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Abstract
Background: The preservation of fish egg quality after ovulation-control protocols is a major
issue for the development of specific biotechnological processes (e.g. nuclear transfer). Depending
on the species, it is often necessary to control the timing of ovulation or induce the ovulatory
process. The hormonal or photoperiodic control of ovulation can induce specific egg quality defects
that have been thoroughly studied. In contrast, the impact on the egg transcriptome as a result of
these manipulations has received far less attention. Furthermore, the relationship between the
mRNA abundance of maternally-inherited mRNAs and the developmental potential of the egg has
never benefited from genome-wide studies. Thus, the present study aimed at studying the rainbow
trout (Oncorhynchus mykiss) egg transcriptome after natural or controlled ovulation using 9152-
cDNA microarrays.

Results: The analysis of egg transcriptome after natural or controlled ovulation led to the
identification of 26 genes. The expression patterns of 17 of those genes were monitored by real-
time PCR. We observed that the control of ovulation by both hormonal induction and photoperiod
manipulation induced significant changes in the egg mRNA abundance of specific genes. A dramatic
increase of Apolipoprotein C1 (APOC1) and tyrosine protein kinase HCK was observed in the
eggs when a hormonal induction of ovulation was performed. In addition, both microarray and real-
time PCR analyses showed that prohibitin 2 (PHB2) egg mRNA abundance was negatively
correlated with developmental success.

Conclusion: First, we showed, for the first time in fish, that the control of ovulation using either
a hormonal induction or a manipulated photoperiod can induce differences in the egg mRNA
abundance of specific genes. While the impact of these modifications on subsequent embryonic
development is unknown, our observations clearly show that the egg transcriptome is affected by
an artificial induction of ovulation.

Second, we showed that the egg mRNA abundance of prohibitin 2 was reflective of the
developmental potential of the egg.

Finally, the identity and ontology of identified genes provided significant hints that could result in a 
better understanding of the mechanisms associated with each type of ovulation control (i.e. 
hormonal, photoperiodic), and in the identification of conserved mechanisms triggering the loss of 
egg developmental potential.
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Background
Fish egg quality can be defined as the ability of the egg to
be fertilized and subsequently develop into a normal
embryo. The egg's potential to produce a viable and nor-
mal embryo can be affected by many environmental and
biological factors acting at various steps of the oogenetic
process (see [1,2] for review). The determinism of egg
quality has also been shown to be under the influence of
genetic factors [3-5]. While the effects of many experimen-
tal factors have been studied, the mechanisms by which
they trigger egg quality losses are far less documented.
Yolk composition as a result of a specific diet has been
intensively studied in several fish species in relationship
with egg developmental capacities [6-8]. Hormones of
maternal origin supplied to the embryo by the egg also
have a significant effect on embryonic development as
shown by several studies [9]. In contrast, the putative role
of non-yolky cytoplasmic components accumulated dur-
ing oogenesis, such as structural and regulatory proteins,
cortical alveoli content and messenger RNAs (mRNAs),
has received far less attention [1]. Nevertheless, maternal
mRNAs that accumulate in the oocyte during oogenesis
are essential for early embryonic development [10,11].
Like in other animals, some maternal mRNAs are
involved in embryonic germ cells formation in fish [12],
but other oocyte mRNAs, such as those involved in
growth regulation, could be necessary to ensure a normal
early development [13]. Thus, in bovine two-cell
embryos, a relationship between embryonic developmen-
tal competence, assessed in terms of time of first cleavage,
and the expression of IGF1 mRNA was reported [14]. In
addition, other studies showed a relationship between
variation of maternal RNA polyadenylation levels and
developmental competence of mammalian oocytes, thus
pointing out a relationship between maternal mRNA sta-
bility and embryonic developmental capacities [15]. In
fish, the possibility that specific oocyte mRNAs might be
affected when egg quality is experimentally decreased has
been seriously suggested by a previous work dealing with
the effect of egg post-ovulatory ageing on the mRNA levels
of many genes (~40) in rainbow trout eggs [16].

In fish, it is often useful or necessary to control the timing
of spawning or induce the ovulatory process. These tech-
niques are used for biotechnical, experimental or eco-
nomical reasons to obtain out of season egg production
and/or synchronous egg production within a group of
females or, for some species, to obtain eggs from captive
fish. The effects of these manipulations on fish egg quality
have been thoroughly studied [1,17]. However, the
impact on egg transcriptome as a result of these manipu-
lations has received far less attention despite recent efforts
to study the ovarian or follicular transcriptome during
oogenesis [18-20]. In the present study, we analyzed the
transcriptome of unfertilized rainbow trout (Oncorhyn-

chus mykiss) eggs after natural or controlled ovulation.
Two different protocols of controlled ovulation that are
widely used in laboratories and fish farms were carried
out: (i) a hormonal induction of ovulation using intra-
peritoneal GnRH-analog injection, and (ii) a specific pho-
toperiod regime designed to advance the spawning
period. In addition, a third group was not subjected to any
specific manipulation to allow egg collection after natural
spontaneous ovulation. For each individual female, egg
samples were collected and either subjected to a microar-
ray analysis or transferred in an experimental hatchery
after fertilization for monitoring developmental success
(e.g. embryonic survival, malformations). Thus, the
present study aimed at (i) analyzing the effect of ovulation
control processes on egg transcriptome and (ii) analyzing
possible links between egg transcriptome and egg devel-
opmental potential.

Results
Egg quality
Both hormonal induction and photoperiodic manipula-
tion of ovulation had a negative impact on egg quality.
The percentage of normal (i.e. without morphological
abnormalities) alevins monitored at yolk-sac resorption
(YSR) was used to characterize the egg quality of each
individual female. The higher percentage of normal
alevins at YSR, 84 ± 5%, was observed after natural (N)
ovulation (Figure 1). In contrast, significantly lower per-
centages were observed after hormonal induction (HI) of
ovulation (65 ± 9%) or photoperiodic manipulation
(PM) of ovulation (37 ± 16%) (Figure 1).

Transcriptomic analysis
After signal processing, 8423 clones out of 9152 were kept
for further analysis. SAM analysis was performed using the
expression data of those 8423 clones. Twenty six genes
exhibiting a differential mRNA abundance among at least
2 of the 3 experimental groups were identified (Table 1,
Figure 2) with a false discovery rate (FDR) of 3.4%. The
ontologies of those genes are presented in Table 2. Thirty
one genes putatively linked to egg quality were identified
(Table 3, Figure 3) with a FDR of 30%. The ontologies of
those genes are presented in Table 4.

Real-time PCR analysis
From the 57 (26+31) genes identified in the transcrip-
tomic analysis, 32 were ultimately kept for real-time PCR
analysis (Table 5). Real-time PCR data corresponding to
the remaining 25 was not used in the analysis because of
methodological reasons (e.g. low expression, poor PCR
efficiency, double amplification).
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Genes exhibiting a differential egg mRNA abundance among 
experimental groups
Among the 26 genes exhibiting a differential mRNA abun-
dance between experimental groups, 17 were studied by
real-time PCR. Among those 17 genes, 7 were found to be
differentially expressed in the real-time PCR study (Figure
4). The identity of those 7 genes is presented below. Only
the informative alignments obtained using the full rain-
bow trout coding sequence (CDS) or a substantial part of
the CDS are presented (Figures 3, 4). For clarity reasons,
the official human protein symbol was used in the text.

