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Abstract
Background: Because the gene expression patterns of nonobese hepatic steatosis in affected patients
remain unclear, we sought to explore these patterns using an animal model of nonobese hepatic steatosis.

Methods: We developed mice that conditionally express the hepatitis C virus (HCV) core protein
regulated by the tetracycline transactivator (tTA). Microarray analyses and reverse-transcription
polymerase chain reaction were performed using liver samples of both the double transgenic mice (DTM),
which express both the HCV core and tTA, and single transgenic mice (STM), which express tTA alone,
at 2 months of age. Functional categories of genes with altered expression were classified using gene
ontology programs. Serum glucose, lipid levels, and systemic blood pressure were also measured.

Results: Approximately 20–30% of hepatocytes from the DTM were steatotic. No significant differences
were observed in the serum glucose, lipid content, or blood pressure levels between the DTM and STM.
Gene expression analyses revealed Sterol-regulatory element-binding protein (SREBP) pathway activation
and dysregulation of the following genes involved in lipid metabolism: 3-hydroxy-3-methylglutaryl-
coenzyme A synthase 1, Apolipoprotein AII, Apolipoprotein CI, acyl-CoA thioesterase I, and fatty acid
binding protein 1; in mitochondrial function: solute carrier family 25 member 25 and cytochrome c oxidase
subunit II; in immune reaction: complement component 3, lymphocyte antigen 6 complex, locus A,
lymphocyte antigen 6 complex, locus C, lymphocyte antigen 6 complex, locus D, and lymphocyte antigen
6 complex, locus E.

Conclusion: Some genes of lipid metabolism, mitochondrial function, and immune reaction and the
SREBP pathway are involved in HCV core-related, nonobese, modest hepatic steatosis.
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Background
Nonalcoholic fatty liver disease (NAFLD) can be a severe,
progressive liver disease leading to the development of cir-
rhosis [1]. Obesity and type 2 diabetes are well-known
risk factors for the development of NAFLD. However,
NAFLD is not rare in nonobese adults. The result of exam-
ining over 700 nonobese individuals older than 30 years
with NAFLD who participated in medical examinations
shows that NAFLD can be considered an early predictor of
metabolic disorders for the normal-weight population
[2]. Nevertheless, the basis for nonobese hepatic steatosis
remains uncertain, particularly for those who lack any
metabolic syndromes. Several experimental animal mod-
els for nonobese NAFLD have been proposed. Among
them, cholesterol-fed rabbits share several physiopatho-
logical features of NAFLD, like hyperlipidemia, but are
devoid of insulin resistance or obesity [3]; while overex-
pression of SREBP-1a in spontaneously hypertensive rat
models were nonobese animals with hypertension,
hepatic steatosis, and the metabolic syndrome [4]. All the
above models are associated with metabolic syndrome in
various degrees. Whether the basis of the "uncompli-
cated" nonobese hepatic steatosis is similar to hepatic
steatosis complicated by obesity and/or metabolic syn-
drome remains unresolved. Hepatic steatosis is present in
almost 50% of patients infected by hepatitis C virus
(HCV), which therefore suggests it is an important con-
tributor to NAFLD [5]. We aimed to study the gene expres-
sion involved in lipid metabolism of an animal model of
nonobese hepatic steatosis free from metabolic syndrome
based on the conditional HCV core transgenic mice devel-
oped from our previous work. Liver from the 2 month old
conditional HCV core transgenic mice on chow without
doxycycline (dox) showed that the severity of hepatic stea-
tosis correlated with HCV core expression, peaked at the
age of 2 months but diminished gradually [6].

