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Abstract

Background: It is essential in modern biology to understand how transcriptional regulatory
regions are composed of cis-elements, yet we have limited knowledge of, for example, the
combinational uses of these elements and their positional distribution.

Results: We predicted the positions of 228 known binding motifs for transcription factors in
phylogenetically conserved regions within -2000 and +1000 bp of transcriptional start sites (TSSs)
of human genes and visualized their correlated non-overlapping occurrences. In the 8,454
significantly correlated motif pairs, two major classes were observed: 248 pairs in Class | were
mainly found around TSSs, whereas 4,020 Class 2 pairs appear at rather arbitrary distances from
TSSs. These classes are distinct in a number of aspects. First, the positional distribution of the Class
| constituent motifs shows a single peak near the TSSs, whereas Class 2 motifs show a relatively
broad distribution. Second, genes that harbor the Class | pairs are more likely to be CpG-rich and
to be expressed ubiquitously than those that harbor Class 2 pairs. Third, the 'hub' motifs, which
are used in many different motif pairs, are different between the two classes. In addition, many of
the transcription factors that correspond to the Class 2 hub motifs contain domains rich in specific
amino acids; these domains may form disordered regions important for protein-protein
interaction.

Conclusion: There exist at least two classes of motif pairs with respect to TSSs in human
promoters, possibly reflecting compositional differences between promoters and enhancers. We
anticipate that our visualization method may be useful for the further characterisation of
promoters.
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Background

The transcription of genes is considered to be primarily
regulated by transcription factors (TFs). TFs are recruited
to interact with specific DNA sequences or motifs in pro-
moters. It is an important and challenging issue to charac-
terize these promoter motifs. It was shown that some
motifs (e.g., TATA, SP1, and CREB) are most commonly
found within -400 to +100 bp of the transcription start
site (TSS) [1]. In other words, positional distribution plots
of single motifs found in many promoters show a single
peak in frequency near the TSS [1,2]. In the promoters of
higher eukaryotes, such as humans, multiple TFs act in a
coordinated way to enable complex patterns of gene
expression; thus, it is highly likely that even those binding
sites of TFs that do not show clear positional preferences
are placed under some constraints, showing a bias such as
a frequency peak at a certain distance from the TSS when
the co-occurrences of a motif pair are considered. To date,
no study has examined the positional relationships
among motif pairs and TSS. Furthermore, the search for
motifs is usually limited to the 1 kb of sequence immedi-
ately upstream of a TSS; however, more than 1 kb of
upstream sequence is commonly conserved among verte-
brates. A previous study has reported a diverse range of
different TSSs for the same genes [3], and distal-promoters
are also important for gene expression [4]. Therefore, > 1
kb of sequence should be examined for motif pairs.

In higher eukaryotes, TF binding sites are often organized
in clusters called cis-regulatory modules (CRM) [5]. Most
of the computational CRM prediction algorithms devel-
oped to date rely mainly on the distances between motifs
and the phylogenetic conservation of these motifs across
different species [6-8]. For example, Blanchette et al.
recently performed a genome-wide prediction of CRMs in
the human genome [8]; however, further analyses are
required to clarify the nature of different motifs, such as
which motif pairs are preferentially used in promoters. Yu
et al. [9] addressed this issue by identifying motif pairs
with biased distance distributions in various sets of
human genes that exhibited tissue-specific expression,
and Long et al. [10] identified motif pairs over-repre-
sented in promoters of immune-response genes. It also
appears to be important to gain an understanding of the
function of upstream sequences that are not specific to
differentially expressed genes. Such overall analyses may
reveal the specific features of (a partial set of) house-keep-
ing genes.

We are currently engaged in the construction of two data-
bases (DBTSS [11] and H-InvDB [12]) that contain infor-
mation on TSSs determined by the mapping of cDNAs
with intact 5'-ends onto genome sequences. H-InvDB cov-
ers a wide range of genes, but the TSS information is
expected to be more accurate in DBTSS. This wealth of
data should be useful in obtaining further insights into
motif positioning relative to TSSs.
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In this study, we developed a method of identifying posi-
tional relationships among motif pairs and TSSs in
human promoters. We searched from -2000 to +1000 bp
relative to each TSS, enabling an examination of possible
alternative promoters [13] or distant motifs in enhancers
and silencers. We first visualized the positional prefer-
ences among pairs of non-overlapping motifs and the rep-
resentative TSS for each gene. This visualization assisted in
the identification of two distinct classes of motif pairs in
terms of the positional relationships between the pairs
and TSSs. Differences between these two classes were
examined with regard to the positional distributions of
their constituent motifs, the expression patterns of the
genes that harbor the motif pairs, and the protein
domains relevant to the transcription factors that bind to
the promoter motifs.

Results

Identification and visualization of co-occurring motif pairs
with positional correlation

We predicted the DNA motifs, or putative transcription
factor binding sites, in the sequence from -2000 to +1000
bp relative to the TSSs of human genes using 228 weight
matrices in the TRANSFAC database. For convenience, we
refer to these as 'promoter sequences'. The weight matrices
were clustered such that each cluster of weight matrices
can be regarded as non-redundant (see the Methods sec-
tion). To reduce the number of false positives (non-func-
tional sites), we discarded motifs predicted on repetitive
sequences such as Alu and those predicted outside of phy-
logenetically conserved regions. The remaining putative
sites were used for analyses of their co-occurrence. To
avoid counts based on overlapping binding motifs, over-
lapping pairs were not considered. The chi-square test was
used to identify motif pairs that co-occur with significant
positional correlation; i.e., pairs for which the bias of the
co-occurrence is not explained by the independent occur-
rence of each motif. The motifs were analyzed using Kol-
mogorov-Smirnov test (K-S test) to assess the significance
of their distance distributions relative to those of ran-
domly generated sequences. A criterion of 1% false dis-
covery rate (FDR) was applied to both the chi-square test
and the K-S test. Motif pairs that satisfied the two tests
were considered to be significant.