Clone # 1RT65F10_D_C05 exhibited significant sequence
similarity with mouse Apolipoprotein C-I precursor
(APOC1, Table 1) and was significantly more abundant in
eggs of the HI group than in eggs of the N group while
intermediate levels were observed in eggs of the PM
group. The mRNA abundance in the HI group was 13
times higher than in the N group while it was 2 times
higher than in the PM group (Figure 4). After performing
a Blast search in the GenBank database, the complete rain-
bow trout amino acid sequence deduced from the EST
sequence exhibited 54% sequence identity at the amino
acid level with the zebrafish (Danio rerio) cognate protein
(Figure 5A). A sequence identity of 33 and 26% was
observed with mouse and human proteins respectively
(Figure 5A). The number of amino acids deduced from the
trout EST is consistent with the number of amino acids
present in mammalian and zebrafish sequences.

A similar expression pattern was observed for clone #
1RT68D18_D_B09 that exhibited sequence similarity
with mouse Hemopoietic cell kinase (HCK, Table 1). The
deduced partial amino acid sequence generated from the
corresponding UniGene cluster exhibited 40% and 38%
identity with mouse and human HCK proteins respec-
tively.

Clone tcbk0023.o.24 exhibited sequence similarity with
hydroxyacylglutathione hydrolase cytoplasmic (MR-1,
Table 1) and was less abundant in eggs of the HI group
than in eggs of the 2 other experimental groups (Figure 4).
A contig sequence was generated using all rainbow trout
ESTs belonging to the same UniGene cluster
(Omy.19659). This contig sequence was then used to per-
form a blastX search in GenBank. This contig sequence
corresponded to a partial CDS of the putative rainbow
trout cDNA. The deduced rainbow trout amino acid
sequence exhibited 59% identity with the mouse brain
protein 17 isoform 1 (Figure 5B). This mouse protein is
also known as myofibrillogenesis regulator 1. In addition
a 60% identity was observed with human cognate protein
(Figure 5B) know as myofibrillogenesis regulator 1 (MR-
1).

Clone tcba0025.n.15 exhibited sequence similarity with
human N-terminal asparagine amidase (NTAN1, Table 1)
and was more abundant in eggs of the HI group than in
eggs of N and PM groups (Figure 4). This sequence did not
belong to any UniGene cluster and did not include a com-
plete CDS. After performing a Blast search using this par-
tial sequence, a 47% identity with the cognate human
form (NTAN1) was observed.

Clone 1RT131K20_C_F10) exhibited sequence similarity
with mouse myosin Ib (MYO1B, Table 1) and was more
abundant in eggs of the PM group than in eggs of HI and
N groups (Figure 4). This sequence did not belong to a
UniGene cluster and did not contain a full CDS. The
observed identity with predicted zebrafish and chicken
cognate forms was 93 and 86% respectively. An 85 and
86% amino acid sequence identity was observed with
human and murine proteins respectively.

Clone tcay0027.b.13 exhibited sequence similarity with
human pyruvate carboxylase (PYC, Table 1) and was more
abundant in eggs of the PM group than in eggs of the N
group, while intermediate levels were observed in eggs of
the HI group (Figure 4). This sequence did not include a
full CDS. After performing a Blast search using this partial
coding sequence, the amino acid sequence identity with
cognate vertebrate forms was above 80%.

Clone 1RT139F11_B_C06 exhibited sequence similarity
with ribosomal protein RPL24 and was more abundant in

Percentage of normal alevins at yolk sac resorption (mean ± 95% confidence interval) observed after fertilizing eggs of females subjected to natural ovulation (N, n = 25), hormonal induction of ovulation (HI, n = 33) and photoperiod manipu-lation of ovulation (PM, n = 17)Figure 1
Percentage of normal alevins at yolk sac resorption (mean ± 
95% confidence interval) observed after fertilizing eggs of 
females subjected to natural ovulation (N, n = 25), hormonal 
induction of ovulation (HI, n = 33) and photoperiod manipu-
lation of ovulation (PM, n = 17). Significantly different from 
natural ovulation at p < 0.0001 (***).
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Table 1: Genes exhibiting differential egg mRNA abundance among experimental groups identified from the microarray analysis.

Clones GenBank Sigenae contig Symbol swissprot_hit_description Score UniGene

tcac0001.c.18 BX082249 tcac0001c.c.18_5.1.s.om.8 YEAST (P53230) Hypothetical 44.2 kDa protein in RME1-TFC4 intergenic region 283

1RT159P21_B_H11 CA388269 CA388269.1.s.om.8

tcbk0051.e.02 BX878405 tcay0028b.c.19_3.1.s.om.8

1RT65F10_D_C05 CA353171 tcab0001c.m.15_5.1.s.om.8 APOC1 MOUSE (P34928) Apolipoprotein C-I precursor (Apo-CI) (ApoC-I) 123 Omy.10219

1RT121B08_D_A04 CA359367 CA359367.1.s.om.8 CTNNBL1 HUMAN (Q8WYA6) Beta-catenin-like protein 1 (Nuclear-associated protein) 950 Omy.23137

1RT56O04_C_H02 CA351228 CA351228.1.s.om.8 DAB2 MOUSE (P98078) Disabled homolog 2 (DOC-2) 215

1RT64F24_D_C12 CA358202 CA358202.1.s.om.8 DBNL MOUSE (Q62418) Drebrin-like protein (SH3 domain-containing protein 7) 720

1RT87E10_C_C05 CA345343 tcay0028b.g.03_3.1.s.om.8 DDAH2 MOUSE (Q99LD8) NG, NG-dimethylarginine dimethylaminohydrolase 2 629 Omy.23405

1RT68D18_D_B09 CA34327 tcba0017c.p.21_5.1.s.om.8 HCK MOUSE (P08103) Tyrosine-protein kinase HCK (EC 2.7.1.112) 324 Omy.9448

tcay0037.m.11 BX319623 tcay0032b.l.02_3.1.s.om.8 HNRPK RAT (P61980) Heterogeneous nuclear ribonucleoprotein K 1171 Omy.26818

tcay0030.n.02 BX316222 tcav0005c.k.03_3.1.s.om.8 HSPA9B HUMAN (P38646) Stress-70 protein, mitochondrial precursor 901 Omy.26983

1RT162C23_A_B12 CA382140 tcbk0012c.o.01_5.1.s.om.8 ING1 HUMAN (Q9UK53) Inhibitor of growth protein 1 435 Omy.24666

1RT121G15_A_D08 CA362639 tcay0007b.n.06_3.1.s.om.8 LYPA3 HUMAN (Q8NCC3) 1-O-acylceramide synthase precursor (EC 2.3.1.-) 816 Omy.9525

tcbk0023.o.24 BX875550 tcbk0005c.o.10_5.1.s.om.8 MR-1 ARATH (O24496) Hydroxyacylglutathione hydrolase cytoplasmic (EC 3.1.2.6) 466 Omy.19659

1RT131K20_C_F10 CA383630 CA383630.1.s.om.8 MYO1B MOUSE (P46735) Myosin Ib (Myosin I alpha) (MMI-alpha) (MMIa) 985

tcba0025.n.15 BX866389 tcay0008b.e.10_3.1.s.om.8 NTAN1 HUMAN (Q96AB6) Protein N-terminal asparagine amidohydrolase (EC 3.5.1) 510

tcbk0049.m.03 BX884905 tcbk0002c.c.19_5.1.s.om.8 OSBPL5 MOUSE (Q9ER64) Oxysterol binding protein-related protein 5 344 Omy.14649

tcbk0050.a.20 BX886190 tcbk0050c.a.20_5.1.s.om.8 PGH2 CHICK (P27607) Prostaglandin G/H synthase 2 precursor 1636 Omy.20943

tcbk0055.m.20 BX880138 tcbk0055c.m.20_5.1.s.om.8 PKP1 HUMAN Plakophilin 1 337

tcay0027.b.13 BX313624 tcay0027b.b.13_5.1.s.om.8 PYC HUMAN (P11498) Pyruvate carboxylase, mitochondrial precursor (EC 6.4.1.1) 1021

