- )
BIVIC Genomics BioMed Centa

Research article

Chloroplast genome sequencing analysis of Heterosigma akashiwo
CCMP452 (West Atlantic) and NIES293 (West Pacific) strains
Rose Ann Cattolico*1:2, Michael A Jacobs3, Yang Zhou3, Jean Chang?3,
Melinda Duplessis!, Terry Lybrand4, John McKay?, Han Chuan Ong!2>,
Elizabeth Sims3 and Gabrielle Rocap?

Address: 'Department of Biology, University of Washington, Box 355325, Seattle, WA 98195-5325, USA, 2School of Oceanography, University of
Washington, Box 357940, Seattle, WA 98195-7940, USA, 3Department of Medicine, University of Washington, Box 352145, Seattle WA 98195-
2145, USA, 4Vanderbilt University Center for Structural Biology, 5142 Biosci/MRB III, Nashville, TN 37232-8725, USA and 5Division of Science,
Lyon College, 2300 Highland Rd, Batesville, AR 72501-3629, USA

Email: Rose Ann Cattolico* - racat@u.washington.edu; Michael A Jacobs - mikejac@u.washington.edu; Yang Zhou - yang@u.washington.edu;
Jean Chang - mspiggyl @u.washington.edu; Melinda Duplessis - mdupliss@u.washington.edu; Terry Lybrand - terry.p.lybrand@vanderbilt.edu;
John McKay - cmckay@u.washington.edu; Han Chuan Ong - hong@lyon.edu; Elizabeth Sims - elizah@u.washington.edu;

Gabrielle Rocap - rocap@ocean.washington.edu

* Corresponding author

Published: 8 May 2008 Received: 19 October 2007
BMC Genomics 2008, 9211 doi:10.1186/1471-2164-9-21 1 Accepted: 8 May 2008
This article is available from: http://www.biomedcentral.com/1471-2164/9/211

© 2008 Cattolico et al; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Background: Heterokont algae form a monophyletic group within the stramenopile branch of the tree of life. These organisms
display wide morphological diversity, ranging from minute unicells to massive, bladed forms. Surprisingly, chloroplast genome
sequences are available only for diatoms, representing two (Coscinodiscophyceae and Bacillariophyceae) of approximately 18
classes of algae that comprise this taxonomic cluster-.

A universal challenge to chloroplast genome sequencing studies is the retrieval of highly purified DNA in quantities sufficient for
analytical processing. To circumvent this problem, we have developed a simplified method for sequencing chloroplast genomes,
using fosmids selected from a total cellular DNA library. The technique has been used to sequence chloroplast DNA of two
Heterosigma akashiwo strains. This raphidophyte has served as a model system for studies of stramenopile chloroplast biogenesis
and evolution.

Results: H. akashiwo strain CCMP452 (West Atlantic) chloroplast DNA is 160,149 bp in size with a 21,822-bp inverted repeat,
whereas NIES293 (West Pacific) chloroplast DNA is 159,370 bp in size and has an inverted repeat of 21,665 bp. The fosmid
cloning technique reveals that both strains contain an isomeric chloroplast DNA population resulting from an inversion of their
single copy domains. Both strains contain multiple small inverted and tandem repeats, non-randomly distributed within the
genomes. Although both CCMP452 and NIES293 chloroplast DNAs contains 197 genes, multiple nucleotide polymorphisms are
present in both coding and intergenic regions. Several protein-coding genes contain large, in-frame inserts relative to
orthologous genes in other plastids. These inserts are maintained in mMRNA products. Two genes of interest in H. akashiwo, not
previously reported in any chloroplast genome, include tyrC, a tyrosine recombinase, which we hypothesize may be a result of
a lateral gene transfer event, and an unidentified 456 amino acid protein, which we hypothesize serves as a G-protein-coupled
receptor. The H. akashiwo chloroplast genomes share little synteny with other algal chloroplast genomes sequenced to date.

Conclusion: The fosmid cloning technique eliminates chloroplast isolation, does not require chloroplast DNA purification, and
reduces sequencing processing time. Application of this method has provided new insights into chloroplast genome architecture,
gene content and evolution within the stramenopile cluster.
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Background

Stramenopiles represent an enormous eukaryotic assem-
blage of 500,000 to one million species which includes
both algae and colorless protists [1,2]. Algal representa-
tives within this major branch in the tree of life are excep-
tionally diverse. They include recently discovered minute,
picoplanktonic unicells (Pinguiophyceae), as well as colo-
nial forms (Synurophyceae), the silicious diatoms (Cosci-
nodiscophyceae, Bacillariophyceae and
Fragilariophyceae), and the large pseudoparenchymatous
kelps (Phaeophyceae), which may attain lengths of at
least 150 feet. These autotrophic eukaryotes serve as pri-
mary producers that fix at least 40% of the total carbon
processed on earth and significantly impact global sulfur
and nitrogen cycles [3-7]. Although some stramenopiles
adversely affect aquaculture endeavors and ecosystem
health through formation of toxic blooms [8-10], others
form dense underwater forests which serve as habitat for
myriad vertebrate and invertebrate species. Stramenopiles
are not only used extensively in industry, in aquaculture
and as a human food source, but they also provide
research opportunities for novel pharmaceutical discovery
and nanotechnological development [11].