Results
Fatty liver evaluation
For the double transgenic mice (DTM), which express
both the HCV core and tetracycline transactivator (tTA),
oil red stain documented the existence of hepatic lipid
vesicles that were compatible with HCV core protein in
the parallel sections (Figure 1B and 1D). The severity of
hepatic steatosis correlated with HCV core expression, and
peaked at the age of 2 months, when the hepatic steatosis
was microvesicular (Figure 2A and 2B, arrows). As the
mouse aged, the microvesicular steatosis was replaced by
macrovesicular steatosis (in a lesser degree, Figure 2C,
arrows) and dimished gradually (Figure 2D). The propor-
tions of steatotic hepatocytes were approximately 20–
30% in the liver of 2 month old mice on chow without
dox, which were examined under low power field for H
and E stain (Figure 2A).

Serum glucose, lipid, insulin and homeostatic model 
assessment for insulin resistance (HOMA-IR) evaluation
No significant differences in the serum glucose, lipid,
insulin, or HOMA-IR levels between the DTM and single
transgenic mice (STM), which express tTA alone, were
noted. No definitive abnormal levels were found in any of
the mice.

Systemic blood pressure (SBP) measurement
There was no significant difference in the SBP level
between the DTM and STM. No definitive abnormal levels
were found in any of the mice.

Microarray analyses
A total of 20871 genes were evaluated. Of these, 97%
remained after filtering for missing data and/or low
expression levels. Significance Analysis of Microarrays
(SAM) revealed no sex bias in gene expression from the
microarray data. For all of the 6 pairs, there were 28 genes
that had M values (ie, log 2 Cy5/Cy3) ≥ 1, and 26 genes
that had M values ≤ -1. Among the 28 up-regulated genes,
those involved in lipid metabolism were as follows: serum
amyloid A1 (Saa1), serum amyloid 3 (Saa3), 7-dehydroc-
holesterol reductase (Dhcr7) and 3-hydroxy-3-methylglu-
taryl-coenzyme A synthase 1 (HMGCS1). Among the 26
down-regulated genes, those involved in lipid metabo-
lism were as follows: apolipprotein CI (Apo CI), apolipo-
protein AII (Apo AII), Fatty acid binding protein 1, liver
(FABP1), acyl-CoA thioesterase I (Acot1)and apolipopro-
tein E (Apo E) [see Additional file 1]. Gene functional
analysis for the microarray data showed that only the
acute-phase response had a significant P value and false
discovery rate (FDR) (Table 1).

Quantitative real-time polymerase chain reaction (Q-RT-
PCR)
Our Q-RT-PCR data were regarded as significant at M (ie,
log2 Experiment/control for Q-RT-PCR) ≥ 0.6 or ≤ -0.6.
For the four up-regulated genes involved in lipid metabo-
lism, Q-RT-PCR of all the 6 pairs showed only HMGCS1
had M value higher than 0.6; for the five down-regulated
genes involved in lipid metabolism, Apo CI, Apo AII, Acot1
and FABPl showed M values less than -0.6. The mean and
standard deviation of M values of Q-RT-PCR for the vari-
ous genes are listed in Table 2.

Pathway classification
ArrayXPath identified 5 out of 79 input elements in 9 out
of 277 BioCarta pathways. The pathways are shown in
Table 3. Among the 9 pathways, 7 pathways showed sig-
nificance with both P-values and Q-values less than 0.05.
The Sterol-regulatory element-binding protein (SREBP)
pathway composed of SREBF1, SREBF2, MBPTS1, SCAP,
LDLR and HMGCS1 is involved in lipid metabolism.
HMGCS1 activation was identified in the current study.
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Immunostaining of HCV core protein in STM (A, 20×) and DTM (B, 20×) livers fixed in 4% PFA, and the corresponding Oil Red O stain for fat in the livers of the frozen section (C, 20×; D, 20×)Figure 1
Immunostaining of HCV core protein in STM (A, 20×) and DTM (B, 20×) livers fixed in 4% PFA, and the corre-
sponding Oil Red O stain for fat in the livers of the frozen section (C, 20×; D, 20×). The livers were from the mice 
at the age of 2 months old.