1RT67N13_B_G07 CA360456 CA355135.1.s.om.8 RBM5 HUMAN (P52756) RNA-binding protein 5 (Putative tumor suppressor LUCA15) 296

tcbk0027.b.05 BX887647 tcbi0025c.k.02_5.1.s.om.8 RL10 HUMAN (P27635) 60S ribosomal protein L10 1039 Omy.4144

1RT139F11_B_C06 CA384643 tcay0034b.h.11_3.1.s.om.8 RPL24 GILMI (Q9DFQ7) 60S ribosomal protein L24 529 Omy.9444

1RT63M02_C_G01 CA343028 tcac0004c.h.08_5.1.s.om.8 RPN2 HUMAN (P04844) Dolichyl-diphosphooligosaccharide-protein glycosyltransferase 63 kDa 
subunit precursor (Ribophorin II)

643 Omy.24414

tcad0007.p.12 BX078856 tcac0005c.e.12_3.1.s.om.8 SEC22 YARLI (Q6C880) Protein transport protein SEC22 237 Omy.913

1RT56L15_B_F08 CA351681 CA351681.1.s.om.8 TPH XENLA (Q92142) Tryptophan 5-hydroxylase (EC 1.14.16.4) 725

Genes subsequently studied by real time PCR are bolded. For each gene, clone name, GenBank accession number, official human symbol and corresponding UniGene cluster are indicated. The Sigenae contig 
name [60] used for Blast comparison against the Swiss-Prot database is shown. Resulting best hit and corresponding score are indicated.
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Table 2: Ontologies of the genes exhibiting differential egg mRNA abundance among experimental groups identified from the microarray analysis.

Symbol Biological Process (P) Cellular component (C) Molecular Function (F)

APOC1 negative regulation of lipoprotein lipase activity
negative regulation of binding

lipid metabolism

chylomicron enzyme activator activity
lipid binding

CTNNBL1 induction of apoptosis nucleus
DAB2 cell proliferation protein binding
DBNL Rac protein signal transduction

activation of JNK activity
Lamellipodium

Cytoplasm
cell cortex

actin binding
enzyme activator activity

protein binding
DDAH2 anti-apoptosis

arginine catabolism
nitric oxide mediated signal transduction

hydrolase activity

HCK protein amino acid phosphorylation
mesoderm development

protein-tyrosine kinase activity
protein binding

HNRPK nucleus protein binding
single-stranded DNA binding

HSPA9B hemopoiesis mitochondrial matrix ATPase activity
ATP binding

ING1 negative regulation of cell proliferation
negative regulation of cell growth

nucleus DNA binding

LYPA3 fatty acid catabolism lysosome phospholipid binding
lysophospholipase activity

MR-1
MYO1B nervous system development Cytoskeleton

brush border
motor activity

NTAN1 memory
adult locomotory behavior

Nucleus
cytoplasm

protein N-terminal asparagine amidohydrolase activity

OSBPL5 cholesterol metabolism
cholesterol transport

Golgi to plasma membrane transport

integral to membrane
cytosol

oxysterol binding

PGH2 physiological process
keratinocyte differentiation

cyclooxygenase pathway

Nucleus
cytoplasm

Peroxidase activity
prostaglandin-endoperoxide synthase activity

PKP1 signal transduction
cell adhesion

desmosome
nucleus

intermediate filament

structural constituent of epidermis
signal transducer activity

intermediate filament binding
PYC ATP binding

biotin binding
pyruvate carboxylase activity

RBM5 RNA binding
DNA binding

nucleus RNA processing

RPL10 Spermatogenesis
protein biosynthesis

cytosolic large ribosomal subunit (sensu Eukaryota)
mitochondrial large ribosomal subunit

structural constituent of ribosome

RPL24 translation mitochondrial large ribosomal subunit structural constituent of ribosome
RPN2 protein modification

protein amino acid N-linked glycosylation
oligosaccharyl transferase complex

SEC22 ER to Golgi vesicle-mediated transport endoplasmic reticulum membrane transporter activity
TPH1 serotonin biosynthesis from tryptophan cytoplasm tryptophan 5-monooxygenase activity
YG1W protein import into mitochondrial matrix mitochondrion Protein binding
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Table 3: Genes exhibiting differential mRNA abundance in eggs of varying quality identified from the microarray analysis

Symbol Genbank Sigenae contig Symbol swissprot_hit_description Score UniGene

tcbr0001.b.08 NO CONTIG

1RT42N11_B_G06 CA378261 tcba0024c.d.03_5.1.s.om.8 AGM1 HUMAN (O95394) Phosphoacetylglucosamine mutase (EC 5.4.2.3) 1065 Omy.22147

1RT120K08_C_F04 CA362248 CA362248.1.s.om.8 ALG2 HUMAN (Q9H553) Alpha-1,3-mannosyltransferase ALG2 (EC 2.4.1.-) 662

1RT85M16_C_G08 CA345100 tcac0001c.c.13_3.1.s.om.8 APOB HUMAN (P04114) Apolipoprotein B-100 precursor 630 Omy.8599

tcay0008.m.21 BX301016 tcav0001c.l.14_3.1.s.om.8 BMP7 MOUSE (P23359) Bone morphogenetic protein 7 precursor (BMP-7) 1154 Omy.19556

tcbk0001.p.13 BX873334 tcbk0001c.p.13_5.1.s.om.8 CASZ1 HUMAN (Q86V15) Probable transcription factor CST 234 Omy.20281

tcay0007.f.20 BX300279 tcay0007b.f.20_5.1.s.om.8 CF188 RAT (Q5FWS4) Protein C6orf188 homolog 468 Omy.26998

tcba0030.i.17 BX867113 tcay0040b.g.08_5.1.s.om.8 CUL5 RABIT (Q29425) Cullin-5 (CUL-5) 1694 Omy.21358

1RT63D22_D_B11 CA343059 CA343059.1.s.om.8 DCPS MOUSE (Q9DAR7) Scavenger mRNA decapping enzyme DcpS 195

tcba0010.c.10 BX861936 tcba0010c.c.10_5.1.s.om.8 DUSP24 HUMAN (Q9Y6J8) Dual specificity protein phosphatase 24 688

1RT104M18_C_G09 CA347317 tcay0009b.d.09_3.1.s.om.8 FGD5 MOUSE (Q80UZ0) FYVE, RhoGEF and PH domain containing protein 5 145 Omy.10646

1RT147H01_B_D01 CA350285 tcad0009a.n.22_3.1.s.om.8 GMCL1 HUMAN (Q96IK5) Germ cell-less protein-like 1 1353 Omy.2306

tcbk0042.i.19 BX879311 tcav0003c.a.13_3.1.s.om.8 GTF2B RAT (P62916) Transcription initiation factor IIB 1449

tcay0006.d.12 BX299916 tcab0003c.m.12_5.1.s.om.8 HCFC1 MOUSE (Q61191) Host cell factor (HCF) (HCF-1) 695

tcay0009.k.03 BX302686 tcay0009b.k.03_5.1.s.om.8 KHK HUMAN (P50053) Ketohexokinase (EC 2.7.1.3) 591

