRALLE 2000 trial. Gene expression
analysis followed by gene enrichment analysis allowed us
to identify five discrete enriched GO categories - cell dif-
ferentiation, cell proliferation, apoptosis, cell motility and
response to wounding - that highlighted the TEL/AMLI1
biological processes. The GO categories identified were
associated with 14 annotated genes (RUNX1, TCFL5,
TNFRSF7, CBFA2T3, CD9, SCARB1, TP53INP1, ACVRIC,
PIK3C3, EGFL7, SEMAGA, CTGF, LSP1, TFPI); the expres-
sion patterns of these selected genes allowed clustering of
the TEL/AMLI1-positive Set-A patients into one branch.
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The expression patterns of these genes, as assessed either
by microarray experiments or real-time RT-PCR, were also
able to cluster the TEL/AMLI1-positive patients of two
independent sets, Set-B and -C, into one branch. Thus,
even though the size of the initial set was relatively small,
the filters applied were stringent enough to limit the
number of false positives, leading to accuracy and subse-
quent validation of the 14 annotated genes. Furthermore,
six of the 14 TEL/AMLI-selected genes (TNFRSF7, CD?9,
TCFL5, PIK3C3, CBFA2T3, SEMAGA) had previously been
reported to be associated with TEL/AMLI signatures
found in more heterogeneous groups of ALL patients
(including those with T-ALL, Bcr-Abl, E2A-PBX, or MLL)
[13,15]. The identification of the same genes through dif-
ferent experimental approaches (Agilent, Affymetrix,
NCBI) and in different patient sets is a strong argument
for their importance in TEL/AML1-positive leukemia proc-
ess [17], and for the relevance of the additional eight
newly identified genes (RUNX1, SCARBI, TP53INPI,
ACVRI1, EGFL7, CTGF, LSP1, TFPI). Some genes previ-
ously described as relevant, including TERF2 and EPOR,
did not appear among the genes we selected. This might
be due to differences in patient sets (we did not include
hyperdiploid patients, with > 50 chromosomes), or to dif-
ferences in the affinities of the probe sets used [14,18].
Our findings reveal new target genes characterizing lim-
ited and specific biological pathways associated with TEL/
AMLI1 pathogenesis. Further in vivo and in vitro investiga-
tions to assess their biological effects should contribute to
a better understanding of the disease.

Models of ALL pathogenesis have suggested that two
classes of cooperating mutations are required for acute
leukemia to develop [19]: one involved in impairment of
differentiation and the other in cell proliferation and/or
survival. We found that differentiation was not inhibited
in TEL/AMLI-positive ALL patients but, rather, was
enhanced and characterized by the over-expression of dif-
ferentiation genes (TCFL5, TNFRSF7, ACVRIC). This is in
agreement with the report by Pine et al [6] that TEL/AML1
fusion preceded differentiation to pre-B cells and suggests
that TEL/AML1 fusion occurs in a totipotent hematopoi-
etic progenitor cell and directs cell differentiation towards
the B-lineage. We also highlighted the activation of prolif-
eration/survival oncogenic processes with the up-regula-
tion of the RUNXI1, CBFA2T3, PIK3CT, SCARB1 and
TP53INP1 genes. Our study also implicated cell motility
and response to wounding processes in the TEL/AMLI
cluster. Cell migration capacity may be a clue to explain-
ing the very late relapse events, which affect some TEL/
AML1-positive ALL patients. Indeed, the good outcome
expected for TEL/AML1-positive ALL children is offset by
the relatively high rate of very late relapse, especially in
non-hematopoietic sites such as the ovary [20,21].
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quantitative RT-PCR on set-C patients

o CBFA2T3
o PIK3C3

o RUNXT1

o TNFRSF7
mCD9
oLSP1
BEGFL7

o TCFL5

| TP53INP1

CD9
LSPI
TNFRSF7
PIK3C3
CBFA2T3
RUNX1
EGFL7
TCFL5

TEL/AML1 branch TPS3INPI

Figure 5

Validation of the selected genes for TELIAMLI by quantitative RT-PCR using the independent Set-C patients.
(A) Expression in log2, of mean relative levels of TCFL5, PIK3C3, CBFA2T3, TNFRSF7, RUNX, EGFL7, TP53INPI, LSP| and CD9 in
TEL/AMLI -positive (n = 7) and TEL/AML/-negative (n = 20) Set-C samples.LSP/ and CD9 are significantly (P < 0.01) under-
expressed in TEL/AMLI-positive ALL patients and each of the seven other genes is significantly (with either P < 0.01* or P <
0.05*%*) over-expressed in TEL/AMLI-positive ALL patients; these findings agree with microarray data obtained with Set-A and
Set-B patients. (B) Hierarchical clustering analysis (Euclidean distance and complete linkage) of Set-C patients using quantitative
RT-PCR data for the nine tested genes. The dendrogram clearly distinguishes TEL/AML-positive patients from TEL/AMLI-nega-
tive patients.
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Table 3: Cytogenetic and molecular data for the 16 TEL/IAMLI (ETV6/RUNXI)-positive patients