Among the 26,106 motif pair combinations, 8,454 (32%)
and 5,668 (22%) were identified as being significant in
terms of the promoters from H-InvDB and DBTSS, respec-
tively. All of the significant motif pairs are listed in Addi-
tional file 1. To examine the patterns of their positional
biases, we visualized the co-occurrences of motif pairs in
three ways. First, we compiled a heat map of the raw
counts of each motif pair along the promoter regions (Fig-
ure 1A). Second, we plotted another heat map showing
the negative logarithm of p-values for the significance of
the bias, calculated assuming a hypergeometric distribu-
tion for each region-pair (Figure 1B). In other words, this
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plot shows the degree to which the co-occurrence is
enhanced at a region-pair compared with an independent
occurrence at the same bin. Third, we plotted the posi-
tional distribution of each motif on each promoter (Fig-
ure 1C). Using this approach, we visualized the biased
occurrences of both paired and single motifs. This analysis
revealed a number of common patterns that have interest-
ing biological implications.

Comparison of the detected motif pairs and known data
For the significant motif pairs, we examined the 'detection
ratio', which is the ratio of the number of detected and
known motif pairs to the number of known motif pairs,
using the TRANSCompel database (a database of compos-
ite promoter elements [14], ver. 9.2) and the TRANSFAC
database. Since the definition of identical motifs (group-
ing of motif matrices) in TRANSCompel database is differ-
ent from ours (i.e., we used more stringent criteria for
motif clustering), the correspondence of neither the
motifs nor the motif pairs is 1-to-1. Of the 8,454 signifi-
cant motif pairs, 547 were successfully mapped to 86 of
the 127 pairs in TRANSCompel. Thus, the detection ratio
of TRANSCompel was 69% (86/127).

Classification of motif pairs based on positional patterns
Visualization of the two types of heat maps shown in Figure
1A and 1B enabled the identification of several characteris-
tic groups. To objectively analyze the data from these heat
maps, we defined a set of criteria to use in classifying motif
pairs into three groups; a flow chart of this process is shown
in Figure 2. Briefly, in the Class 1 pairs, co-occurrences are
found mainly in the vicinity of TSSs [-500 to +500] in both
types of heat maps. In the Class 2 pairs, co-occurrence was
not particularly biased around TSSs, but was biased when
the relative distances of co-occurring positions were within
500 bp in both heat maps. Those motif pairs not classified
as Class 1 or 2 were assigned to Class 3, which contains mis-
cellaneous bias patterns. We emphasize that this classifica-
tion of motif pairs is based solely on plots of raw counts
(Figure 1A) and the hypergeometric test (Figure 1B): it does
not take into account the positional distribution of single
motifs (Figure 1C).

The numbers of motif pairs classified into Classes 1, 2,
and 3 were 248, 4020, and 4186, respectively. Figure 1
shows typical examples of Class 1 and Class 2 pairs. As
noted above, Class 2 pairs occur over a wide range (within
the 3 kb range included in our analysis) relative to the
positions of TSSs. In most cases, these motif pairs were
located within 100 bp of the TSSs, which is the unit length
of our digitization (L,) (see Figure 1, and the Methods sec-
tion).
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Visualization methods for illustrating the positional prefer-
ences of motif pairs with respect to TSSs. Regions [-2000,
+1000] relative to TSSs are regarded as 'promoters' (TSS
positions are indicated by arrows in the Class | examples; for
an explanation of the different classes, see the main text). A
motif pair, that of CAAT_0I and E2F_Q6, is shown as an
example of the Class | motif pairs, while a second pair, that
of AFPI| and CEBPgamma, is used as an example of Class 2
pairs. (A) Heat map showing the frequency of the motif pair.
Each region, which represents a region-pair, is colored
according to the raw counts of the motif pair considered.
High counts are shown in red, intermediate counts in white,
and low counts in blue. The presence of CAAT_0I| (upper
figure) and AFPI (lower figure) are shown on the X-axes for
the two examples. (B) Heat map showing the negative loga-
rithm of p-values calculated for the significance of positional
preference. (C) Positional distribution of a single motif on
promoters. The Y-axis indicates the frequency of the motif at
each position represented in the X-axis in all promoters.

‘ Significant motif pairs ‘

rdiag >= 0.8
AND
hdiag >= 0.8

‘ Class 2 ‘ ‘ Class 3 (all others)

Figure 2

Flow chart employed in defining the three classes of motif
pairs. See "Classification of motif pairs" in the Methods sec-
tion, for definitions of 'rtss', 'rdiag', 'htss', and 'hdiag". 'Y' and
'N' indicate 'yes' and 'no', respectively.

Types of motif peaks in terms of the positional
distributions of single motifs

In some cases, the positional distribution of a single motif
exhibits a peak around the TSS ([1,2]; Figure 1C); thus, we
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characterized the above co-occurrence patterns (Figure 1A
and 1B) in terms of the positional distributions of their
constituent single motifs. Based on the signal/noise ratio of
the positional distribution, we detected peaks within -300
to +300 of TSSs (for a detailed description, see the Methods
section). Similar peak-detection methods, employing
standard deviation, have been used in previous studies
[1,15]. Each single motif was assigned into one of four peak
types: 'Large Peak (LP)', 'Small Peak (SP)', 'No Peak (NP)',
and 'No Data (ND)'. Among the 228 independent motifs
(or motif clusters), we classified 56, 49, 100, and 23 into
types LP, SP, NP, and ND, respectively.