1RT68H23_B_D12 CA343227 CA343227.1.s.om.8 KIF4A XENLA (Q91784) Chromosome-associated kinesin KLP1 477

tcbk0045.a.13 BX883207 tcbk0045c.a.13_5.1.s.om.8 LAMB2 HUMAN (P55268) Laminin beta-2 chain precursor (S-laminin) 1097

1RT77F09_B_C05 CA354296 CA354296.1.s.om.8 LRTM1 PONPY (Q5R6B1) Leucine-rich repeat transmembrane neuronal protein 1 precursor 410

tcbk0030.p.11 BX885788 tcbk0030c.p.11_5.1.s.om.8 MCF2L MOUSE (Q64096) Guanine nucleotide exchange factor DBS 468 Omy.6690

1RT79A16_C_A08 CA355005 CA355005.1.s.om.8 NEK1 MOUSE (P51954) Serine/threonine-protein kinase Nek1 (EC 2.7.1.37) 359

1RT94E22_C_C11 CA347857 CA347857.1.s.om.8 OBSCN CAEEL (O01761) Muscle M-line assembly protein unc-89 271 Omy.24205

tcab0002.l.03 BX080933 tcab0002c.l.03_5.1.s.om.8 PDCL3 HUMAN (Q9H2J4) Phosducin-like protein 3 305

tcbk0044.f.24 BX877936 tcbk0044c.f.24_5.1.s.om.8 PDGFRA XENLA (P26619) Alpha platelet-derived growth factor receptor precursor 248

tcay0023.m.15 BX310740 tcay0002b.p.08_3.1.s.om.8 PHB2 RAT (Q5XIH7) Prohibitin-2 (B-cell receptor-associated protein BAP37) (BAP-37) 1013 Omy.9050

tcay0029.o.17 BX314382 tcay0029b.o.17_3.1.s.om.8 RAB3IP HUMAN (Q96QF0) RAB3A-interacting protein (Rabin-3) 206

1RT149L18_D_F09 CA350883 tcay0003b.j.14_3.1.s.om.8 TF SALSA (P80426) Serotransferrin I precursor (Siderophilin I) (STF I) 663 Omy.9801

1RT142A22_C_A11 CA349568 CA349568.1.s.om.8 TGFBR2 RAT (P38438) TGF-beta receptor type II precursor (EC 2.7.1.37) 1133 Omy.23150

tcay0018.b.11 BX307666 tcab0003c.i.10_5.1.s.om.8 TLE1 MOUSE (Q62440) Transducin-like enhancer protein 1 (Groucho-related protein 1) 2032 Omy.9672

1RT165F23_B_C12 CA388009 CA388009.1.s.om.8 VWF HUMAN (P04275) Von Willebrand factor precursor (vWF 579

tcay0018.a.17 BX307636 tcay0009b.k.21_3.1.s.om.8 ZNF16 HUMAN (P17020) Zinc finger protein 16 (Zinc finger protein KOX9) 311 Omy.6191

tcbk0009.g.08 BX875276 tcbk0009c.g.08_5.1.s.om.8 ZNF261 MOUSE (Q9JLM4) Zinc finger protein 261 (DXHXS6673E protein) 254 Omy.2759

Genes subsequently studied by real time PCR are bolded. For each gene, clone name, GenBank accession number, official human symbol and corresponding UniGene cluster are indicated. The Sigenae 
contig name [60] used for Blast comparison against the Swiss-Prot database is shown. Resulting best hit and corresponding score are indicated.
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Table 4: Ontologies of the genes exhibiting differential mRNA abundance in eggs of varying quality identified from the microarray analysis.

Symbol Biological Process (P) Cellular component (C) Molecular Function (F)

AGM1 glucosamine metabolism phosphoacetylglucosamine mutase activity
APOB circulation

lipid transport
signal transduction

extracellular region
endoplasmic reticulum

microsome

lipid transport activity
receptor binding

BMP7 BMP signalling pathway
cell development

organ morphogenesis
mesoderm formation
pattern specification

positive regulation of cell differentiation

Extracellular space cytokine activity
protein binding

CUL5 cell cycle arrest
cell proliferation

G1/S transition of mitotic cell cycle
induction of apoptosis by intracellular signals

negative regulation of cell proliferation
regulation of progression through cell cycle

calcium channel activity
protein binding

receptor activity

DCPS mRNA catabolism pyrophosphatase activity
FGD5 cytoskeleton organization and biogenesis

regulation of cell shape
cytoplasm

Golgi apparatus
protein binding

small GTPase binding
GMCL1 nuclear membrane organization and biogenesis

regulation of transcription
spermatogenesis

nuclear lamina
nuclear matrix

protein binding

GTF2B mRNA transcription from RNA polymerase II promoter
transcription initiation from RNA polymerase II promoter

transcription factor complex general RNA polymerase II transcription factor activity
protein binding

RNA polymerase II transcription factor activity
HCFC1 positive regulation of progression through cell cycle

regulation of transcription
transcription from RNA polymerase II promoter

cytoplasm
nucleus

identical protein binding
transcription coactivator activity

transcription factor activity
KHK carbohydrate catabolism ketohexokinase activity
KIF4A organelle organization and biogenesis

anterograde axon cargo transport
cytoplasm

spindle microtubules
microtubule motor activity

LAMB2 synaptic transmission
electron transport

basal lamina
membrane

calcium ion binding
oxidoreductase activity

phospholipase A2 activity
structural molecule activity

MCF2L Rho protein signal transduction membrane
lamellipodium

phosphatidylinositol binding
Rho guanyl-nucleotide exchange factor activity

NEK1 response to DNA damage stimulus
response to ionizing radiation

cytoplasm
nucleus

protein binding
protein kinase activity

PDCL3 phototransduction cytoplasm protein binding
PDGFRA cell proliferation

extracellular matrix organization and biogenesis
male genitalia development

morphogenesis

integral to plasma membrane platelet-derived growth factor binding
protein dimerization activity

protein serine/threonine kinase activity

PHB2 signal transduction
negative regulation of transcription

mitochondrial inner membrane
nucleus

estrogen receptor binding
protein binding

specific transcriptional repressor activity
RAB3IP cytoplasm

nucleus
protein Binding
GTPase binding

TGFBR2 regulation of cell proliferation
Cell fate commitment

protein amino acid phosphorylation
protein amino acid dephosphorylation

integral to membrane ATP binding
protein binding

protein tyrosine kinase activity

TLE1 signal transduction
regulation of transcription, DnA-dependent

organ morphogenesis

nucleus

VWF cell adhesion
response to wounding

extracellular space protease binding
protein binding
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eggs of the HI group than in eggs of the PM group (Figure
4). This clone included a full CDS and the deduced amino
acid sequence exhibited very strong (above 95%)
sequence identity with cognate fish proteins (Figure 5C).

For 5 genes (HRNPK, RBM5, DAB2, PGH2 and SEC22,
Table 1) similar expression profiles were observed in real-
time PCR and microarray analyses. However, no statistical
differences between groups were observed in the real-time
PCR experiment (Figure 4).

For 3 genes (PKP1, DBNL and LYPA3, Table 1) the consist-
ency between real-time PCR and microarray data was lim-
ited to 2 of the 3 experimental groups. In addition, no
statistical differences between groups were observed in the
real-time PCR analysis (Figure 4).

For the 2 remaining clones (BX082249 and CA388269,
Table 1), no correlation was observed between real-time
PCR and microarray data (data not shown).