Autotrophic stramenopiles evolved approximately 100
million years ago [12-16]. Their chloroplasts (secondary
endosymbionts) significantly differ from those of green
algae, land plants or thodophytes (primary endosymbi-
onts), in morphology, pigment composition, storage
materials and chromosome gene content [17]. For this
reason, one cannot assume identical chloroplast function
among representatives of these disparate taxa. Presently,
over 100 chloroplast genomes have been sequenced, pre-
dominantly from terrestrial plants. In contrast, few molec-
ular data exist describing the underlying genetic profiles of
chloroplast DNA (cpDNA) among the approximately 18
classes of autotrophic stramenopiles. At this writing, the
only stramenopile chloroplast genomes that have been
published, are those of the diatoms Odontella sinensis, Tha-
lassiosira pseudonana (both in the class Coscinodiscophyc-
eae) and Phaeodactylum tricornutum (Bacillariophyceae)
[18-20]. One factor that has hindered progress in stra-
menopile chloroplast genome sequencing is difficulty in
obtaining purified cpDNA. Typically, this process is
accomplished by physically isolating chloroplasts before
DNA extraction, or by separating cpDNA from mitochon-
drial and nuclear DNA in cesium chloride gradients. The
first approach is extremely difficult in this group of organ-
isms, particularly those of picoplanktonic size, and the
second is labor intensive, requiring sufficient biomass for
DNA isolation, and repeated series of multi-day centrifu-
gation spins [21].

In this study we sequenced the chloroplast genome of two
Heterosigma akashiwo (Raphidophyceae) strains originat-
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ing from West Atlantic (CCMP452) and West Pacific
(NIES293) coastal waters. We initiated our study of H.
akashiwo cpDNA using a standard shotgun sequencing
method with highly purified cpDNA retrieved from over
80 liters of cell culture. Alternatively, to bypass the tedious
process of cpDNA purification, we used a simplified
whole genome fosmid cloning approach to determine
cpDNA sequences. For each strain, we constructed a fos-
mid library using whole cellular DNA (nuclear, mitochon-
drial and chloroplast) from approximately 2 liters of
culture. Chloroplast clones were selected from the total
genomic DNA preparations using bioinformatic analysis
of fosmid end-sequences, obtained via high throughput
sequencing. Sequencing fosmid subclones independently
aided in final finishing of the genomes, as has been dis-
cussed previously [22,23].

Heterosigma akashiwo is a small (12 pum), naturally wall-
less unicell that forms toxic brown tides in temperate and
subtropical regions world-wide [24-26]. As a coastal-
dwelling organism, H. akashiwo also contributes signifi-
cantly to primary productivity within these critically
important ecosystems [27]. Significant research on its
morphology [28], physiology [29-31], molecular biology
[32-34], toxicology [35,36], and biochemistry [37-39]
define H. akashiwo as one of the most broadly studied
non-diatomaceous stramenopiles. Much of this attention
has been focused on events associated with chloroplast
biology. For example, both photoperiod and light inten-
sity determine the number of chloroplasts per cell (13 to
40) and the phase, amplitude and period of their synchro-
nized division [40,41]. A chloroplast run-on transcription
system (the only one developed for stramenopiles) not
only shows that chloroplast RNA abundance is regulated
predominantly at the transcriptional level, but that tran-
scriptional response is also modified by the physiological
challenges imposed on the cell [42,43]. An average H.
akashiwo cell contains about 600 copies of its chloroplast
genome [40]. Electron microscope studies [21], combined
with restriction enzyme digestion [44], reassociation
kinetic analysis [45], and physical mapping [46,47] reveal
that the approximately 154 kb H. akashiwo chloroplast
genome is a circular molecule which contains a large,
inverted repeat (IR). Demonstration of a chloroplast-
encoded rubisco small subunit [46,48] and documenta-
tion of the presence of bacterial-like two-component sig-
nal transduction arrays [49,50] gave early evidence that
the chloroplast genome of H. akashiwo may be function-
ally distinct from those of green algae and land plants.

The existence of an extensive database augments H. akash-
iwo's potential as a model system for studies in strameno-
pile chloroplast evolution and biogenesis. It has been
suggested that H. akashiwo strain CCMP452 serve as the
reference genotype for this organism [51]. New data
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reported here show that the chloroplast genome sequence
of H. akashiwo: (a) displays marginal synteny with other
chloroplast genomes including those of the diatoms; (b)
contains six genes encoding proteins of unknown func-
tion; (c) lacks introns; and (d) has genes that appear to
have been obtained via lateral transfer.

Results and Discussion

Sequencing strategy: conventional vs. fosmid approach
We compared two methods to obtain sequencing tem-
plates for these two strains, a standard CsCl ¢cpDNA prep-
aration, and total genomic DNA cloning into fosmid
vectors. Using the standard approach, CsCl-purified H.
akashiwo CCMP452 cpDNA was cloned into pUC18 plas-
mids and sequenced by the conventional shotgun cloning
described in the Materials and Methods. A total of 1152
clones were sequenced in both forward and reverse direc-
tion, providing greater than 8x coverage, given an average
read length of 550 base pairs (bp) and an estimated
genome size of 150,000 bp. Purification of cpDNA
sequencing template by this commonly used method was
extremely labor intensive. It required the generation of
large quantities of cells followed by the recovery of highly
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purified cpDNA using CsCl gradients. To avoid these tech-
nical challenges, we adapted a large-insert (fosmid) clon-
ing method for total genomic DNA to cpDNA sequencing
(Fig. 1). This fosmid cloning method requires minimal
biological material and avoids the isolation of pure
cpDNA. Our conventionally sequenced H. akashiwo
CCMP452 chloroplast genome served as a reference for
this endeavor. Briefly, total genomic DNA (nuclear, mito-
chondrial and chloroplast) was used to construct a large
insert fosmid library. Using high-throughput fosmid DNA
isolation and end-sequencing methods, these fosmids
were then end-sequenced from their vector/insert junc-
tions to determine clones of chloroplast origin.