We examined the relationship between the co-occurrence
of motif pairs and the type of peak of their constituent
motifs based on the rank of p-values calculated for the sig-
nificance of motif pairs, as assessed using the chi-square
test (Figure 3). For every group of 200 pairs (in descending
order of this ranking), the content of each peak was
counted and its ratio compared with its expected count.
We were unable to rank the top 544 pairs because their p-
values were close to zero; consequently, the values of the
top 600 pairs were plotted as the first group (the group
size was 200 pairs thereafter). It is evident from Figure 3
that the NP motif type is strongly preferred in higher ranks
of motif pairs: the LP and SP types tend to be avoided.

Next, we considered the relationship between the differ-
ent peak types and the classes of motif pairs. Table 1 lists
the 20 motifs that are most frequently used in the motif
pairs in each class. These motifs (or transcription factors
that bind to these motifs) can be regarded as the 'hubs' in
the network. For convenience, we refer to the top 20
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Figure 3

Preferences of the peak types versus the ranks of the signifi-
cance of co-occurrence. The Y-axis represents the ratio of
observed to expected numbers of motifs found in groups of
300 motif pairs ranked according to co-occurrence. At X =
600, values for the top 600 pairs are shown.
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motifs as hub-motifs (hub-TFs). A log-log plot (Addi-
tional file 2) reveals that the degree (the number of motif
counterparts) in Class 2 decreases linearly as the rank
number increases, while that in Class 1 decreases rapidly.
This finding suggests that the connectivity of the two
classes is intrinsically different.

Interestingly, most of the peaks in Class 1 were LP (and
SP), whereas those in Class 2 were mainly NP. This indi-
cates that many of the constituent motifs in the Class 1
pairs occur around TSSs; however, the predominance of
LP-type peaks in Class 1 is not the result of an independ-
ent preference for localization near TSSs: instead, it
reflects cooperation between pairs. This interpretation is
supported by the significant peaks in the p-value heat map
(Figure 1B). Another interesting observation is that the
hub motifs in the two classes define almost completely
disjoined sets (the only exception being motif
'NMYC_01'; see Table 1). In contrast, if we compare all of
the motifs (i.e., both hubs and non-hubs) that appear in
the two classes, they show significant overlap. There are
very few motifs specific to Class 1 (data not shown).

Promoters that contain Class | motif pairs prefer
ubiquitous expression

It is of interest to test for differences between the expres-
sion of genes that posses the two classes of motif pairs. To
this end, we used the UniGene database [16] in assessing
the tissue-specific/ubiquitous expression of genes. As
exemplified in the work by Yamashita et al. [17], the
number of unique EST (Expression Sequence Tag) librar-
ies in which expression of a gene is observed as at least one
EST sequence can be used as a convenient measure of anti-
tissue specificity. To examine gene expression, we pre-
pared a gene set putatively regulated by the motif pairs in
each class. As each promoter often contains multiple
motif pairs from multiple classes, it is not simple to con-
nect each class to either gene or gene expression. Here we
collected genes whose promoters contain only motif pairs
in the same class (see the Methods section). Each group
contained 72, 1011, and 364 promoters for each class.
Figure 4 shows the distribution of the number of different
EST libraries for each class. The mean numbers of different
libraries for Classes 1, 2, and 3 are 137.7, 75.1, and 104.3,
respectively. The p-value on the null hypothesis that there
is no difference between Class 1 and Class 2 (Class 3) was
lower than 9.4e-10 (6.4e-3) by the Wilcoxon test. We also
calculated correlation coefficients between the number of
motif pairs in each class and expression measure (loga-
rithm of the unique number of libraries for each gene)
using all genes. They were 0.23, -0.12, 0.03 for each class.
It seems evident that those genes that possess Class 1
motif pairs on their promoter regions are more likely to be
expressed ubiquitously than those that possess other
classes of motif pairs.
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Table I: Top 20 motifs included in the two motif-pair classes, and all significant pairs.

Class | Class 2 Total
Rank Motif Count P Motif Count P Count P
I SPI_Qé 37 LP  NMYC_O0I 129 SP GATA4_Q3 202 NP
2 E2F_Ol 29 LP GATA4_Q3 128 NP CEBPGAMMA_Qé6 197 NP
3 MAZ_Qé 29 LP TFIA_Qé 115 NP NMYC_O0lI 191 SP
4 NFY_Qé6 23 LP FOXP3_Q4 114 NP CDPCRI_0I 186 NP
5 KROX_Qé6 20 LP  CEBPB_OI 110 NP EVII_04 183 NP
6 PAX3_B 20 LP PBX_Q3 108 NP NFKAPPAB_OI 182 SP
7 SP3_Q3 18 LP CDX2_Q5 108 NP CDX2_Q5 181 NP
8 CP2 0l 17 SP  CEBPGAMMA_Qé6 106 NP  TFIA_Qé6 181 NP
9 ELKI_OI 16 LP  EVII_04 106 NP E2F_0I 179 LP
10 ATF_Ol 14 SP  CDPCRI_0I 106 NP MAZ_Qé 177 LP
Il MAZR_ 0l 13 LP FOX_Q2 105 NP FOX_Q2 177 NP
12 MINI20_B 13 LP  NKX25_0I 103 NP CEBPB_OI 176 NP
13 NMYC_OI 12 SP  OCTI_Qé6 102 NP PBX_Q3 175 NP
14 NFKAPPAB_OI 12 SP  MEF2_Q6_0lI 10l NP MEF2_Qé6_0I 172 NP
15 PAX9_B 12 LP  GATAI_02 10l NP  TBX5_02 171 NP
16 HESI_Q2 10 SP HNFI_Qé6 99 NP HNFI_Qé 171 NP
17 ATFI_Qé 10 LP CEBPDELTA_Q6 98 NP EFC_Q6 170 SP
18 RFXI1_02 9 LP CDC5_0lI 97 NP FOXP3_Q4 167 NP
19 YYI_02 8 LP POUIFI_Qé6 93 NP MYOD_0l 165 SP
20 AP2ALPHA_02 8 LP  NKX25_02 92 NP SPI_Qé6 164 LP
21 SMAD4_Qé6 8 SP  HNF3B_O0I 92 NP
22 VMYBOI 8 SP