Patients  TEL/AMLI (ETV6/RUNXI) RISK GROUP KARYOTYPE AMLI(RUNXT) TEL(ETV6)
Fusion gene Copy-Number FISH  Deletion FISH
3 TEL/IAMLI SR 45, XY, der(3)t(3;8),-8, add(12)p?12?13 3 YES
5 TEL/IAMLI SR 46, XY 2 YES
9 NONE SR 53, XXY,+6,+10,+10,+14,+18,+%(21q)[16]/46, 4 NO
XY[7]
12 TEL/IAMLI SR 46, XY 2 NO
13 TEL/IAMLI SR 49, XX,+10,+15,+der(21)[1]1/49, XX, idem, 3 YES
del(12)[6]/50XX, idem,+18[15]/50XX, idem,
del(12),+18[2]/46XX[6]
17 TEL/IAMLI SR 47, XY, add(8p),- 10, del(l 1q),+21,+mar[18]/ 2 YES
46XY[4]
18 TELIAMLI HR 46, XY, add(19)(p or q) 2 YES
23 TEL/IAMLI SR 50, XY,+8,2der(12),+21,+mar[4]/46XY)[26] 3 NO
32 TEL/IAMLI HR 47, XY, t(3;14)(q?13;q223),+21[18]/46, XY)[I] 4 NO
33 TEL/AMLI SR 46, XY 2 NO
35 TEL/IAMLI SR 46, XY 2 NO
40 TEL/IAMLI SR 45, X,-X, del(6)(ql 2qter) 2 YES
41 TEL/IAMLI SR failure 2 NO
43 TEL/AMLI SR 46, X,2del(Xq)[20]/46, XX[16] 2 YES
47 TEL/IAMLI SR 46, XY 2 NO
48 TEL/IAMLI SR 46, XY[25] 2 NO
53 TEL/AMLI SR 2 NO

46, XY, t(1;8)2(q3 1;.924)t(X;17)2(q2 I;p | 3) [20]/46,
XY[3]

FISH experiments determined AMLI (RUNXI) gene copy number and revealed whether or not native TEL (ETV6) was deleted. Increased AMLI copy
number was scored when present in more than 50% of the cell population.

Additional genetic changes are very common in TEL/
AMLI-positive ALL patients; about 70% also present with
deletion of the second TEL gene (ETV6) on the non-rear-
ranged chromosome 12 [21,22]. About half TEL/AMLI-
positive patients (7/16) displayed an additional loss of
the TEL gene, suggesting that there may be other genetic
abnormalities acting as secondary events for TEL/AML1
leukemogenesis or contributing to the outcome. Unlike
the TEL gene, the AML1 gene (also named RUNX1 accord-
ing to the HUGO nomenclature) was significantly over-
expressed in the TEL/AML1 cluster. RUNX1 is a member of
the Runt transcription factor family and targets key regu-
lators of the hematopoiesis process (M-CSF R, IL3, neu-
trophil elastase, MPO, granzyme B, TCRs, and B-Cell
receptors) through its DNA-binding domain [23]. The
transcriptional activity of RUNX1 depends on its dimeri-
zation with the non-DNA binding factor CBFp, and on the
recruitment of co-factors. The RUNXI1 transcription com-
plex thus acts either as a transcriptional activator or as a
repressor depending on the nature of the co-factors. The
TEL/AMLI1 fusion protein (ETV6/RUNX1) associated with
the t(12;21) translocation acts as a repressor. However,
few of the genes selected in our analysis were down-regu-
lated. This suggests that either gene up-regulation is an
indirect process, dependent on the down-regulation of
transcriptional repressors mediated by the TEL/AML1
fusion protein, or that the repressor function of the TEL/
AMLI1 fusion protein is counterbalanced by the presence