Genes exhibiting a quality-dependent mRNA abundance in the eggs
Among the 31 genes identified as linked to egg quality, 15
were analyzed by real-time PCR. Among those 15 genes,
the mRNA abundance of 1 gene was found to be signifi-
cantly correlated with egg quality. This clone (PHB2)
exhibited significant sequence similarity with rat prohibi-
tin 2 (Table 3). Its mRNA abundance in the eggs was neg-
atively correlated (R = -0.47, p < 0.05) with the percentage
normal alevins at yolk-sac resorption. In addition the
mRNA abundance of this gene was significantly higher in
eggs exhibiting the lowest developmental potential (Fig-
ure 6). An amino acid sequence was generated from nucle-
otide sequences of Omy.9050 UniGene cluster. This
deduced amino acid sequence exhibited 83% identity
with zebrafish sequence and 76% identity with human
and rat sequences (Figure 6).

Supervised average linkage clustering analysis of 31 genes sig-nificantly linked to egg qualityFigure 3
Supervised average linkage clustering analysis of 31 genes sig-
nificantly linked to egg quality. Each row represents a gene 
and each column represents an egg RNA sample. The 31 
samples are supervised according to the percentage of nor-
mal alevins at yolk-sac resorption. For each gene, the expres-
sion level within the sample set is indicated using a color 
intensity scale. Red and green are used for over and under 
abundance respectively while black is used for median abun-
dance.
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Unsupervised average linkage clustering analysis of the 26 dif-ferentially abundant genes in eggs collected after photope-riod-manipulated ovulation (PM), hormonally-induced ovulation (HI) and natural ovulation (N)Figure 2
Unsupervised average linkage clustering analysis of the 26 dif-
ferentially abundant genes in eggs collected after photope-
riod-manipulated ovulation (PM), hormonally-induced 
ovulation (HI) and natural ovulation (N). Each row repre-
sents a gene and each column represents an egg RNA sam-
ple. For each gene, the expression level within the sample set 
is indicated using a color intensity scale. Red and green are 
used for over and under abundance respectively while black 
is used for median abundance.
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Discussion
Microarray analysis efficiency and reliability
The hybridization of radiolabeled cDNAs with cDNAs
deposited onto nylon membranes has been used for sev-
eral decades. However, the use of nylon cDNA microar-
rays is not very common in comparison to glass slide
microarrays. Nevertheless, this technology has success-
fully been used for several years [21]. In our laboratory,
we have successfully used this technology to identify dif-
ferentially expressed genes during oocyte maturation and
ovulation [18]. In the present study, we have used the
same methodology and have identified a group of 26
genes exhibiting differential egg mRNA abundance after
natural controlled ovulation with a false discovery rate of
3.4%. Using real-time PCR, the egg mRNA abundance of
17 genes was analyzed. Among those 17 genes, only 2
exhibited expression patterns totally inconsistent with
microarray data. In contrast, the expression patterns of the
other genes were very similar to microarray data, even
though observed differences were not always significant.

It is noteworthy that the 2 genes exhibiting inconsistent
expression patterns between PCR and microarray experi-
ments correspond to uncharacterized proteins. Indeed,
one of the genes (CA388269) had no significant hit in the
Swiss-Prot database while the other one (BX082249) had
a significant hit with a hypothetical yeast protein (Table
1). To conclude, the overall consistency of PCR and
microarray data suggests that the microarray analysis per-
formed in the present study is robust and reliable.

Genes exhibiting a differential mRNA abundance after 
natural or controlled ovulation
Hormonal induction of ovulation
Among identified genes, APOC1 and HCK were the most
affected by a hormonal-induction of ovulation. Thus, the
egg mRNA abundance of those 2 genes was dramatically
increased after hormonal induction of ovulation in com-
parison to natural ovulation (Figure 4). Human APOCs
are protein constituents of chylomicrons, very low density
lipoproteins, and high-density lipoproteins [22]. The

Table 5: Real-time PCR primer sequences. For each target gene, official symbol of the human protein, GenBank accession number of 
the clone and clone name are indicated

Reverse sequence Foward sequence Symbol GenBank Clones

ACTTCCTCCTCCTCCACGTT CCAGCTCATGTACCCGTTCT CA388269 1RT159P21_B_H11
CTGGGTTCAGGAAGTGTGGT TCGCTGGAGGAGTAGGAGAG AGM1 CA378261 1RT42N11_B_G06
GCTGTCCCCAATCTTTTCAA GGCTGAGAAGACCATTGAGG APOC1 CA353171 1RT65F10_D_C05
GTGTCTGGACCGTCTGACCT CCTGCACAAGTACGTGGAGA BMP7 BX301016 tcay0008.m.21
GCAGTGGTAGTGGGTCACCT CTTCCGCCGTTATGATCTGT CASZ1 BX873334 tcbk0001.p.13
GATCAGTAGCCAACCCAGGA GCAGTGCCAGGATGAACTTT CF188 BX300279 tcay0007.f.20
CAACTTGCGTACGATGCTGT AGGCCTACATTGTGGAGTGG CUL5 BX867113 tcba0030.i.17
GGAAAGCTGGTTGCTTGCTG CTTCAAACTCTGCGCCGGCACA cyclinA2 BX080925 tcab0003.e.11
GAGCTGCTATGGGAGAGGTG CTAAGGCTGGACGAGGTCTG DAB2 CA351228 1RT56O04_C_H02
TCCCCTCGTAGGTGAACAAG CAAGTGTTTGAGCGAACGAA DBNL CA358202 1RT64F24_D_C12
TCTCCAACAGGGTGTCTTCC ACGGAAAGTTGAACGACCAG DCPS CA343059 1RT63D22_D_B11
TGGTCTTTCTCCAGGGTGAG CCTCGGAGGCATCTAGCATA GMCL1 CA350285 1RT147H01_B_D01
GTGCAAATTTTTGGGGAAGA CCCGAGATAAGGACTGATGG HCFC1 BX299916 tcay0006.d.12

GACAAATGATGACAGTGGCCTA TGCGATGTGATGTGACATTTT HCK CA34327 1RT68D18_D_B09
CAGACTTGCCACTGACCAGA CAGCATCATTGGTGTGAAGG HNRPK BX319623 tcay0037.m.11
CCGTGGTCACATTGCTTATG GGCATGTTGCAGACTTCGTA KHK BX302686 tcay0009.k.03
GTTCCCATACGCACATTCCT TCCCAGCCATCTTCAAAGTC LYPA3 CA362639 1RT121G15_A_D08
TCGACTCGTACGTCAACTGG GCTCTCCAACTCTTCGGATG MCF2L BX885788 tcbk0030.p.11
CTGTGGTCCCAGTGTTTGTG GCAGACCCACAGACAGTTCA MR-1 BX875550 tcbk0023.o.24
CATGGCCAGGATACCATTCT TTCATCGAACTGACGCTACG MYO1B CA383630 1RT131K20_C_F10
AACTAGGTGGCAGGTGGTTG GAGAGTTTGCAGCCACAACA NTAN1 BX866389 tcba0025.n.15
TCCTGGATGTGGAAGGAGTC AAGCTGAAGTTCGACCCAGA PGH2 BX886190 tcbk0050.a.20
TCGTCCAGGATGATGTTGAA GTTCAATGCCTCACAGCTCA PHB2 BX310740 tcay0023.m.15
CAGCAGGGGAGAGATTTCAG CCAGCCAGAGAGAAGACACC PKP1 BX880138 tcbk0055.m.20
GAAGGGGATGTTGGTCTTGA GCATTCCAAGGAGCAGTCAT PYC BX313624 tcay0027.b.13
CTCCGGTGTGCCCTAATAAA GCTGGGCTTCTACCTCACAG RAB3I BX314382 tcay0029.o.17