Table 1: Gene functional analysis for selected genes from microarray analyses

Category Genes in Category Genes in 
category (%)

Genes in list in 
category

Genes in list in 
category (%)

P-value† FDR_P‡

Biological Process
GO:6953: acute-phase 
response

19 0.189 3 17.65 0.0000 <.0001

GO:50896: response to 
stimulus

1910 19.01 8 47.06 0.0080 0.0637

Molecular Function
GO:5215: transporter 
activity

1163 9.927 5 33.33 0.0123 0.1353

†Student's t-test.
‡Adjusted P-value for Benjamini and Hochberg method FDR.
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H and E stain of DTM livers at 2 months (A, 20×; B, 40×); 4 months (C, 40×); and 6 mo of age (D, 40×)Figure 2
H and E stain of DTM livers at 2 months (A, 20×; B, 40×); 4 months (C, 40×); and 6 mo of age (D, 40×). The whit-
ish areas (fatty area) intermixed with reddish areas was observed in the low power field (A). The characteristic microvesicular 
steatosis is denoted by arrows under high power field (B).

Table 2: List of the mean and standard deviation of M values for Q-RT-PCR for genes involved in lipid metabolism.

Gene name Saa1 Saa3 HMGCS1 Dhcr7 ApoE ApoCI ApoAII FABP1 Acot1

Mean +/- 
SD

0.35 +/- 
0.67

0.67 +/- 
1.13

2.58 +/- 
1.01

0.78 +/- 
1.52

0.02 +/- 
0.49

-2.05 +/- 
1.12

-1.98 +/- 
0.58

-1.77 +/- 
0.62

-2.12 +/- 
1.20
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Discussion
We developed an animal model of nonobese hepatic stea-
tosis based on mice conditionally expressing the HCV
core protein. Doxycycline (Dox) chow, which contained
an analog of tetracycline, was used to regulate the trans-
gene expression. Dox is regarded as a steatogenic drug by
means of inhibiting mitochondrial fatty acid beta-oxida-
tion [7]. To avoid the bias of drug-related hepatic steato-
sis, we prescribed both the DTM and STM with the same
course of Dox administration. We also ensured that the
hepatic steatosis was due to expression of the HCV core
transgene by comparing the liver biopsies from the DTM
and STM. The former did show significant hepatic steato-
sis compared to the latter.

HCV core protein is known to play crucial roles in host
cell lipid metabolism both in vitro and in vivo [8-13]. Gene
expression profiles have been reported after HCV core
expression in primary hepatocytes [14], hepatoma cell
lines, [15] and yeast cells [16]. However, the data
obtained for hepatic steatosis in vitro might not mirror
that obtained in vivo. The expression of HCV core leads to
progressive hepatic steatosis in several lines of constitutive
transgenic mice [17]. Hepatocellular carcinoma (HCC)
also results in some of these older mice due to oxidative
stress [18]. Thus, in those constitutive transgenic mice,
hepatic steatosis is a relay of HCC and may be the sequel
of carcinogenic gene expression. In the current model,
HCV core expression was robust and paralleled the degree
of hepatic steatosis. Both core expression and hepatic stea-
tosis peaked at 2 months but diminished gradually after-
ward. We did not find HCC in these mice, regardless of
their age, partly due to HCV core-related, augmented
hepatocellular apoptosis [6]. Therefore, because we estab-
lished the exact timing of peak hepatic steatosis emer-
gence (2 months) and these mice did not develop HCC,
we propose that this is a valid model to study the basis of
hepatic steatosis without bias. None of the transgenic
mice showed definitively abnormal serum glucose, lipid,
insulin, or HOMA-IR levels, and the blood pressure
remained normal. The gene expression profiles of nondi-

abetic and diabetic ob/ob mice reported by Lan et al. sug-
gest that increased hepatic lipogenic capacity protects the
ob/ob mice from the development of type 2 diabetes [19].
Cumulatively, these observations indicate a lack of meta-
bolic syndrome in these conditional HCV core mice that
may have resulted from an only modest level of steatosis,
which protects these mice from diabetes but is not suffi-
ciently vigorous to cause metabolic syndrome.