of a normal RUNX1 protein. This later possibility is sup-
ported by our observation of RUNX1 over-expression in
the TEL/AML1-positive group by microarray experiments
and g-PCR. Expression and cytogenetic data from patients
9 and 17 indicate that RUNX1 over-expression is not due
to the expression of the TEL/AML1 (ETV6/RUNX1) fusion
gene, driven by the TEL promoter, but to the native
RUNXI1 gene. An increased RUNX1 copy number was also
found in one third of the TEL/AML1 patients, and this
may explain, at least in part, RUNXI over-expression.
Gene amplification is a common mechanism of oncogene
deregulation, which occurs with RUNX1 through chromo-
some 21 polysomy, by the presence of a RUNXI tandem
repeat on der(21) or with additional RUNX1 copies on
extra-chromosomal elements [24]. The over-expression of
the RUNX1 gene with no apparent amplification of the
RUNX1 locus also suggests that there may be cryptic
amplification undetectable by FISH-analysis or deregula-
tion of the RUNXI promoter. Conversely, promoter
silencing or gene deletion despite over-representation of
chromosome-21 could explain low expression of the
RUNX1 gene. RUNX1 over-expression appeared to be
characteristic of the TEL/AMLI-positive patient group.
Indeed, all patients with RUNX1 over-expression clus-
tered together, including the patient 9, who had four cop-
ies of RUNX1 but no TEL/AML1 fusion. By contrast, TEL/
AMLI-positive patient 17, who presents no RUNXI1 over-
expression, did not segregate with the TEL/AML1-positive
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group. It is possible that the expression levels of RUNX1
could explain the clinical heterogeneity of t(12;21) ALL
cases. Indeed, it has been suspected that a RUNX1 gene
copy number of four is associated with ALL with good
prognosis. By contrast, whereas the amplification of
RUNX1 to a copy number greater than four, which has
been estimated to be the case in 2% of all pediatric ALL
and particularly those with no TEL/AML1 chromosomal
aberration, may be characteristic of a subtype of B-ALL
associated with a poor prognosis [25,26]. If these findings
were confirmed, the TEL/AMLI1 fusion transcript and
RUNX1 expression level data could be used as stratifying
therapeutical markers, with possible prognostic value.

Conclusion

Gene expression analysis of TEL/AML1 ALL identified five
enriched gene ontology (GO) categories: cell differentia-
tion, cell proliferation, apoptosis, cell motility and
response to wounding, associated with fourteen genes
able to cluster the TEL/AML1 sub-group (RUNX1, TCFL5,
TNFRSF7, CBFA2T3, CD9, SCARB1, TP53INP1, ACVRIC,
PIK3C3, EGFL7, SEMAGA, CTGF, LSP1, TFPI). These
results, based on a small cohort, but validated by two
independent data sets, should serve as a basis for a better
understanding of TEL/AML1 pathogenesis and the biol-
ogy of late relapse.

Methods

Patients

Bone marrow leukemia cells were obtained at diagnosis,
with informed consent, and after agreement of the Ethics
Committee of Rennes Hospital (Rennes, France). For each
patient, the bone marrow blast-cell level was > 80%.
CD19, CD10 and CD79A were expressed in all samples
and none were classified as biphenotypic ALL. Each sam-
ple was analysed by conventional karyotyping and tested
for the presence of E2A/PBX1, TEL/AML1, BCR/ABL and
MLL rearrangement by RT-PCR. Positive results were con-
firmed by in situ fluorescence analysis. Independent of the
presence of a TEL/AMLI rearrangment, children were
assigned to risk and treatment groups (standard risk or
high risk) according to the FRALLE 2000 protocol (France
Acute Lymphoblastic Leukemia de I'Enfant), with an ini-
tial risk-adapted stratification of treatment at diagnosis
based on age (1 year < age < 10 years, or > 10 years), white
blood cell count ( < 50,000/mm3, or > 50,000/mm?3),
involvement of the central nervous system (CNS) and
cytogenetic data. The early in vivo response to treatment
was further assessed as the response to steroid and chem-
otherapy treatment, and by molecular measurement of
the minimal residual disease, using polymerase chain
reaction amplification on day 35 of treatment to detect
the presence of clone-specific immunoglobulin and T cell
receptor-gene rearrangements.

http://www.biomedcentral.com/1471-2164/8/385

RNA isolation, and reference RNA

Mononuclear cells were isolated from bone marrow (2 ml
samples, i.e. 5 million cells) by successive centrifugations
through MLS medium (Eurobio, Courtabeuf, France). Iso-
lated leukocytes were immediately stored at -80°C in 1 ml
of RNA-PLUS solution (Qbiogene, Strasbourg, France).
Total RNA was recovered using a Qiagen RNeasy column
(Qiagen, Hilden, Germany) according to the manufac-
turer's instructions. In-column DNase treatment was car-
ried out before eluting the RNA to ensure the absence of
genomic DNA. Recovered RNA was quantified using a
Nanodrop 1000 spectrophotometer (Nanodrop Technol-
ogy”®, Cambridge, UK) and RNA integrity was assessed
using a 2100 Bioanalyser (Agilent, Palo Alto, CA, USA).
RNA samples with an RNA integrity number (RIN) greater
than 9 were used for further analysis. We used an equimo-
lar-pooled mixture of each test RNA sample for the refer-
ence RNA for two-color microarray technology.