Chloroplast fosmid identity was determined two ways.
The sequenced fosmid ends were compared to: (1) the
draft sequence generated by the shotgun method and (2)
a customized blast database consisting only of published
chloroplast genome sequences. Earlier reports used
hybridization to macroarrays comprised of chloroplast-
genomic probes to screen for cpDNA-containing clones
[22,23]. In contrast, our end-sequence based approach
does not rely on a priori knowledge of the cpDNA
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sequence. Hybridization screening could produce a high
number of false positives given the homology of chloro-
plast gene sequences to bacterial and nuclear gene
sequences, or missed clones given the divergence of stra-
menopile genes at the DNA sequence level. In addition,
our method is easily updated and made more powerful as
newly sequenced chloroplast genomes are added to the
reference database. For additional genomes of
autotrophic stramenopile taxa sequenced entirely from
fosmids (Aureoumbra lagunensis, Pinguiococcus pyrenoido-
sus), we have found that relatively little finishing is
required to obtain the complete genome once chloroplast
genome fosmids are sequenced (unpublished, Cattolico
et al.). Of 1,920 fosmids generated from H. akashiwo
CCMP452 total DNA, twenty gave clear chloroplast signa-
tures when compared to the draft conventionally
sequenced genome. All twenty of these fosmids were also
identified using the genome-independent bioinformatic
approach, demonstrating that this method is feasible for
de novo sequencing. Eight fosmids were fully sequenced
to assemble the H. akashiwo CCMP452 chloroplast
genome (Fig. 2A [GenBank Accession: EU168191]).

Because the fosmid cloning technique for generating tem-
plate DNA proved to be rapid, efficient and cost effective,
it was also chosen to sequence the cpDNA of H. akashiwo
NIES293, West Pacific strain. A total of 3,072 fosmids
were end-sequenced using high-throughput methods to
identify fosmids of chloroplast origin for sequencing.
2,304 additional clones were screened by Real Time PCR
once the partial genome sequence had been obtained.
Primers were designed from the draft genome sequence to
search for clones that spanned gaps. In total twenty three
fosmids were identified as chloroplast-derived and ten of
these fosmids were fully sequenced to assemble the H.
akashiwo NIES293 chloroplast genome (Fig. 2B [GenBank
accession: EU168190]).

As noted above, although our ongoing studies show that
entire stramenopile chloroplast genomes are clonable
into fosmids, the fosmid coverage for both H. akashiwo
CCMP452 and NIES293 cpDNA was not complete. Fos-
mids generated from some cpDNA domains were abun-
dant, whereas others were minimal. As shown in Fig. 2,
great difficulty in fosmid recovery was experienced for an
identical region in both H. akashiwo strains. The reasons
for extremely low coverage in this particular cpDNA
region are not known. One might suggest that the genes
encoded in this region (e.g., those necessary for ATP syn-
thesis, cytochrome function, and DNA replication) influ-
ence the survival of bacterial host cells during fosmid
library construction. Alternatively, insert packaging could
be impeded by the presence of structural anomalies, such
as branched replication or recombination intermediates,
within a localized region of the cpDNA.
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PCR was used to span those areas of the genome that were
not found in clone libraries. For example, a gap of approx-
imately 10 kb existed in NIES293 for which no fosmid
clone was retrieved. To close this gap, a series of PCR
primers was designed to create 1200 bp products, offset by
an average of 350 bp per product. Primers were designed
using the completed CCMP452 cpDNA sequence as refer-
ence. The sequenced PCR products were assembled, and
confirmed to overlap with the fosmid sequences flanking
the gaps. Similarly, a 0.1 kb gap in CCMP452 lacking
shotgun clones was spanned by sequencing a single PCR
product.

Global genome structure

The H. akashiwo CCMP452 chloroplast genome is
160,149 bp in size (Table 1). This chromosome contains
a 21,822 bp IR which divides the molecule into large sin-
gle copy (LSC: 77,470 bp) and small single copy (SSC:
39,035 bp) domains (Fig. 2A). The 159,370 bp H. akash-
iwo NIES293 chloroplast genome is shorter in the IR
(21,665 bp) as well as the LSC (77,206 bp) and SSC
(38,834 bp) domains (Fig. 2B). Notably, the H. akashiwo
NIES293 SSC domain contains an ~8.0 kb inversion when
compared to that of H. akashiwo CCMP452 (Fig. 2). An
overall GC content of 30.5% is seen for CCMP452 while
a GC content of 30.4% occurs in NIES293 cpDNA (Table
1, Fig. 2).