The actual number of motifs exceeds 20 because of tied ranks. The identifiers in TRANSFAC are shown as the names of the motifs. The 'PT'
column shows the peak type of each motif (LP: large peak, SP: small peak, and NP: no peak).

Relationships between the class of motif pairs and CpG
richness of promoters

We considered the relationship between the classes of
motif pairs and the CpG richness of related promoters. We
calculated CpG ratio in the non-repeat sequences of pro-
moters as an index of CpG richness. The number of CpG
in all the regions, including repeat sequences (e.g. Alu),
gave similar results. The correlation coefficient between
the number of motif pairs from each class and the CpG
ratio through all promoters were 0.38, -0.40, and 0.02,
respectively. Both positive and negative significant corre-
lations were observed for Class 1 and 2. There were no sig-
nificant correlation between the CpG ratio and Class 3.
Assuming that motif pairs in Class 1 are more related to
ubiquitous gene expression, the results of Class 1 and 2
are consistent with the fact that about half of housekeep-
ing genes have CpG islands covering the TSS [18].

Protein domains characteristic of the hub-TFs

Using the 600 most significant motif pairs, we constructed
a network of motif pairing. A log-log plot (Additional file
3) of the degrees-node distribution showed linearity, sug-
gesting that the network obeys the power law, as is typical
for protein-protein interaction networks [19]. As noted
above, those TFs that correspond to the top 20 motifs in
each class in Table 1 are regarded as hubs in the network.
To characterize these TFs, their domain structure was

examined using the TRANSFAC database. Of the 228 TFs
linked to the 600 motif pairs, 188 possess 664 domains.
Among these domains, enriched domains with odds
ratios above 1.5 are listed in Table 2 (see the Methods sec-
tion). The odds ratio indicates the degree to which the
domain is enriched in the hub-TFs. The data in Table 2
reveal that domains rich in certain amino acids (e.g.,
glutamine/proline) are enriched in Class 2 hub-TFs and
the entire set of significantly co-occurring pairs.

Discussion

We identified TRANSFAC motif pairs that significantly co-
occur within human promoter regions. This procedure is
dependent on the accuracy of the TSS information. For
TSS annotation, we used two databases: H-InvDB and
DBTSS. H-InvDB contains more sequence data of tran-
scripts that cover not only protein-coding mRNAs but also
Pol II-transcribed non-coding RNAs. Because the pro-
moter sequences are more abundant in H-InvDB, fewer
false negatives are expected; it is therefore natural that a
greater number of significant motif pairs were found in H-
InvDB than in DBTSS. On the other hand, the advantage
of using DBTSS lies in the accuracy of its TSS information.
Given that we confirmed that the co-occurrence patterns
for motif pairs derived from both annotations were simi-
lar, we used H-InvDB for down-stream analyses.
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Distributions of the number of unique EST libraries for the
genes related to each class. The X-axis represents the
number of different EST libraries in which the expression of a
gene is observed, which is regarded to be a measure of ubig-
uitous expression. The Y-axis represents the frequency of
genes corresponding to the bin of the X-value.

The detection ratio of significantly detected motif pairs
was 69% (86/127), while we detected 32% of the total
possible combination (i.e. 8,454 motif pairs out of 228 x
227/2 motif pairs), which is a promising result consider-
ing the previous work by Yu et al. [9]. Its detection ratio
(or sensitivity) was 40%, detecting 19% (9,060 motif
pairs) of 46,971 combination using tissue specific gene
groups. Our detection ratio is higher than that of Yu et al.,

http://www.biomedcentral.com/1471-2164/9/112

mainly because we detected many pairs. Related to the
reason of our high detection ratio, the substantial differ-
ence is that we use all genes transcribed by RNA pol 1I
including widely expressed (housekeeping) genes, while
they only use tissue specific genes. Other differences
include the evaluation model, source of known interac-
tions (they used DIP [20] and TRANSFAC), and clustering
of motifs. For the evaluation model, we evaluated motif
pairs with two statistical tests: (1) chi-square test for biases
of their relative positions from TSS and (2) K-S test for
their distance distribution biases. Yu et al. evaluated motif
pairs from two viewpoints: (1) over-representation of
motif pairs and (2) distance distribution biases, which we
adopted as the second test. Thus, their model does not
consider the distance between the motif and TSS. They
evaluated a p-value as the product of the two p-values cal-
culated from the above viewpoints. For the thresholds, we
used an FDR of 1% for each test, though 1%, 5%, and
10% are conventionally used [21,22]. Yu et al. set the
threshold to be 10-¢2 after the multiple testing correction.
If we calculate the product of the p-values corresponding
to the two tests, their maximum value among the detected
motif pairs was 5.9 x 10-5. In addition, if we employ the
same threshold of 1062, 8,379 out of 8,454 pairs were
still significant. Thus, our threshold of FDR is stringent
enough.