Gene functional analysis of the microarray data showed
that only the genes for an acute-phase response had signif-
icant P values and FDR (Table 1). These results are com-
patible with the observation that HCV core expression
leads to augmented oxidative stress and hepatocellular
apoptosis, but not subsequent hepatic inflammation and
fibrosis in DTM [6]. However, several genes involved in
mitochondrial function (Slc25a25 and COX2), the
immune reaction (C3, Ly6a, Ly6c, Ly6d, and Ly6e), coagu-
lation (Fgb), the cell cycle (G0s2), cell differentiation
(Onecut1 and Gadd45g), cell proliferation (Ifitm3), apop-
tosis (Bbc3), angiogenesis (Anxa2), and cytochrome P450
function (Cyp4a14) were also regulated in the livers of
DTM (see Additional file 1). At the basis of gene expres-
sion, the data did not conclusively explain why those mice
did not develop HCC. For example, the downregulation
of Onecut1 and upregulation of Ifitm3 might inhibit cell
proliferation [20,21], whereas the downregulation of
GADD45G might enhance tumor cell growth [22]. Several
attempts were performed to approach the gene expression
for human NAFLD. A study on microarray analyses
including 62 human liver samples showed that mitochon-
drial alterations play a major role in the development of
steatosis per se and the activation of inflammatory path-
ways is present at a very early stage of steatosis, even if no
morphological sign of inflammation is observed [23]. In
addition, the analyses of global hepatic gene expression in
histologically progressive nonalcoholic steatohepatitis
revealed down-regulated genes for maintaining mito-
chondrial function and up-regulated genes of C3 and
hepatocyte-derived fibrinogen-related protein [24]. There-
fore, mitochondrial function alteration and C3-impli-

Table 3: Activated pathway identified from ArrayXpath website.

pathway Identified node p-value q-value

Classical Complement Pathway 2/11 (60) 0.0007 0.0036
Complement Pathway 2/16 (30) 0.0015 0.0038
SREBP control of lipid synthesis 1/6 (27) 0.0236 0.0319
Alternative Complement Pathway 1/8 (43) 0.0314 0.0319
Fibrinolysis Pathway 1/11 (14) 0.0430 0.0319
Double Stranded RNA Induced Gene Expression 1/10 (14) 0.0391 0.0319
Extrinsic Prothrombin Activation Pathway 1/13 (24) 0.0506 0.0329
Lectin Induced Complement Pathway 1/10 (52) 0.0391 0.0339
Intrinsic Prothrombin Activation Pathway 1/23 (36) 0.0881 0.051

Identified node: matched nodes/unique nodes in pathway (redundant nodes in pathway).
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cated immune reaction/inflammation (complementary
pathway activation is documented in Table 3) are likely to
contribute at least partly to the hepatic steatosis in the cur-
rent transgenic mice based on human NAFLD gene expres-
sion studies. Cyp4a enzymes were identified as initiators
of oxidative stress in the liver of mice fed a methionine-
and choline-deficient (MCD) diet, while the role of
Cyp4a14 in hepatic steatosis demands further clarifica-
tion [25].

We focused our analysis of the microarray data, Q-RT-
PCR, and the gene nodal classifications on lipid metabo-
lism. The livers of DTM showed one up-regulated gene,
HMGCS1; four down-regulated genes, Apo CI, Apo AII,
Acot1, and FABPl; and one activated pathway, SREBP-
mediated control of lipid synthesis. HCV core expression
decreased hepatic lipoprotein secretion and caused steato-
sis as shown using a line of constitutive HCV core trans-
genic mice [26]. By transfecting cell lines with HCV core
plasmids, Barba et al. showed the colocalization of HCV
core protein and Apo AII [8]. The direct binding of HCV
core with Apo AII was also documented [27]. Moreover,
hepatic human Apo AII expression in HCV core protein/
Apo AII-/- transgenic mice diminished intrahepatic core
protein accumulation, whereas the converse scenario is
highly possible, although uncertain, based on our result
[13]. Little data directly address the relationships between
HCV core-related steatosis and Apo CI. The infectivity of
HCV pseudotyped retroviral particles is enhanced by Apo
CI [28]. This observation suggests that a correlation may
exist between Apo CI and the HCV core because the HCV
core protein plays an important role in infectivity.