The genomes of both H. akashiwo strains exist in two iso-
meric configurations. Both sequencing fosmids that span
the repeats, and long PCR confirmed this observation. For
H. akashiwo CCMP452, three fosmids (FA2278; FA2279;
FA4020) which spanned the entire repeat, including some
part of both single copy domains, were chosen for shot-
gun sequence analysis. Two of these fosmids (FA2279;
FA4020) assembled into isomeric form A (Fig. 2A) while
the third showed the alternate isomer, form B. Similarly,
for H. akashiwo NIES293, three sequenced fosmids
spanned the IRs, one belonging to isomeric form A
(FA3944) and two to the alternate form B (FA4254,
FA8926) (Fig. 2B). To further confirm the presence of two
isomeric forms in H. akashiwo CCMP452, primers
designed to the ends of each single copy region (Fig. 2A)
were used in multiple combinations in long PCR to probe
for the presence of both potential configurations. The iso-
mers found in these chloroplast genomes may have been
formed by a recombination event within the IR which
resulted in the inversion of the single copy domains rela-
tive to one another (Fig. 3).

The observation that cpDNAs exist as a heterogeneous
population is not new. In 1983, Palmer hypothesized that
a recombination event within the IR of Phaseolus vulgaris
generated an equimolar population of isomeric cpDNA
molecules which differed only by the orientation of their
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Figure 2

H. akashiwo CCMP452 (A) and NIES293 (B) genome maps. Outer rim: genes on plus and minus strand, color coded according to function (see
legend); Second ring: small inverted (red) and tandem (blue) repeats; Third ring: sequence comparison to the other H. akashiwo genome, including SNPs
(blue), small insertions (green), deletions (red) and regions of extremely poor alignment (orange); Fourth ring: Location and size of fosmid clones color
coded according to their orientation: supports depicted isoform (green), supports alternate isoform (pink), uninformative (black); Fifth ring: location of
inverted repeats, large and small single copy domains. Red bar depicts location of 8 kb region inverted in CCMP452 relative to NIES293; inner circle: GC
content.
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Table I: Overview of H. akashiwo strains CCMP 452 and NIES
293 chloroplast genomes

CCMP 452 NIES 293
Length (bp) 160,149 159,370
Small Single Copy 39,035 38,834
Large Single Copy 77,470 77,206
Inverted Repeat 21,822 21,665
G+C content (%) 305 304
Protein coding (%) 68.5 69.0
Avg. protein length 703 704
Protein coding genes 156 156
With assigned function 130 130
Conserved hypothetical (ycf) 19 19
Hypothetical 7 7
Ribosomal RNA operons 2 2
Transfer RNA genes 34 34
Pseudo tRNA genes | |
tmRNA genes | |

* This table reports total numbers of genes. Each of the two IRs
contains |2 protein-coding genes, 7 genes for tRNAs and | rRNA
operon.

single copy regions [52]. The subsequent demonstration
of "polarity reversal" of the single copy region resulting in
the generation of isomeric cpDNAs in angiosperms [53],
in a chlorophytic alga [54], in the stramenopiles Vaucheria
bursa [55], Cyclotella meneghiniana [56], and H. akashiwo
(this work), argues for the widespread occurrence of this
process across divergent taxa. Our fosmid cloning
approach eliminates the laborious process of using exten-
sive restriction analysis of cpDNA to document the flip-
ping of single copy domains. By judiciously choosing
fosmids (40 to 45 kb), one can easily document cpDNA

Figure 3

Isomeric cpDNA populations. Single copy regions are
flipped resulting from a recombination event. Arrows show
positions of sequence in large and small single copy regions.
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isomerization. An additional advantage of the fosmid
technique is that the investigator can readily distinguish
the identity of IR number one from IR number two. In
conventional shotgun sequencing strategies, assignment
of a sequence to a specific repeat domain is frequently
challenging [22], especially if the IR is large, as is often
found in terrestrial plants. When assembling the genome
from shotgun data, the large IR elements collapse and
final finishing typically requires in-silico duplication of the
IR to complete the genome sequence. This approach may
lead to errors, especially if the repeats are not identical as
seen in the cryptophyte Guillardia theta [57].

It is well established that repeat size can both expand and
contract [52,53]. The ~22 kb H. akashiwo 1R is similar in
size to that found in T. pseudonana [~18 kb], C. meneghin-
iana [~17 kb], and Skeletonema costatum [~20 kb]) but sig-
nificantly larger than the 6 kb (sufficient in size solely to
encode the ribosomal operon) repeat domain seen in the
genomes of rhodophytes and most algae that contain
chloroplasts of secondary endosymbiotic origin
[55,56,58,59]. Many stramenopile chloroplast genomes
appear to maintain an IR (e.g., Dictyota dichotoma, O. sin-
ensis, P. tricornutum, Pylaiella littoralis, V. bursa) [60]. New
sequencing data suggest that other stramenopile chloro-
plast genomes may lack this architectural feature alto-
gether (e.g. A. lagunensis; unpublished data). Although
data are sparse, haptophyte [61] and cryptophyte [57]
chloroplasts also appear to maintain a small IR. Rhodo-
phyte chloroplast genomes [58,62,63] display an inverted
or direct repeat (e.g., Cyanidium caldarium, Cyanidioschyzon
merolae, Galderia sulphuraria, Gracilaria tenuistipitata) or
may lack a repeat entirely (e.g., Chondrus crispus, Griffithsia
pacifica, Porphyra yezoensis).