ACGGAGGAGGAAGAGGAGAG GGGGCAAGGAGAAGAAAGAC RBM5 CA360456 1RT67N13_B_G07
CAGGCTTCTGGTTCCTCTTG CAAGAAGGGCCAGTCTGAAG RPL24 CA384643 1RT139F11_B_C06
AGCTGTGGTGGAGAAGCAAT GGGGTGGGGGAGATACTAAA SEC22 BX078856 tcad0007.p.12
TCGTGGGAGATGTCGATACA GCCAAAGTCTGCTTCTCCTG TLE3 BX307666 tcay0018.b.11
GAGGAAGGAGGCAGTCACAG GCTCCACTGGAAGACCATGT YG1W BX082249 tcac0001.c.18
GTGCACTCGTAGGGCTTCTC AACACCTCCGAAGTCACACC ZNF16 BX307636 tcay0018.a.17
GAGTCCGAGCACTTGGAAAG AGAGGAGGTGCTGGAGATGA ZNF261 BX875276 tcbk0009.g.08
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Real-time PCR analysis of gene mRNA abundance (mean ± SEM) in unfertilized eggs collected after natural ovulation (n = 4), hormonally-induced ovulation (n = 11) and photoperiod-manipulated ovulation (n = 14)Figure 4
Real-time PCR analysis of gene mRNA abundance (mean ± SEM) in unfertilized eggs collected after natural ovulation (n = 4), 
hormonally-induced ovulation (n = 11) and photoperiod-manipulated ovulation (n = 14). Different letters indicate significant 
differences between groups at p < 0.05. The official human symbol is indicated for all studied genes.
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human APOC1 protein is predominantly expressed in
liver and adipose tissue [23]. APOC1 may modulate the
activity of plasma enzymes involved in lipid metabolism.
Besides, APOC1 has also been reported to interfere with
the APOE-dependent hepatic uptake of lipoprotein rem-
nants by the low density lipoprotein receptor (LDLr) and
LDLr-related protein [24]. Interestingly, it was previously
shown in rainbow trout that the same clone of the APOC1
gene was significantly up-regulated in the ovary at the
time of oocyte maturation [18]. This could be related to
the arrest of lipoproteins uptake by the oocyte at the end
of vitellogenesis concomitantly with a decrease of the
expression of vitellogenin receptor [25]. It is therefore
possible that the hormonal induction of ovulation
induces an artificial over abundance of some hormonally-
dependent genes, such as APOC1, in the eggs. However,
the possible consequences of such an over abundance on
lipid metabolism of the embryo is so far unknown.

Similarly to APOC1, the egg mRNA abundance of HCK
gene was also dramatically increased after hormonal
induction of ovulation. HCK, hemopoietic cell kinase,
belongs to Src-familly tyrosine kinases and is expressed in
cells of myelomonocytic lineage, B lymphocytes, and
embryonic stem cells. It was previously shown that the
conventional progesterone receptor could interact, in a
progestin-dependent manner, with various signaling mol-
ecules, including Src tyrosine kinases [26]. Indeed, these
authors used downregulated HCK as a general model of
the c-Src family tyrosine kinases to investigate the mecha-
nism of activation by conventional progesterone receptor.
In addition, the participation of the conventional proges-
terone receptor in African clawed frog (Xenopus laevis)
oocyte maturation process was seriously suggested by two
independent studies [27,28]. Besides, Src tyrosine kinase
activation has been shown to be one of the earliest tran-
scription-independent responses of Xenopus oocytes to

Amino acid sequence alignment of rainbow trout APOC1 (A), MR-1 (B), and RPL24 (C) with cognate vertebrate formsFigure 5
Amino acid sequence alignment of rainbow trout APOC1 (A), MR-1 (B), and RPL24 (C) with cognate vertebrate forms. For 
each target species, the GenBank accession number of the protein is indicated.
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(A) Amino acid sequence alignment of deduced rainbow trout prohibitin 2 (PHB2) with human, rat and zebrafish formsFigure 6
(A) Amino acid sequence alignment of deduced rainbow trout prohibitin 2 (PHB2) with human, rat and zebrafish forms. For 
each target species, the GenBank accession number of the protein is indicated. (B) Real-time PCR analysis of PHB2 mRNA 
abundance (mean ± SEM) in eggs of low (n = 10), intermediate (n = 9) and high (n = 10) developmental potential estimated by 
the percentage normal alevins at yolk-sac resorption. Different letters indicate significant differences between groups at p < 
0.05.
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progesterone during in vitro induced maturation; a period
when oocyte mRNA content remains stable [29]. Interest-
ingly, we observed a dramatic over abundance of HCK
mRNA in the eggs after hormonal induction of ovulation.
To date, the significance of this over abundance as a result
of hormonally-induced ovulation is unknown. However,
it further demonstrates that the egg mRNA abundance of
specific genes can be dramatically affected by a hormonal
induction of ovulation.

In addition to APOC1 and HCK, eggs obtained after hor-
monal induction of ovulation were also characterized by
higher NTAN1 and lower MR-1 mRNA abundance. How-
ever, the fold difference observed for those 2 genes was
less important. In mice it has been shown that NTAN1
encodes an N-terminal amidohydrolase specific for N-ter-
minal asparagines, which is involved in ubiquitin-protea-
some proteolysis termed as the N-end rule pathway [30].
N-end rule pathway determines metabolic instability of
different proteins that contain a destabilizing N-terminal
residue [31]. More specifically, a recent study suggested
that an over expression of NTAN1 using recombinant
NTAN1 adenovirus vector resulted in a marked decrease
in the microtubule-associated protein 2 (MAP2) expres-
sion in hippocampal neurons in rat [32]. Regardless of the
specific target of NTAN1 in the oocyte, an increased
expression of this enzyme should participate in protein
turnover, and its regulation might be important for the
normal development of the oocyte. The second gene, MR-
1, is a newly identified protein that interacts with contrac-
tile proteins and exists in human myocardial myofibrils
[33].

Finally, the egg mRNA abundance of RPL24 was higher
after hormonal induction of ovulation. However, this dif-
ference was only significant in comparison with the PM
group. The 60S ribosomal protein L24 (RPL24) is one of
the forty seven 60S ribosomal proteins present in eukary-
otic organisms and often used as markers for phylogenetic
studies and comparative genomics. Those ribosomal pro-
teins have been sequenced recently in catfish (Ictalurus
punctarus) and high similarities with mammalian ribos-
omal protein were found [34]. 60S ribosomal subunit
participates in translational initiation in combination
with 40S ribosomal subunit [35]. An insertional mutagen-
esis study carried out in zebrafish (Danio rerio) reported
this gene to be essential for early embryonic development.
Mutation of this gene resulted in small head/eyes mutants
[36]. Interestingly, when monitoring embryonic develop-
ment in the present study, we noticed that many embryos
originating from eggs of hormonally-induced females
exhibited small eyes at eyeing stage. Precise quantification
of this phenomenon would be necessary to stress its rela-
tionship with RPL24 over abundance in the eggs.