A total of 8,454 pairs were analyzed for their positional
preference with respect to the TSS position; consequently,
two major classes were identified. The visualization of the
bias of motif pairs in terms of the promoter (Figure 1A
and 1B) is a novel approach that enables the identification
of Class 2 pairs. In the hypergeometric statistical test
shown in Figure 1B, if the tested region lies only on the
core promoter, it is the same as those used in several pre-
vious papers [7,23]. We extended the single region to
wider set of regions for the evaluation of co-occurrences
for motif pairs on divided promoter region pairs (bin
pairs) to detect positional correlations. The approach
taken in this regard - to plot a positional distribution for
single motifs and to identify a peak (see Figure 1C) - is
widely used in previous studies [1,2]. We then defined a
set of criteria to employ in objectively assigning pairs to
different classes (Figure 2). Several features of these two
classes of motif pairs were then examined, with the results
being summarized in Table 3.

The Class 1 motif pairs are localized near the TSSs, and
may represent components of core promoters [1,24].
These motif pairs mainly consist of LP and SP types of sin-
gle motifs, which is notable for two reasons. First, in sig-
nificantly co-occurring motif pairs, NP types of single
motifs are overrepresented (Figure 3). Second, in the heat
map that shows the significance of correlated co-occur-
rence (Figure 1B), the overrepresentations of the co-occur-
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Table 2: Domain analysis of transcription factors.
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Domain name Occurrence of domain #of TF Odds ratio P-value
Class |

serine-rich 55 3 3.00 3.52E-13
dimerization 86 6 2.46 1.86E-15
basic 82 5 2.24 1.73E-12

helix 8l 5 2.12 5.87E-11

HLH 51 3 2.04 I.11E-06
zinc_finger 151 8 1.89 6.16E-18
leucine_zipper 65 4 1.70 1.97E-05
glutamine-rich 85 6 1.65 1.90E-06
trans_activation 91 6 1.61 2.12E-06

Class 2

glutamine-/proline-rich 335 3 2.85 4.65E-65
serine-rich 344 3 2.66 5.85E-60
alanine-rich 321 3 2.48 2.22E-49
proline-rich 551 5 1.73 8.47E-39
POU-domain 294 3 1.67 1.98E-17

serine-/threonine-rich 524 5 1.65 3.26E-31
leucine_zipper 443 4 1.64 3.56E-25
forkhead 311 3 1.55 |.65E-14

All

serine-rich 723 4 3.46 3.29E-187
glutamine-/proline-rich 540 3 2.85 1.20E-103
proline-rich 1,419 8 2.77 7.95E-302
glycine-rich 885 5 2.59 251E-153
alanine-rich 533 3 2.55 2.14E-85
dimerization 893 5 2.24 3.48E-118
helix 876 5 2.0l 1.98E-90

HLH 535 3 1.88 3.08E-44

basic 711 4 1.70 4.24E-45
leucine_zipper 743 4 1.70 2.65E-47
serine-/threonine-rich 869 5 1.70 4.98E-56

Shown are the domain names, the frequency of the domains in the hub-TFs (i.e., the TFs in Table 1) for class |, 2, and all of co-occurring motif pairs.

The domains are ordered by odds ratio.

Table 3: Summary of the features of co-occurring motif pairs.

Feature

Number of pairs

Pattern on the heat maps
Dominant peak types of single motifs
Correlation with CpG ratio

Expression preference

Typical domains of corresponding TFs

Class | Class 2 Class 3
4,020 4,186
Around TSS Scattered diagonally uncharacterized
LP/SP NP NP
-0.40 0.02
Ubiquitous Specific Specific
Dimerization, Basic, Alpha-helical, [SG]-rich [APSTQ]-rich miscellaneous

LP, SP, NP are the different peak types for single motifs (LP: large peak, SP: small peak, and NP: no peak).

rence of the motif pairs cannot be explained as a direct
result of the independent occurrence of each motif around
the TSS. Thus, it is possible that the TFs that bind to these
motif pairs interact with each other.

The possibility that the Class 1 motif pairs are largely
related to constitutive or ubiquitous gene expression is
indicated by the three following evidences: (1) the EST
analysis (Figure 4), (2) the functions of the TFs that binds
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to the top 20 motifs that are most frequently used in the
Class 1 pairs, and (3) a recent work conducted by another
group [25]. For example for the functions of the TFs, the
transcription factor E2F regulates gene expression in the
cell cycle; SP1, MAZ, NFY, KROX, SP3, and CP2 are the TFs
associated with ubiquitous transcription; and PAX3 (rank
number 6) is a member of the paired box (PAX) family of
transcription factors, that has multiple roles during fetal
development. As the third evidences, according to a recent
study on alternative promoters [25], single promoters that
are CpG-rich and do not have alternative promoters are
significantly associated with ubiquitous gene expression.
It is likely that this category of promoters is mainly com-
posed of our Class 1 motif pairs.