Gene Content

The H. akashiwo CCMP452 and NIES293 genomes are co-
linear with respect to gene content, with exception of ten
genes (see below) which are located within the ~8.0 kb
inversion inside the small single copy region (Fig. 2). An
overall protein coding content of 68.5% is seen for
CCMP452 and 69.0 % occurs in NIES293 cpDNA (Table
1, Fig. 2).

RNA genes include the ribosomal RNA operons, one copy
in each IR, one tmRNA, one threonine pseudo-transfer
RNA (anticodon UGU), and 34 tRNA genes whose antico-
dons encompass 20 different amino acids. Seven of these
tRNA genes are located in each IR, resulting in a total of 27
distinct tRNA genes. Three tRNA genes have anticodons
for methionine, although previous studies suggest one of
these tRNAs may be subsequently modified to a tRNA iso-
leucine [64]. Also present is the widely conserved tRNA
glutamine (UUC), which contributes to translation and
also plays an integral role in the biosynthetic pathway of
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8-aminolevulinic acid, the precursor for generating the
tetrapyrole-containing pigments, heme, chlorophyll and
bilin in bacteria and algae as well as in terrestrial plants
[65-67]. Many codons found in the genes of the H. akash-
iwo genomes have no corresponding anticodon in the
tRNAs that are encoded in the cpDNA. Although tRNAs
are imported into the mitochondrion [68], presently there
is no evidence that they are similarly imported into the
chloroplast. Comparing the codon usage of the predicted
OREFs to the anticodons of the resident tRNA complement,
one might suggest that 50% of the tRNAs use a wobble
base at the third codon position. This codon-anticodon
discrepancy is also present in other chloroplast genomes
of secondary endosymbiotic origin.

Both H. akashiwo chloroplast genomes contain genes
encoding 156 predicted proteins, including a core set of
45 genes which are conserved in all chloroplast genomes
sequenced to date. An additional 48 genes are conserved
in chloroplast genomes of rhodophytes and in algae with
chloroplast genomes of secondary endosymbiotic origin
[61]. Of the 156 genes for predicted proteins, approxi-
mately one-third encode products used in photosynthesis
or energy generation. All the ATP synthase genes (atp A, D,
G, H, I) are found with the exception of atpC; all the genes
of the electron transfer chain (pet A, B, D, F, G, J, L, M, N)
as well as genes important in Calvin cycle function (Form
II rubisco large and small subunits rbcL and rbcS, the puta-
tive rubisco expression protein c¢fxQ [cbbX], and rubisco
transcriptional regulator ycf30 [rbcR]) are also present. The
genomes also contain 19 conserved hypothetical genes
common to other chloroplast genomes (ycfs) and six open
reading frames with no sequence homology to genes in
other chloroplast genomes.

The chloroplast genomes of H. akashiwo and the diatoms
T. pseudonana, O. sinensis, and P. tricornutum have diverged
in gene content. The three diatom genomes are extremely
similar in gene content; there are only 3 genes (acpP, syfB,
tsf) encoded by at least one but not all 3 of these algae. In
contrast, although both diatoms and H. akashiwo share an
identical set of 125 protein-coding genes (both identified
and ycf's), H. akashiwo also maintains genes found in rho-
dophytic cpDNA (e.g., acsF, ftrB, ilvB, ilvH, pet], ps1, trgl,
tsgl, as well as ycf17, ycf34, ycf36, ycf54, ycf 65). Con-
versely, the three diatoms contain seven genes not present
in H. akashiwo (the rps6, secG, ycf42, ycf88, ycf89, and ycf90
protein-coding genes as well as ffs, the 4.5S RNA signal
recognition particle component).

Novel genes

We have now entered an era in which the comparative
genomics of autotrophic eukaryotes can be studied. By
cataloguing genes from broadly sampled taxa, we increase
both our understanding of chloroplast evolution and gain
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insight into biochemical mechanisms that drive chloro-
plast homeostasis. However, this task is not easily accom-
plished, for chloroplast genomes probably represent a
chimeric assemblage of genes which originate from both
ancestral symbiont and lateral gene transfer events. For
example, the H. akashiwo chloroplast genome retains the
genes trgl and tsgl, encoding a functional two-compo-
nent His-to-Asp signal transduction circuit [49]. Similar
circuits are found in all cyanobacterial cells, the putative
ancestral source of chloroplast genomes. The sensor
kinase/response regulator protein pair is responsible for
converting physiological information from the environ-
ment to a program that regulates gene transcription.
Although genes for one or both of these proteins are
found in most genomes of rhodophytic lineage, no His-
to-Asp pair is encoded in the three diatom cpDNAs which
have been sequenced. Thus by analyzing these proteins,
we document the retention of ancestral proteins (evolu-
tionary footprints?), and describe a mechanism of gene
regulation which is confined to a specific taxonomic clus-
ter (see [49] for discussion). Expanding this approach, we
have determined a possible function for two additional
genes present in H. akashiwo which have not been found
in any other chloroplast genome.

tyrC

Both H. akashiwo chloroplast genomes contain a gene that
encodes a putative site-specific tyrosine recombinase,
which we have named tyrC (tyrosine recombinase/chloro-
plast). The translated H. akashiwo TyrC protein is 318 and
298 amino acids in length in strains NIES293 and
CCMP452 respectively (Fig. 4). In strain NIES293 residues
129 and 130 are lacking. A significant change in the
CCMP452 tyrC gene is effected by the inversion that
occurs in the SSC region of this genome (Fig. 2). This flip
relocates 69 bp of the tyrC 3' terminus to a new location
which is ~8.0 kb downstream. The predicted amino acids
encoded by the displaced region in CCMP452 retain
100% sequence identity to those present in the intact
NIES293 protein.