Photoperiodic control of ovulation
Four genes exhibited differential egg mRNA abundance
after photoperiod treatment in comparison to natural
ovulation. Similarly to eggs obtained after hormonal
induction of ovulation, eggs of the PM group also exhib-
ited increased levels of APOC1 and HCK. The differential
abundance of both genes was high but less pronounced
than after hormonally-induced ovulation. In addition
eggs obtained after photoperiod manipulation of ovula-
tion were also characterized by higher MYO1B and PYC
mRNA abundance. According to the gene ontology analy-
sis, MYO1B is a cytoskeleton protein involved in nervous
system development (Table 2). It is also expressed in a
wide variety of tissues including rat neonatal tissues
[37,38]. The class I myosin, MYO1B, is a calmodulin- and
actin-associated molecular motor widely expressed in
mammalian tissues [39]. MYO1B can interact on the
dynamic actin filament populations and might play a role
in intracellular membrane trafficking [40]. Myosin light
chain has been recently suggested to participate in anchor-
ing the 26S proteasome, a 26S multiprotein complex that
catalyses the breakdown of polyubiquitylated proteins, to
the actin cytoskeleton of goldfish oocyte [41]. Degrada-
tion of proteins mediated by ubiquitin-proteasome path-
way plays important roles in the regulation of eukaryotic
cell cycle [42] and can be involved in oocyte maturation
and further embryonic cell cleavages.

Pyruvate carboxylase (PYC) is a mitochondrial biotin-
dependent carboxylase. In the adipose tissue and liver
PYC participates in the citrate shuttle by which NADPH
equivalents are transported out of mitochondria to the
cytosol for lipogenesis [43]. Five alternative forms of rat
pyruvate carboxylase cDNAs have been identified in liver,
kidney, brain, and adipose tissue and these are expressed
in a tissue-specific manner [44-46]. In red Seabream
(Pagrus major), PYC mRNA was detected by Northen blot
analysis in heart, liver, muscle and ovary [47]. Interest-
ingly, it was previously shown that a photoperiod manip-
ulation of spawning date was associated with a
significantly higher occurrence of yolk-sac resorption
defects [48]. Together, these observations suggest a puta-
tive link between an abnormal stockpiling of PYC mRNA
in the egg and problems in the processing and/or use of
yolk-sac lipidic stores. Indeed, it was previously reported
that non viable gilthead sea bream eggs have lower pyru-
vate carboxylase activity than viable eggs [49].

Genes exhibited an egg mRNA abundance correlated with 
egg's developmental potential
From microarray data, 30 genes were identified as exhib-
iting an egg mRNA abundance correlated with egg's devel-
opmental potential. However, the false discovery rate was
elevated and those genes were considered as candidate
genes requiring PCR validation. Nevertheless, it is note-
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worthy that the ontological analysis of this group showed
that 5 genes are involved in the regulation of transcription
and others in cell proliferation/development and
cytoskeleton organization and biogenesis. In addition,
the correlation was confirmed for 1 of the 15 genes ana-
lyzed by real-time PCR: prohibitin 2 (PHB2). In animals
and yeast, prohibitins have been shown to play important
roles in cell cycling and senescence. One of prohibitin 2
major role is to be a chaperone-like regulator of the AAA
protease in the mitochondrial matrix that assists in the
assembly of inner membrane complex [50]. In Caenorhab-
ditis elegans, PHB proteins were showed to be essential
during embryonic development and are required for
somatic and germ line differentiation in the larval gonad
[51]. Moreover, deletions of the Saccharomyces cerevisiae
homologues, PHB1 and PHB2, result in a decreased repli-
cative lifespan, and a defect in mitochondrial membrane
potential. The prohibitin protein has been immunolocal-
ized in mammalian oocytes and embryos and suggested
to have an antiproliferative activity [52]. Besides, a higher
immunoreactivity level was found in the nucleus of
embryo that failed to develop normally in comparison to
morphologically normal ones. In the present study, we
observed a higher prohibitin 2 mRNA abundance in eggs
exhibiting the lowest developmental potential. This dif-
ferential abundance in eggs of varying quality suggests
that prohibitin 2 plays a role in the developmental poten-
tial of the embryo. Further studies are needed to unravel
the link between an overabundance of prohibitin 2
mRNA in the eggs and a reduced egg developmental
potential. Thus, this overabundance could be the result of
a reduced prohibitin 2 synthesis during oogenesis.

Conclusion
In the present study we successfully used rainbow trout
cDNA microarrays to analyze egg transcriptome after nat-
ural and controlled ovulation and in relationship with the
developmental potential of the eggs. We showed that the
control of ovulation using either a hormonal induction or
a manipulated photoperiod could induce differences in
the egg mRNA abundance of specific genes.

In addition, we showed that the egg mRNA abundance of
prohibitin 2 (PHB2) was negatively correlated with the
developmental potential of the egg.

Furthermore, the identity and ontology of identified genes
provided significant hints that could result in a better
understanding of the mechanisms associated with each
type of ovulation control (e.g hormonal, photoperiodic)
or conserved mechanisms triggering a loss of egg develop-
mental potential.

Methods
Animals
Investigations were conducted according to the guiding
principles for the use and care of laboratory animals and
in compliance with French and European regulations on
animal welfare. Three groups of male and female rainbow
trout (Oncorhynchus mykiss) were obtained from our
experimental fish farm (Sizun, France) and maintained
until reproductive season under natural photoperiod and
water temperature conditions. A first set of egg samples
was collected from females undergoing natural (N) ovula-
tion. Four weeks before expected ovulation fish (25
females) were transferred in a controlled recirculated
water system (12°C) under natural photoperiod in INRA
experimental facilities (Rennes, France). A second set of
egg samples was collected from females subjected to a
hormonal induction (HI) of ovulation. Four weeks before
expected ovulation fish were transferred in a controlled
recirculated water system (12°C) under natural photope-
riod in INRA experimental facilities (Rennes, France).
Females (n = 33) were given a 250 µL.Kg-1 body weight
(b.w) intraperitoneal injection of [Des-Gly10, DArg6, Pro-
NHEt9]-GnRH analog (Bachem, Allemagne) at 60 µg.Kg-1

b.w. A third set of egg samples was collected from females
subjected to a photoperiod manipulation (PM) of ovula-
tion. After a first reproduction, fish (17 females) were iso-
lated in light-proofed tanks and exposed to an artificial
photoperiod. Beginning on January 15th, all fish were held
under constant light (24L:0D) for 490°C.day. Then,
beginning on March 27th, they were held under short pho-
toperiod (8L:16D) until ovulation (1230°C.day). Light
was supplied by 4 neon tubes (58 Watts).

Gamete collection
In order to avoid excessive post-ovulatory ageing, unferti-
lized eggs were collected by manual stripping 5 days after
detected ovulation. Two batches of 5 mL of eggs (approx-
imately 100 to 200 eggs per batch) were used for fertiliza-
tion. At each egg collection day, fresh sperm samples were
collected from 10 mature males originating from the same
group in order to fertilize eggs with a pool of sperms.
Sperm samples were obtained by manual pressure on the
abdomen and kept at 4°C for a short time before use.

Fertilization and early development
Fertilization was performed under previously described
standardized conditions [16]. The two batches of 5 mL of
eggs were fertilized with 5 µl of pooled semen. Fertilized
eggs were transferred into compartmentalized incubation
trays supplied by recirculated water (10°C). Water tem-
perature and chemistry were routinely monitored and
maintained constant over the entire incubation period.
Dead eggs and embryos were periodically removed and
survival rates were estimated as percentages of the initial
number of eggs used for fertilization. Survival at the com-
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pletion of yolk sac resorption (YSR, 550°C.day) was mon-
itored. The occurrence of noticeable morphological
malformations at YSR was also monitored. Survival and
malformation data were used to calculate the proportion
of normal alevins at YSR expressed as a percentage of the
initial number of eggs.