Acot1 is an enzyme that hydrolyzes long-chain acyl-CoAs
of C(12)-C(20)-CoA in chain length to the free fatty acid
and coenzyme A (CoA) [29]. The potency of Acot1 may
serve to modulate intracellular concentrations of acyl-
CoAs, free fatty acids, and CoA to affect various cellular
functions, including lipid metabolism [30]. The downreg-
ulation of Acot1 likely leads to increased Acyl-CoA and
subsequent beta oxidation, which might counter-regulate
hepatic steatosis secondary to HCV core expression [31].

In regard to the SREBP pathway, several in vivo systems
have documented its association with HCV or the HCV
core protein. During the early stages of acute HCV infec-
tion, chimpanzees that develop either transient or sus-
tained clearance of virus show activated genes involved in
the SREBP pathway as determined by genome-wide tran-
scriptional analyses [32]. HCV infection is also known to
induce the proteolytic cleavage and phosphorylation of
SREBPs via oxidative stress [33]. Furthermore, genes
related to fatty acid biosynthesis and SREBP-1c promoter
activity are up-regulated by the HCV core protein in cell
lines and constitutive HCV core transgenic mice livers in a

PA28gamma-dependent manner [34]. Our results demon-
strate that aside from SREBPs themselves, HMGCS1, the
crucial enzyme for the SREBP pathway, also plays some
role in HCV core related hepatic steatosis. Whether
HMGCS1 activation is specific to HCV core expression or
is subsequent to hepatic steatosis demands further clarifi-
cation.

To our knowledge, FABP1 has not been reported as being
responsible for HCV core-related steatosis. The primary
role of all the FABP family members is the regulation of
fatty acid uptake and intracellular transport [35]. The
FABP1 gene is turned on by long-chain fatty acids and
nonmetabolized fatty acids in a physiologically relevant
manner [36]. FABP1 and microsomal triglyceride transfer
protein (MTP) are known to shunt fatty acids coopera-
tively into de novo synthesized glycerolipids and transfer
lipids into very low-density lipoprotein (VLDL), respec-
tively, which act together to maintain hepatic lipid home-
ostasis [37]. It is likely that either the HCV core leads to
hepatic steatosis by means of modulating FABPl gene
expression to inhibit MTP protein activity and VLDL secre-
tion [38] or that downregulation of FABPl is a nonspecific
phenomenon secondary to hepatic steatosis.

Conclusion
We developed an animal model of nonobese hepatic stea-
tosis with the transgenic expression of the HCV core pro-
tein. These mice were free of metabolic syndrome. The
degree of hepatic steatosis paralleled the expression of the
HCV core protein, and both core protein expression and
steatosis diminished with time. Gene expression analysis
of liver RNA from the transgenic mice showed that several
genes involved in lipid transport, mitochondrial function,
the immune reaction, and inflammation were either up-
or down-regulated. The SREBP pathway was also activated
as shown by the upregulation of the HMGCS1 gene. Our
model lends itself to studying the gene expression patterns
in nonobese hepatic steatosis, especially those associated
with HCV infection.