Proteins with the greatest similarity to the putative H.
akashiwo recombinase are found in the mitochondrial
genomes of Prototheca wickerhamii, a chlorophyte closely
related to Chiorella vulgaris, and in the charophyte Chaet-
osphaeridium globosum (Fig. 4). In addition to these algal
mitochondrial tyrosine recombinases, H. akashiwo TyrC
has amino acid sequence similarity to the recombinases
found in Lactobacillus leichmannii, Picrophilus torridus and
Methanococcus maripaludis. Furthermore, the H. akashiwo
tyrC genes have a 25% GC content in the third codon posi-
tion, markedly higher than the 14% average for genes on
the H. akashiwo cpDNA, suggesting that this gene may be
the product of a lateral gene transfer event.
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RGPSNHKAFLTKEGKKIIHDRQKDFQLIFLMKEPDSYFFTAETNHYKSLDRVVITRDVNN
RGHSNHKAFLTKEGKKITHDRQKDFQLIFLMKEPDCYFFTAETNHYKSLDRVVITLDVNN
T-DCYRKVILSPKATISLLCSLQKEYTKFFQDRQKWCLGYTSKG---SMVDEHIWLKCINN
I-NKYRITHFSGEAVKQFILIKKDIDIVEKNNE------ TLAG----TISVSSWIHFINK
* * *
VMREVSNQLPDKPNITSHSFRIGYITQLWKDSKDIEFVKQTIGHRKLDTTSAYVNKLSDQ
VMREVSNQLPDKPNITSHSFRIGYITQLWKDSKDIEFIKQTIGHRKLDTTSAYVNKLSDQ
FIKPAANHFN--VKLSSHSFRINYITNLLKVMK-IERVQQIIGHKSVNTTAKYDRYQPKH
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Comparison of H. akashiwo CCMP452, H. akashiwo NIES293, Chaetosphaeridium globosum and Prototheca wick-
erhamii recombinases. Gray shading indicates residues completely conserved among the four proteins. Stars indicated con-
served residues important in catalytic function. Overline and underline are box | and box Il respectively.

Because there is such a limited sequence similarity among
known integrases the identification of these proteins often
relies upon the identification of essential catalytic residues
[69]. The putative H. akashiwo TyrC protein contains
numerous motifs defined for the integrase family of
recombinases [70]. This protein retains the critically
important catalytic residues (CCMP452 numbering): Arg
143 (with a conserved glutamate located three amino
acids downstream), His 248, Arg 251 and Tyr 283 (Fig. 4).
These residues have been shown to lie close to the active
site when the protein is folded. Mutation of any one of

these amino acids reduces or eliminates recombinase
activity [69,71,72]. All bacterial sequences with similarity
to H. akashiwo TyrC noted above also retain the Arg-His-
Arg amino acid triad as well as the Tyr nucleophile com-
ponent. Additionally, H. akashiwo TyrC displays the
highly conserved domains designated Box I and II by
Nunes-Duby and colleagues [73] in their comparative
analysis of 105 site-specific recombinases.

Though the tyrC gene is expressed in both H. akashiwo

strains (Deodato and Cattolico, unpublished), presently,
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we can only speculate on the function of its translated
protein product. In bacteria, site-specific recombination
often utilizes the tyrosine recombinase pair XerC and
XerD, which may be evolutionary derivatives of a single
ancestral protein [73,74]. Conventionally, the XerC/D
protein pair breaks and rejoins DNA strands at short, con-
served, 28 base-pair domains (dif sites) through the for-
mation of Holliday junction intermediates [75-77]. This
docking domain usually consists of two 11-base-pair
"arms" with a 6-nucleotide central region (Table 2). Four
types of putative dif recognition domains are present in
the H. akashiwo chloroplast genomes (Table 2). Whether
these nucleotide domains truly serve as points for
intramolecular recombination, or sites where multimeric
[21] H. akashiwo cpDNA molecules are converted to mon-
omers, warrants further experimentation.