Targets preparation and microarrays hybridization

RNA samples (test and reference) were labeled using the
Agilent low RNA input fluorescent linear amplification Kit
(p/n 5184-3523) according to the manufacturer's instruc-
tions. To avoid confounding by extraneous factors, all the
experiments were performed with a single batch and proc-
essed by one technician on the same day for each step.
Briefly, 500 ng of total RNA was reverse transcribed.
Amplification and labeling were performed by T7-
polymerase in vitro transcription, to give fluorescent-
labeled cRNA. Test and reference cRNAs were labeled with
Cyanine-5 and Cyanine-3 CTP dyes, respectively (10 mM,
PerkinElmer, Norwalk, CT). The dye incorporation rate
was assessed with a Nanodrop® ND-1000 spectrophotom-
eter and was found to be between 1.2 and 1.4 pmol/ul.
Hybridization was carried out using the Agilent oligonu-
cleotide microarray in situ hybridization plus kit (p/n
5184-3568), following the manufacturer's instructions.
Briefly, 750 ng of test sample cRNA was mixed with 750
ng of reference sample cRNA in the presence of target con-
trols. This solution was subjected to fragmentation (30
min at 60°C) and then hybridization on 44K Human
Whole-Genome 60-mer oligo-chips (G4112A, Agilent
Technologies) in a rotary oven (4000 rpm, 60°C, 17 h).
Slides were disassembled and washed in solutions I and II
according to the manufacturer's instructions, and dried
using a nitrogen-filled air gun before scanning.

Data acquisition and processing

Microarrays were scanned with a dynamic autofocus
microarray scanner (Agilent dual laser DNA microarray
scanner -G2566AA, Agilent technologies, Palo Alto, CA,
USA), using Agilent-provided parameters (Red and Green
PMT were each set at 100%, and scan resolution was set to
10 um). The Feature Extraction Software v7.5 (Agilent
technologies, Palo Alto, CA, USA) was used to extract and
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analyse the signals. Agilent-provided settings were used
except for subtraction of the local background and adjust-
ment of the global background. Poor quality features that
were either saturated in the two channels (50% of pixels >
saturation threshold) or non-uniform were flagged. Only
those features with a signal-to-noise ratio (SNR) of up to
2.6 in at least one channel and significantly different from
the local background (two sided Student's t-test < 0.01)
were used for further analysis. The mean signal ratio of the
two fluorescent intensities (Cy-5 cRNA test /Cy-3 pooled
cRNA) is expressed as a logarithm (base 2), providing a
relative quantitative gene expression measurement
between two samples. For subsequent analysis, we used
mean-centered log, of the normalized (linear & lowess
method) sample:reference ratio.

The accuracy of microarray results was assessed by com-
paring the global gene expression levels of each chip using
box-plot analysis. Each box-plot was centered on zero
with comparable dynamic intensities, revealing the tech-
nical homogeneity of the overall experiment (data not
shown). Furthermore, technical duplicates with 25% of
the Set-A cRNA samples were used to assess the reproduc-
ibility of the array.

See additional files in microarray database "Gene Expres-
sion Omnibus" : accession number GSE 9170.

Selection and profiling of differentially expressed genes

Spot signals with a PvalueLogRatio < 0.01 were selected
from each array and used for further analysis. Missing val-
ues, due to flagged signals, were replaced using the K-near-
est neighbors calculation method with k = 10, but only
when there were less than 30% of values missing per gene.

We used two-class unpaired significance analysis of
microarrays (SAM) to select genes that were differentially
expressed in TEL/AMLI1-positive patients and TEL/AMLI-
negative patients [27]. Genes selected following 1000 per-
mutations were those with expression that was more than
1.7-fold different from the mean expression. We also used
a Qvalue < 0.02 as an additional discriminating parame-
ter. Benjamini and Hochberg false discovery estimation
was applied to validate our data because of the small size
of the cohort. We used the agglomerative hierarchical
clustering approach (average or complete linkage cluster-
ing using Euclidean distance as distance metric) in the
TIGR Mev 3.1 software [28] to represent SAM-selected
genes [29] and assessed reproducibility by using a resam-
pling-based procedure (bootstrapping for 100 iterations).