RNA extraction
Extractions were performed as previously described [53]
with minor modifications. Total RNA was extracted from
20 unfertilized eggs using 9 mL of TRizol (Invitrogen) in
13 mL sterile polypropylene tubes. Because of high egg
vitellogenic content, each RNA was subsequently repuri-
fied using a Nucleospin RNA 2 kit (Macherey Nagel) in
order to obtain genomic-grade RNA quality. For each egg
sample, three RNA extracts were obtained, pooled and
precipitated with sodium acetate (3 M, pH5.2, Prolabo) to
increase RNA concentration. Thus, any RNA sample used
for transcriptomic analysis originated from 60 unferti-
lized eggs of an individual female.

cDNA microarrays
Nylon micro-arrays (7.6 × 2.6 cm) were obtained from
INRA-GADIE (Jouy-en-Josas, France) resource center [54].
A set of 9152 distinct rainbow trout cDNA clones originat-
ing from 2 pooled-tissues library [55,56] were spotted in
duplicates after PCR amplification. PCR products were
spotted onto Hybond N+ membranes as previously
described [57]. This rainbow trout generic array was
deposited in Gene Expression Omnibus (GEO) database
(Platform# GPL3650) [58].

Microarray hybridization
Four RNA samples originating from naturally ovulating
females, 11 RNA samples originating from hormonally-
induced females and 14 RNA samples originating from
photoperiod-manipulated females were used for microar-
ray hybridization according to the following procedure.
Hybridizations were carried out as previously described
[21], with minor modifications, at INRA genomic facility
(Rennes). A first hybridization was performed using a
33P-labelled oligonucleotide (TAATACGACTCACTAT-
AGGG which is present at the extremity of each PCR prod-
uct) to monitor the amount of cDNA in each spot. After
stripping (3 hours 68°c, 0.1× SSC, 0.2% SDS), arrays were
prehybridized for 1 h at 65°C in hybridization solution
(5× Denhardt's, 5× SSC, 0.5% SDS). Complex probes were
prepared from 3 µg of RNA by simultaneous reverse tran-
scription and labelling for 1 hour at 42°C in the presence
of 50 µCi [alpha-33P] dCTP, 5 µM dCTP, 0.8 mM each
dATP, dTTP, dGTP and 200 units M-MLV SuperScript
RNase H-reverse transcriptase (GIBCO BRL) in 30 µL final
volume. RNA was degraded by treatment at 68°C for 30
min with 1 µl 10% SDS, 1 µl 0.5 M EDTA and 3 µl 3 M
NaOH, and then equilibrated at room temperature for 15

min. Neutralization was done by adding 10 µl 1 M Tris-
HCl plus 3 µl 2N HCl. Arrays were incubated with the cor-
responding denatured labeled cDNAs for 18 h at 65°C in
hybridization solution. After 3 washes (1 hours 68°C,
0.1× SSC 0.2% SDS), arrays were exposed 65 hours to
phosphor-imaging plates before scanning using a FUJI
BAS 5000. Signal intensities were quantified using
ArrayGauge software (FujifilmMedical Systems, Stanford,
CT) and deposited in GEO database (Series# GSE5928)
[58].

Microarray signal processing
Spots with low oligonucleotide signal (lower than three
times the background level) were excluded from the anal-
ysis. After this filtering step, signal processing was per-
formed using the vector oligonucleotide data to correct
each spot signal by the actual amount of DNA present in
each spot. After correction, signal was normalized by
dividing each gene expression value by the median value
of the array.

Microarray data analysis
Statistical analysis was performed using Significance Anal-
ysis of Microarray (SAM) software [59]. For each compar-
ison, the lowest false discovery rate (FDR) was used to
identify differentially abundant genes. A first analysis was
performed in order to identify differentially abundant
transcripts between N group and the two other experi-
mental groups (HI and PM). A second analysis was per-
formed in order to identify differentially abundant
transcripts in relation with egg quality, estimated by per-
centage of normal alevins at YSR within the complete data
set or inside each experimental group (HI and PM).

Identity of mircroarray cDNA clones
Rainbow trout sequences originating from INRA AGENAE
[55] and USDA [56] EST sequencing programs were used
to generate publicly available contigs [60]. The 8th ver-
sion (Om.8, released January 2006) was used for BlastX
[61] comparison against the Swiss-Prot database (January
2006) [62]. The score of each alignment was retrieved
after performing BlastX comparison. This was performed
automatically for each EST spotted onto the membrane
and used to annotate the 9152 clones of the microarray.

Data mining
For all the clones identified as differentially abundant
after a SAM analysis (Table 1, 3) the official human gene
symbol was retrieved [63] and used in the text, figures and
tables for clarity reasons. In addition, the accession
number of the corresponding rainbow trout cluster (Uni-
Gene Trout, January 2006), if any, was retrieved from the
UniGene database [64]. For all genes identified as differ-
entially abundant in the transcriptomic analysis, ontolo-
gies were obtained using the AmiGO tool [65]. Finally, for
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the differentially abundant genes identified in the real-
time PCR analysis, a BlastX search was performed against
the GenBank NR database. When possible, this was done
using the contig sequence generated from all the ESTs
present in the corresponding UniGene cluster. Subse-
quently, the amino acid sequence deduced from the trout
contig sequence was aligned with cognate vertebrate
forms.

Real-time PCR analysis
Real-time PCR was performed using all RNA samples used
for microarray analysis (N = 29). Reverse transcription
and real time PCR were performed as previously described
[66]. Briefly, 2 µg of total RNA were reverse transcribed
using 200 units of Moloney murine Leukemia virus
(MMLV) reverse transcriptase (Promega, Madison, WI)
and 0.5 µg dT15 Oligonucleotide (Promega) per µg of
total RNA according to manufacturer's instruction. RNA
and dNTPs were denatured for 6 min at 70°C; then chilled
on ice for 5 min before the reverse transcription master
mix was added. Reverse transcription was performed at
37°C for 1 hour and 15 min followed by a 15 min incu-
bation step at 70°C. Control reactions were run without
MMLV reverse transcriptase and used as negative controls
in the real-time PCR study. Real-time PCR experiments
were conducted using an I-Cycler IQ (Biorad, Hercules,
CA). Reverse transcription products were diluted to 1/25,
and 5 µl were used for each real-time PCR reaction. Trip-
licates were run for each RT product. Real-time PCR was
performed using a real-time PCR kit provided with a SYBR
Green fluorophore (Eurogentec, Belgium) according to
the manufacturer's instructions and using 600 nM of each
primer. After a 2 min incubation step at 50°C and a 10
min incubation step at 95°C, the amplification was per-
formed using the following cycle: 95°C, 20 sec; 60°C, 1
min, 40 times. The relative abundance of target cDNA
within sample set was calculated from a serially diluted
oocyte cDNA pool using the I-Cycler IQ software. After
amplification, a fusion curve was obtained using the fol-
lowing protocol: 10 sec holding followed by a 0.5°C
increase, repeated 80 times and starting at 55°C. The level
of CyclinA2 RNAs was monitored using the same sample
set to allow normalization. Cyclin A2 was used for nor-
malization because its mRNA abundance was shown to be
elevated and highly stable in rainbow trout eggs collected
5 days after ovulation ([16]). Statistical analyses were per-
formed using Statistica 7.0 software (Statsoft, Tulsa, OK).
Differences between groups were analyzed using non par-
ametric U tests.
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