Trans-membrane protein

An extremely large protein comprised of 456 amino acids
is encoded in the IR of both strains (Heak452_Cp006/
Heak452_Cp062; Heak293_Cp006/Heak293_Cp062).
Expression of this large gene has been verified by quanti-
tative RT-PCR in both strains (Deodato and Cattolico,
unpublished). A variety of sequence analysis techniques
have been used to gain some insight into the nature of this
unique chloroplast gene. Standard BLAST queries against
all routinely available databases reveal no significant
known homologs. Searches with PSI-BLAST [78] indicate
that the most closely related proteins in standard data-
bases are a series of putative G protein-coupled receptors
(GPCR) in C. elegans. Other significant partial hits (i.e.,
alignment of fragments of 60-120 residues with ~30%
sequence identity and 40-60% identity plus conservative
substitution with minimal to modest gapping) include
FMLP receptors (human and mouse), LSH receptor

http://www.biomedcentral.com/1471-2164/9/211

(human and pig), melanocortin-3 receptor (rat), and
metabotropic glutamate receptor 5 (rat). Hydrophobicity
analyses and membrane topology prediction suggest that
the undescribed H. akashiwo protein sequence possesses
seven probable transmembrane segments; the length and
hydrophobic residue repeat patterns in the putative trans-
membrane segments are consistent with an alpha-helical
structural motif. The qualitative features of the transmem-
brane helix prediction profiles are more similar to the pro-
files observed in other G protein-coupled receptors from
the rhodopsin/beta-adrenergic class (6 clear transmem-
brane segments, and a seventh segment which is at the
threshold margin for transmembrane assignment) than
they are to bacterial halorhodopsin proteins, which have
seven strong transmembrane segments [79-81].

Attempts to align the undescribed H. akashiwo protein
sequence with a collection of sequences from the rho-
dopsin/beta-adrenergic (Group A) receptor family were
largely unsuccessful. We were unable to generate an align-
ment although the H. akashiwo protein sequence displays
12-18% amino acid sequence identity with various mem-
bers of a compiled GPCR data set, comparable to the
sequence identity observed for bovine rhodopsin with
many adrenergic receptors. The H. akashiwo protein
sequence does exhibit some key signature features of G
protein-coupled receptors, such as an NRF motif at the
carboxy terminal end of the third putative transmembrane
segment, which is an observed variant of the well-charac-
terized DRY motif in the GPCR superfamily. In contrast
the H. akashiwo protein sequence does not possess the
highly conserved disulfide bond observed in the extracel-
lular loops of many GPCRs. The H. akashiwo protein does
possess a number of glycosylation, myristoylation, and
phosphorylation sites in combinations and locations sim-

Table 2: Comparison of putative dif sites in H. akashiwo chloroplast genomes with those of selected bacteria and viruses

XerC Binding Xer D
#H. akashiwo | ACTGAGCTAAT AGCCCAACA TTATGTTAAAT
&H. akashiwo 2 ATAGGCCTTCG TCCCCT TTATGTTAAAT
&H. akashiwo 3 ATTGAGGATCA TTTTTG TTATGTTAAAG
%H. akashiwo 4 AAAAACCAAAA AATAAT TTATGTTAAAG
*E. coli GGTGCGCATAA TGTATA TTATGTTAAAT
*S. typhimurium GGTGCGCATAA TGTATA TTATGTTAAAT
*S. typhi GGAGCGCATAA TGTATA TTATGTTAAAT
*V. cholerae chr | AGTGCGCATTA TGTATG TTATGTTAAAT
*V. cholerae chr || AATGCGCATTA CGTGCG TTATGTTAAAT
*H. influenzae ATTTCGCATAA TATAAA TTATGTTAAAT
*B. subtilis ACTTCCTAGAA TATATA TTATGTAAACT
*ColEl cer GGTGCGTACAA TTAAGGGA TTATGGTAAAT
*pSCI0I psi GGTGCGCGCAA GATCC TTATGTTAAAC

# Present in CCMP452 and NIES293, on inverted repeat
& Present in CCMP452 and NIES293, on large single copy
% Present in NIES293, on inverted repeat

* From Lesterlin et al, 2004 [77]
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ilar those observed for

sequences.

G-protein-coupled-receptor

On the basis of these analyses, the H. akashiwo protein
sequence appears to be an integral membrane protein
with seven probable transmembrane segments. It exhibits
sequence characteristics that suggest it may be a G protein-
coupled receptor, related most closely to the rhodopsin/
beta-adrenergic receptor family, although we have not
been able to generate convincing pairwise or multiple
sequence alignments with other members of the GPCR
superfamily. If the H. akashiwo protein sequence is indeed
the first member of the GPCR superfamily in the chloro-
plast of an alga, it is obviously strongly diverged from the
GPCRs seen in animals. However, because this protein
looks far more like a G protein-coupled receptor than it
does anything else currently present in sequence data-
bases, more detailed biochemical characterization of the
H. akashiwo protein sequence is warranted.

Gene arrangement

Four protein-coding genes use GTG starts (rbcS, psbF,
PRSP-3 [ycf65], rps3). There is no consistency within stra-
menopiles or rhodophytes for chloroplast genes that ini-
tiate with a non-ATG start. Two sets of overlapping genes
are common to both genomes: psbC and psbD (32
codons), and Heak452Cp_021/groEL (3 codons). Addi-
tionally, in CCMP452, the Heak452_Cp014 (orf97)/chil
genes overlap by 7 codons. However, a one base-pair
insertion in NIES293 results in a frame shift that causes
orf97 and chil genes to be contiguous. Sequence align-
ment of NIES293 orf97 and the functional CCMP452 96-
amino acid sequence shows that the amino termini of
these polypeptides are virtually identical (98% homology
among the first 65 amino acids). Given that CCMP452
orf97 is differentially expressed over the cell cycle [34], it
will be of interest to determine whether the altered
NIES293 protein retains its functionality.