The relative positions of motif pairs are much more flexi-
ble in Class 2 than in Class 1. These pairs appear at least 3
kb away from the TSS, yet most previous studies only
examined 1 kb of sequence [26]. These Class 2 motif pairs
are mainly composed of NP-type motifs, which are likely
to cooperate with other motifs to be functional. In S. cer-
evisiae, Yu et al. [27] found 300 significant TF interactions
(as motif pairs), most of which were not constitutively
active. This is consistent with our study of human promot-
ers because the motifs related to constitutive gene expres-
sion are thought to be linked to Class 1, which is the
minority of the detected motif pairs. Moreover, the top 20
most frequent motifs in Class 2 (as shown in Table 1)
appear to be involved in various functions. We show some
examples of TF pairs, corresponding to detected motif
pairs, that are known to function cooperatively. We
detected a motif pair consisting of GATA4 and API.
GATAA4 is thought to regulate genes involved in embryo-
genesis and in myocardial differentiation and function,
and GATA4 and AP1 cooperatively regulate transgenic
mice overexpressing cardiac calsequestrin [28]. We have
another motif pair consisting of GATA4 and TBX5. TBX5
plays a role in heart development and specification of
limb identity together with GATA4 [29]. One of our hub
motifs MYOD pairs with several motifs known to be
involved in muscle and heart gene regulation (MEF2, SRF,
SRF, and AP1) [30]. The motif pair NF-kappaB and C/EBP
was also detected, and it is known that these two motifs
synergistically regulate the mouse serum amyloid A gene
expression induced by inflammatory cytokines [31]. Thus,
the motif pairs in Class 2 appear to be involved in various
specific functions.

We observed that relative positions of motif pairs in Class
2 ranged widely within the 3 kbp regions. It may be due
to alternative promoters [13] or the diversity of TSSs [3].
Kimura et al. [13] showed that at least 52% of human
genes have alternative promoter sequences separated by
>500 bp. Even with a much more strict threshold of 2 kb,
44% (6,485 of 14,628 genes) were regarded to have alter-
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native promoters (see supplementary Figure 1 of [13]).
The other possible reason is that these motif pairs can
work at any distance as components of enhancers (cis-reg-
ulatory modules). It is well accepted that the location of
enhancers is rather arbitrary and that both promoters and
enhancers share modular architecture [32]. Thus, it seems
likely that some promoters contain enhancer-like mod-
ules (in addition to the core region) and that these mod-
ules contain the Class 2 motif pairs. In any case, the fact
that the top 20 motifs in both classes do not overlap
(except for a single motif) supports the view that the two
classes are distinct in terms of the way they function.

We selected a set of TFs that work as hubs in the TF-TF
interaction network in each class. Table 2 summarizes the
overrepresented domains in these hubs. It seems that
these domains are commonly characterized by an excess
of a certain amino acid(s). This tendency is stronger in
Class 2-related TFs than Class 1-related TFs. These biased
domains, such as the proline-rich domain, may play com-
mon important roles in gene regulation. In fact, the SH3
and WW domains recognize proline-rich peptides. The
binding of SH3 domains to proline-rich regions causes
the formation of a large number of protein complexes
[33]. Most of the proteins that interact with SH3 domains
contain at least one PxxP motif [34]. It was recently found
that 49% of the entire sequence of human TFs contains
intrinsically disordered (ID) regions [35] that differ from
DNA binding domains. Using techniques such as NMR
(Nuclear Magnetic Resonance), it has been revealed that
the trans-activation domains are unstructured in
unbound TFs and become structured upon binding to
their partners [35]. The ID regions tend to consist of
alanine, glutamic acid, glycine, lysine, proline, glutamine,
arginine, and serine residues [36]. Among these eight
amino acids, five are overrepresented in Table 2. Further-
more, Haynes et al. reported that ID regions are common
to hub proteins from four eukaryotic interactomes (C. ele-
gans, S. cerevisiae, D. melanogaster, and Homo sapiens) [37],
indicating the importance of ID regions in protein interac-
tions. As an unstructured protein domain with repetitive
sequence, the C-terminal domain (CTD) of RNA polymer-
ase II is comprised of a variable number of tandem hep-
tapeptide repeats. This feature is important in the efficient
capping, splicing, and polyadenylation of mRNA tran-
scripts [38]. These previous studies lead us to a model in
which repetitive domains have potential in terms of
acquiring multiple functions through protein interaction.
Thus, it is likely that the domains commonly observed in
hub-TFs (see Table 2) are related to ID regions; this may
play an important role in TF-TF interaction in transcrip-
tion.

With the intention of identifying general features of pro-

moter architecture, the present study examined a general
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set of genes rather than a set of co-regulated genes, as done
in previous studies [9,10,26]. Further studies that employ
this approach will help to clarify these general features. A
possible approach would be the identification of cis-regu-
latory modules (CRMs) based on the detected motif pairs
in this paper, as attempted in [39]. Given that the unit
length employed in the present study was 100 bp, a nec-
essary future study would involve a more detailed analysis
of the distances between significant motif pairs. We found
that most of the motif pair distances are less than 100 bp,
with few in the range of 200 bp. This finding is consistent
with the observation that most of the cooperative motifs
in the TRANSCompel database (a database of composite
promoter elements [14], ver. 9.2) are within a distance of
140 bp. Another necessary future task is a more detailed
characterization of the remaining significant motif pairs
that we tentatively termed Class 3. It seems certain that
our visualization method, as well as our statistical tools,
will be useful in obtaining further insights into promoter
structures.