Functional annotation

The genes identified by the SAM selection and hierarchical
clustering representation were functionally annotated
using the WebGelstalt toolkit (WEB-based GEne SeT
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AnalLysis Toolkit, University of Tennessee and Oak Ridge
National Laboratory)[30]. WebGelstalt includes informa-
tion from the Gene Ontology Tree Machine software [31]
and queries were made with lists of official gene symbols
(approved by the HUGO Nomenclature Committee). We
retrieved enriched GO terms (i.e. GO terms with a signifi-
cantly higher than expected number of associated genes)
from the GOTree module (displayed as a Directed Acyclic
Graph) and KEGG biochemical pathways (displayed as a
KEGG table) using a hyper-geometric statistical test.
Selected enriched GO terms were those that comprised at
least two genes with a Pvalue < 0.05 by comparison to the
pre-stored Agilent G4112A gene set. The annotation con-
cerned only the biological process.

Quantitative reverse transcription (RT)-PCR

Real-time PCR was carried out in sealed 96-well micro-
titer plates using the SYBR™ Green PCR Master Mix
(Applied Biosystems®), according to Applied Biosystems
gene amplification specifications (40 cycles of 15 sec at
95°C and 1 min at 60°C). We analysed gene expression
using the ABI Prism 7000 sequence detection system
(Applied Biosystems®) and evaluated the results using the
associated software (version 1.2.3, Applied Biosystems®).
ABL1 RNA was chosen as an internal positive control,
because it showed no significant variation in our experi-
ments. The relative amounts of the gene transcripts were
determined using the Ct method, as described by the
manufacturer. The mRNA levels are expressed with respect
to the mean Ct values of all samples. Each PCR experi-
ment was carried out in triplicate. Data are given as mean
expression (with the SD) for each gene per group (TEL/
AML1 and non TEL/AMLI).

The following forward (F) and reverse (R) primers were
designed using the Primer Express™ software (version 2.0-
PE Applied Biosystems®):

F-ABL1: 5'-CGCTCATCACCTAAACTTGTACTTT-3";
R-ABL1: 5'-CTGTAAGAACCGCATAAAACGA-3';
F-CBFA2T3: 5'-TGAACTCGACATTGACGATCG-3';
R-CBFA2T3: 5'-TCAGGAAGGGAATGACAAACG-3/;
F-CD9: 5'-CAACAAGCTGAAAACCAAGGA-3'

R-CD9: 5'-CAAACCACAGCAGTTCAACG-3'

F-EGFL7: 5'-TTGCCAGTCAGATGTGGATGA-3'

R-EGFL7: 5'-ACTCTGTGTGCCCAAGGGAG-3'

F-LSP1: 5'-AGGGGGAGCAAGAGGACA-3'
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R-LSP1: 5'-CCCCTCCITGCTCAGACTC-3'
F-PIK3C3: 5'-GCCTTGGAACTTCTGGGAAAA-3";
R-PIK3C3: 5'-CAACAGCATAACGCCTCACAG-3';
F-RUNX1: 5'-ACAAACCCACCGCAAGTC-3'
R-RUNXI1: 5'-catctagtttctgccgatgtctt-3'

F-TCFL5: 5'-GCGCAGAATCCGCATITG-3";
R-TCFL5: 5'-TCAGGAATGCTGTGGTCCACT-3'
F-TNFRSF7: 5'-AGGGACAAGGAGTGCACCG-3};
R-TNFRSF7: 5'-AAGGTAAGTGGGTGGGCTGAG-3';
F-TP53INP1: 5'-GCATGTCTGTCTATGCTGTGC-3'
R-TP53INP1: 5'-TTCATTTTGAGCITCCACTCTG-3'

Primer specificity was assessed from their mono-phase
dissociation curves and all pairs presented comparable
efficiencies (data not shown).

Karyotype and FISH analysis

At the time of the diagnosis, chromosome analyses were
performed on bone marrow samples using a RHG-band-
ing technique. Karyotypes were designated according to
the International System for human Cytogenetic Nomen-
clature (ISCN, 1995).

Fluorescence in situ hybridization (FISH) analyses were
performed when a t(12;21) was suspected (either RT-PCR
or karyotype), according to the manufacturer's protocol
using the Vysis LSI TEL/AMLI1 bicolor probe (Abbott,
Rungis, France).
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