Methods
Transgenic mice regeneration
Mice conditionally expressing HCV core gene were gener-
ated as described [6]. Briefly, the HCV core gene sequence
was isolated by reverse-transcription RT-PCR from the
plasma of a patient with chronic HCV genotype 1b. It was
cloned into the pUGH16-3 vector, which contains the tet-
racycline response element [39]. Fertilized ova from FVB/
N mice were injected with the construct, and several
founder mice were obtained. These were crossed with a
second transgenic line that is homozygous for the tTA,
under the control of the liver activator protein (LAP) pro-
moter, which is hepatocyte-specific [40]. The LAP-tTA
mice were generously provided by J. M. Bishop and Rong
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Wang (University of California, San Francisco, CA).
Unless otherwise indicated, mating pairs were maintained
on dox-containing chow (doxycycline (200 mg)/chow
(kg), Bio-serve, Frenchtown, NJ) to suppress the HCV core
during development and through weaning (1 month old).
At approximately 1 month of age, dox was withdrawn.
The Animal Care and Use Committee at Chang Gung
Memorial Medical Center approved the use of animals for
this study.

HCV core protein expression
Analyses of HCV core protein expression was performed
by immunohistochemical staining as described previ-
ously for the DTM and STM [6].

Fatty liver evaluation
Fat vesicles were identified by Oil Red O staining in frozen
liver sections using a commercial kit (BioGenex, San
Ramon, CA) according to the manufacturer's protocol.
Hematoxylin and eosin (H and E) stains were also per-
formed for the fatty liver grading.

Serum glucose and lipid evaluation
Tail bleedings for biochemistry data evaluation were per-
formed in 10 DTM (5 males and 5 females) and 10 STM
(5 males and 5 females) at 2 months of age. The assays for
glucose, uric acid, triglyceride, and cholesterol (Vitros
DT60 II Chemistry System, Johnson & Johnson, Roches-
ter, NY) were adopted for using tail blood according to the
manufacturer's protocol after 12 hours of fasting.

Insulin evaluation
To determine the serum insulin levels, ELISA bioassay kits
for insulin (Crystal Chem Inc., Downers Grove, IL) were
adopted according to the manufacturer's protocol.

HOMA-IR

By using the formula:

the HOMA-IR was calculated for the fasting m            serum.

SBP
SBP was measured in conscious mice (10 DTM and 10
STM, respectively) by tail-cuff plethysmography (Model
179 blood pressure analyzer; Hugo Sachs Elektronik,
Hugstetten, Germany) as described previously [41].

Microarray analyses
Microarray analyses were used to obtain global gene
expression profiles from the livers of three pairs of 2
month old female DTM versus 2 month old female STM;
and three pairs of 2 month old male DTM versus 2 month

old male STM. Since appropriate RNA pooling can pro-
vide equivalent power and improve the efficiency and
cost-effectiveness of microarray experiments with a mod-
est increase in the total number of subjects [42], pooled
samples from three STM individuals were used as con-
trols. Experimental procedures were carried out according
to the manufacturer's protocols. Briefly, 0.5 µg of total
RNA was amplified by a Fluorescent Linear Amplification
Kit (Agilent Technologies, Santa Clara, CA) and labeled
with Cy3-CTP or Cy5-CTP (CyDye, PerkinElmer,
Waltham, MA) during the in vitro transcription process.
RNA from DTM was labeled with Cy5 and RNA from STM
was labeled with Cy3. Cy-labeled cRNA (2 µg) was frag-
mented to an average size of about 50–100 nucleotides by
incubating with fragmentation buffer (Agilent Technolo-
gies) at 60°C for 30 minutes. Correspondingly, frag-
mented labeled cRNA was then pooled and hybridized to
a mouse oligonucleotide microarray containing 20,871
unique mouse genes (Agilent Technologies) at 60°C for
17 h. After washing and drying by nitrogen gun blowing,
microarrays were scanned with an Agilent microarray
scanner (Agilent Technologies) at 535 nm for Cy3 and
625 nm for Cy5. Scanned images were analyzed by Fea-
ture Extraction Software 8.1 (Agilent Technologies).
Image analysis and normalization software was used to
quantify signal-to-background intensity for each feature,
substantially normalizing the data by the rank-consist-
ency-filtering LOWESS method [43]. Sex bias analysis was
performed using Significance Analysis of Microarrays
(SAM) [44], and P-values of <0.05 were considered as sta-
tistically significant.