Conclusion

Our results indicate the occurrence of at least two distinct
classes of motif pairs in human promoters, with one class
appearing around TSSs and the other found at somewhat
arbitrary distances from TSSs. This trend is reminiscent of
the well-known difference between promoters and
enhancers (CRMs). There has been some discussion that
promoters and enhancers are alike in terms of their mod-
ular structure as clusters of TFBSs [32]; however, a recent
study reported differences in terms of the pattern of his-
tone modifications [40]. Thus, our findings may reflect
this kind of difference or merely differences between core
promoters and CRM-like modules of promoters; further
investigations are necessary to clarify these hypotheses.
Our visualization method will also be useful in these
types of future studies.

Methods

Prediction of motifs on human promoters

The sequence between -2000 bp and +1000 bp relative to
the TSS of each gene was extracted as its 'promoter
sequence' from the human genome sequence (NCBI build
35), based on the annotations from H-InvDB [12] release
3.4 and DBTSS [11] version 5.0. We used 'cluster_start/
end' from H-InvDB and 'representative TSS' from DBTSS
as the annotation for TSSs. Repetitive sequences were
masked by RepeatMasker [41]. A total of 34,562 and
11,682 promoters were obtained from H-InvDB and
DBTSS, respectively. The motifs (transcription factor bind-
ing sites) were then predicted using the 'match' program
[42] provided in TRANSFAC [43] (ver. 9.2). As options,
we chose the vertebrates' matrices with 'high quality' and
used the cut-off values that 'minimize the sum of both
error rates', where 'both errors' means errors related to
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sensitivity and specificity, or Type I and II errors in statis-
tics. Predicted sites were used on both orientations (plus
and minus strands). In the case of self-overlapping sites,
the one with the higher score was selected. Only those
motifs found in highly conserved regions among multiple
species were used. These highly conserved regions were
determined by the 'phastCons' score, which is based on a
phylogenetic hidden Markov model of 17 vertebrates
[44]. The score was taken from the conserved track (file
'multiz17way') in the UCSC genome browser database
[45]. The threshold of the score was set to 0.54, which
maximizes the difference in the ratio of promoters that are
conserved/non-conserved at between -500 and +1 (TSS).

Evaluation of the positional preferences of motif pairs

To assess the positional preferences of co-occurring motif
pairs, we split the [-2000, +1000] region into bins of L, bp
in length and counted the number of co-occurrences in
each pair of bins, making a contingency count table for
each pair of motifs (see Figure 5; co-occurring motifs are
placed in rectangles in the left-hand figure). The value of
L, was determined such that it should be the minimum in
a set (100, 150, 200, 250, 300, and 500) where the con-
tingency table satisfies the Cochran rule (no expected cell
counts are less than 1 and no more than 20% are less than
5). To avoid bias arising from overlapping motif
sequences, only non-overlapping co-occurrences were
counted. To compensate for this reduction in the number
of overlapping motifs, counts corresponding to
uncounted positions were estimated and adjusted. For
each pair, the significance of the positional bias at the
time of its co-occurrence was tested by the chi-square test
on the contingency table and a multiple hypothesis test
with a threshold of 1% of false discovery rate (FDR). To
further assess the significance of the distance distribution
within each pair, we performed a second statistical test
against the above significant pairs according to Yu et al.
[9]. We generated 34,562 random sequences, each of
which has the same base composition as that of each pro-
moter from the H-InvDB annotation; the presence of
TRANSFAC motifs on the random sequences was pre-
dicted in the same way. For each motif pair, we applied
the Kolmogorov-Smirnov Test in comparing the distribu-
tions between the two sets of sequences (actual promoters
and random sequences). Taking into account the 1% FDR
threshold, we selected those motif pairs showing the sig-
nificance of the biases of the distance distribution. To
summarize, motif pairs that showed positional biases
with the TSSs (from the chi-square test) as well as biases
of their distance distribution (from the K-S test) were cho-
sen as significant.
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Schematic showing the method employed in counting the co-
occurrence of the predicted motifs. Each DNA sequence was
divided into N, bins of 30,000/N, (=L;) bp (left; Nyand L, are
set to 30 and 100, respectively, in this figure). Co-occur-
rences for each bin-set are identified for each motif set
(motifs A and B; sets enclosed in rectangles in the left-hand
figure). For example, the count of the co-occurrence of the
motif set (A, B) on promoter-2 was two; therefore, in the
contingency table, the counts of the cells (A3, B5) and (A3,
B6) were increased by one (right). Overlapping motif pairs
were not counted. Based on the counts of the co-occur-
rences in all promoters, we constructed a contingency table
for each motif pair.

Visualization of the positional preference of motif pairs for
the purpose of classification

We visualized the co-occurrence using two types of heat
maps. The first was a heat map of the raw counts in the
contingency table (with adjustments for counts with over-
lapping cases; see above), as exemplified in Figure 1A. The
second was a heat map of the negative logarithm of the p-
value of the co-occurrence, assuming a hypergeometric
distribution for each region-pair (Figure 1B). In the case
that the region-pair was located in the same region, the
method employed in calculating p-values was the same as
that employed in earlier studies [7,23]. That is, suppose a
region-pair, [-200, -100] (relative to TSS) for motif A and
[-1000, -900] for motif B. It is possible to consider a 2 x 2
contingency table based on whether each motif occurs or
not. Based on this table, p-values are calculated for each
pair using the following formula based on the assumption
of no positional preference:

MY N-M
- X n—x
Phg = Z N ’
x=k
n

where N is the total number of promoters, M is the
number of promoters with motif A in the region for motif
A, n is the number of promoters with motif B in the region
for motif B, k is the number of promoters for which both
motif A and motif B were found in the respective regions,
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and m is the minimum of M and n. The value of each
region-pair (pixel) in Figure 1B shows -log; P,

It is not easy to precisely evaluate the co-occurrence of
overlapping motifs because of the correlation polynomial
(see Chapter 8 in [46]); in other words, the occurrences of
two motifs are not independent in the case that they over-
lap with each other. We counted such a case as a single
occurrence rather than a co-occurrence. By doing so, x in
the above formulae is underestimated, and therefore, Py,
is overestimated, and thus the detected motif pairs are suf-
ficiently significant.