Q-RT-PCR
Q-RT-PCR was performed for the genes involved in lipid
metabolism significantly up or down regulated in the
microarray (log 2 Cy5/Cy3, ie, M ≥ 1 or ≤ -1) using the
same RNA isolated for microarray analysis. To prepare a
cDNA pool from each RNA sample, total RNA (5 µg) was
reverse transcribed using MMLV reverse transcriptase
(Promega, Madison, WI), and the resulting samples were
diluted 40 times by volume with nuclease-free water. Each
cDNA pool was stored at -20°C until further real-time
PCR analysis. Real-time PCR reactions were performed on
the Roche LightCycler Instrument 1.5 (Roche, Indianapo-
lis, IN) using LightCycler® FastStart DNA MasterPLUS SYBR
Green I kit (Roche) according to manufacturer's protocol.
The sequences of the primers for Saa1, Saa3, HMGCS1,
Dhcr7, Apo E, Apo CI, Apo AII, FABP1, and Acot1 are shown
in Table 4.

Pathway classification
Only gene expression data with M values ≥ 1 or ≤ -1 were
analyzed for potential pathways.

glucose in mg/dLX0.05551Xinsulin in UIU/mL
22 5.
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Potential pathways that were activated in the DTM were
investigated using a web-based service [45], where Fisher's
exact test and the FDR followed the Storey's scheme were
applied to evaluate the statistical significance.

Statistical analyses
Normalized microarray data were further filtered for miss-
ing genes and for genes with low expression levels. Con-
sidering multiple comparisons, the adjusted P-values for
the Benjamini and Hochberg method FDR were also cal-
culated for the selected genes, and an adjusted P-value of
less than 0.05 was chosen for subsequent functional and
pathway exploration. Analyses were accomplished using
the SAS 8.0 statistical package (SAS Institute Inc., Cary,
NC), and P < 0.05 was considered as statistically signifi-
cant. Gene Ontology Generic GO slim in GeneSpring
v.7.3.1 (Agilent Technologies) was used for the functional
category classification (Student's t-test was used in GO).
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Table 4: Primers used for real-time PCR of genes involved in 
lipid metabolism.

Gene Primer sequence

Saa1 F: 5'-GGAGACACCAGGATGAAGCTA-3'
R: 5'-TAGGCTCGCCACATGTCC-3'

Saa3 F: 5'-TGCTCGGGGGAACTATGAT-3'
R: 5'-ACAGCCTCTCTGGCATCACT-3'

HMGCS1 F: 5'-CCCCTTCACAAATGACCACAG-3'
R: 5'-GACAGCTGATTCAGATTCGGC-3'

Dhcr7 F: 5'-TACCTAGGCTGGGGAGATTG-3'
R: 5'-GGGTGGTACACCAAGTACAGG-3'

Apo E F: 5'-CACGAGCGTCACTTCTTGG-3'
R: 5'-CAGGAAAGGGTCCAGGTTCT-3'

Apo CI F: 5'-CCTGATTGTGGTCGTAGCC-3'
R: 5'-CCGGTATGCTCTCCAATGTT-3'

Apo AII F: 5'-CCATCTGTAGCCTGGAAGGA-3'
R: 5'-GTACTGAGTGAACAGGCTCTGC-3'

FABP1 F: 5'-CCATGACTGGGGAAAAAGTC-3'
R: 5'-GCCTTTGAAAGTTGTCACCAT-3'

Acot1 F: 5'-CTGGCGCATGCAGGATC-3'
R: 5'-CTGGCGCATGCAGGATC-3'

F, forward primer; R, reverse primer.
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