Clustering of motif matrices

Each motif used in this study corresponds to a weight
matrix in TRANSFAC, which is known to be redundant
[47,48]. Thus, we clustered motifs into a non-redundant
set. As a distance measure, we used the averaged Kullback-
Leibler distances (AKLD) per site over the aligned length
between the corresponding positions of two matrices (we
chose the alignment between the two matrices that gave
the smallest distance). With the threshold of AKLD set to
0.5, the 358 matrices were clustered using the single link-
age agglomerative algorithm; as a result, 228 clusters were
obtained.

Classification of different peak types of single motifs

Each single motif was classified based on the shape of its
positional distribution. First, motifs with less than 30
occurrences were assigned to the 'no data' (ND) category.
Second, the promoter region [-2000, +1000] was divided
into bins of length 100 bp. Third, for each motif, its occur-
rence at each bin and each strand (plus or minus) was
counted for all promoters. Fourth, the average values and
standard deviation (SD) were calculated for all bins and
strands except the region [-300, +300]. The positional dis-
tributions of all motifs were checked by eye to ensure that
all simple peaks existed within the range. This region was
determined such that no obvious peak covering the core
promoter in frequency was observed outside of the
regions in the positional distributions of all motifs.
Finally, if the frequency of the motif in a bin within the
region [-300, +300] was equal to or larger than the average
plus SD multiplied by 2 (or 1), the motif on the strand
was classified as a large peak (LP) type (or the small peak
(SP) type); otherwise, it was classified as a no peak (NP)
type. Because clusters of motifs (see above) may have
members that are assigned to different peak types, we
assigned a peak type to each cluster, as follows. For peak
types LP, SP, NP, and ND, we assigned numbers 4, 3, 2,
and 1, respectively. For each cluster, we then calculated
the average of the values of its member motifs. The cluster
was then assigned to the peak type closest to the obtained
mean value.

Page 10 of 13

(page number not for citation purposes)



BMC Genomics 2008, 9:112

Classification of motif pairs

Motif pairs were classified into three classes using the fol-
lowing variables and the procedure shown in Figure 2. To
characterize the patterns observed in the heat maps (e.g.,
Figure 1), ‘high-scoring' regions (region-pairs) were
defined. In this definition, the 'score’ means the 'heat,
and the 'high score' means that the score is no less than a
threshold value, Th,,, or Th,,,, in characterizing the raw
count map (the negative log-p map). Th,,,, is defined as
Thmw = Smin + (Smax - Smin) x 0'6' where Smax (Smin) is the
maximum (minimum) score in the region. In characteriz-
ing the raw count maps (Figure 1A), two additional values
were defined: the TSS-ratio (rtss) and the diagonal-ratio
(rdiag). The TSS-ratio is the ratio of the number of high-
scoring region-pairs in [-500, +500] to that in the entire
high-scoring region, while the diagonal-ratio is the ratio
of the number of high-scoring region-pairs in the diagonal
region (i.e., the distance between the two bins is less than
500 bp) to that in the entire high-scoring region. Simi-
larly, in characterizing the negative log p-value map (Fig-
ure 1B) we defined the TSS-ratio (htss) and diagonal-ratio
(hdiag), although in this case we defined the threshold as
Thmlp = Smin + (Smax: Smin) x0.9.

Expression analysis of genes

As a measure of the anti-tissue-specific expression of a
gene, we used the number of EST libraries corresponding
to the gene (UniGene cluster) in the NCBI UniGene data-
base [16]. To reduce the background count of motif pairs
in non-significant region-pairs, we selected the region-
pairs where the scores are more than 2/3 of the most sig-
nificant region-pair in the second heat map (Figure 1B)
for each motif-pair. For each gene, we obtained the
number of motif pairs subject to each class. The numbers
indicate the extent how the gene is correlated with the
Class 1. The numbers were used both for identification of
gene groups for each class, and for calculation of correla-
tion coefficients.

Domain analysis

For all 228 motifs described in the subsection "Clustering
of motif matrices", we retrieved the corresponding TFs
and their functional domains annotated in the TRANS-
FAC database. We obtained F,; = 188 TFs with at least one
identified domain. For each domain, we also calculated
the number F, of TFs containing it. For each of the three
hub-TFs groups (classl, class 2 and total) reported in
Table 1, we constructed a hub-network comprising all the
hub-TFs of a group as well as all the TFs pairing with them.
We used odds-ratios to determine whether or not a given
domain was enriched within a hub-network. For this, we
calculated the number F, of occurrences of TFs with a
given domain in the hub-network, and the number F, of
occurrences of TFs with any domain in the same hub-net-
work. Domains represented by less than 3 TFs, or for
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which the ratio F,/F, was lower than 0.1 were removed,
and the odds-ratios F,/F,/(F,/F;) were calculated. P-values
were calculated for domains with an odds-ratio bigger
than 1.5 using a binomial background model in which
the number of successes, trials, and the success rate were
F,, F, and F,/F, respectively. The results are shown in
Table 2.
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