Unlike terrestrial plant and green algal chloroplast
genomes, but similar to rhodophytic chloroplast genomes
and other chloroplast genomes of secondary endosymbi-
otic origin, no introns have been detected in H. akashiwo
chloroplast-encoded genes. However, a conserved puta-
tive intein [82] in dnaB is maintained, and numerous
other genes encode proteins that contain in-frame amino
acid deletions or insertions when compared to homo-
logues in other algal chloroplast genomes. Proteins hav-
ing the largest inserts include ClpC (multiple: 90, 43, 41
amino acids) and RpoA (79 amino acids). Among the 16
protein-coding genes modified by inserts, it appears that
some common functional identities occur. These include
five members of the ATP complex, AtpA (2 amino acids),
D (4, 5, 12, and 2 amino acids), G (2 amino acids), B (1
amino acid) and E (1 amino acid) as well as five ribos-
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omal proteins, RpL4 (14 amino acids), RpL18 (20 amino
acids), Rps5 (2 amino acids), Rps9 (5, 2, and 3 amino
acids), and Rps10 (11 amino acids). Proteins that have
significant, extended carboxy termini include Rps10 (31
amino acids), Ycf16 (32 amino acids), and ClpC (46
amino acids). Comparison of genomic sequences to
cDNAs generated for cIpC, rpoA, rpl18, rps5, and rps10
shows that the inserts are retained in mature mRNA.
Whether they are removed after translation remains
unknown.

Globally, H. akashiwo cpDNA in either isomeric form
shows little synteny with published cpDNAs (Fig. 5),
though sub-domains of conservation in gene placement
are evident. As in other chloroplast genomes of the rhodo-
phytic or secondary endosymbiotic lineage, the ribosomal
protein genes occur in clusters. The largest of these con-
served arrays is the "ribosomal protein block" which
includes 26 ribosomal genes as well as tufA, rpoA and secY
[83]. DnaK is almost universally found 3' to this ribos-
omal protein-coding domain. This gene cluster may repre-
sent an evolutionarily conserved, prokaryotic-like
transcriptional operon in which large numbers of ribos-
omal protein genes are co-transcribed [84]. Indeed, north-
ern analysis using probes spanning the entire "ribosomal
protein block" of G. theta cpDNA revealed the production
of an mRNA transcript of approximately 16 kb. Smaller
mRNAs in this northern analysis, likely a product of pri-
mary transcript processing, were also detected [85].

Numerous smaller, intact motifs seen in all rhodophytic
and secondary endosymbiotic chloroplasts examined to
date are maintained in H. akashiwo cpDNA. Among the
conserved gene clusters are the atpB/atpE and atpl/atpH/
atpG/atpF/atpD/atpA complexes, the ribosomal genes
rpl11/rpll/rpl12; rpl27/rpl21, the photosynthetic genes
psaA/psaB, psbD/psbC, psbB/psbT/psbN/psbH as well as the
Calvin cycle rbcL/rbcS genes (often in association with
¢fxQ) (Fig. 2). Conservation in gene order is maintained
in the placement of the H. akashiwo initiator methionine
tRNA. As in thodophytes and algae having chloroplasts of
secondary endosymbiotic origin, this tRNA is embedded
between psaD and ycf36. Interestingly, rps14, which is
adjacent to initiator methionine tRNA in most green algae
and land plants, lies immediately upstream of the psaD
gene in the H. akashiwo chloroplast genomes. In the rho-
dophytic lineage the rpo C,C; B,/rps20/ginB/rpl33/rps18
polymerase cluster appears to have undergone dissolution
through a series of independent events. Two genes (rps20
and ginB) in the cluster appear to have been targeted for
removal or transfer to the nucleus. The intact cluster is
present in Porphyra purpurea and P. yezoensis. Cluster integ-
rity is maintained in H. akashiwo, O. sinensis, P. tricornu-
tum, G. theta and G. tenuistipitata, although glnB is lost. In
C. caldarium rps20 rather than glnB has been eliminated.
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A. lagunensis lacks both rps20 and ginB, as does the hapto-
phyte Emiliania huxleyi, which also splits rpoC,C, B, and
pl33/rps18 into distantly-located clusters.

Analysis of cluster integrity has been a valuable tool in the
assessment of phylogenetic identity and evolutionary
processes (e.g. [86,87]). The data presented here give evi-
dence that both gene cluster maintenance and dissolution
have occurred in the H. akashiwo chloroplast genomes.
Unfortunately, comparative analysis of gene flux solely
within the stramenopiles is hampered by the paucity of
available data, since H. akashiwo is the only non-diatom
genome published from this group. However, the small
data set available already suggests that the stramenopiles
will present a significant challenge, especially in decipher-
ing the dynamics of gene cluster flux and variations in
gene co-linearity patterns within this taxon.

Indels and SNPs

Though the genomes of H. akashiwo CCMP452 and
NIES293 are largely co-linear and have identical gene con-
tent, there are 150 single nucleotide polymorphisms
(SNPs) between them. Within the 35 protein-coding
genes containing SNPs, both synonymous (30) and/or
non-synonymous (36) changes are noted (Table 3). These
changes occur in informational (e.g., rpoB, rps14) as well
as operational (e.g., ftsH, secY) genes. Also seen are small,
variable regions containing deletions and insertions of
one to six nucleotides. These small variable regions are
clustered into "hot spots" which appear throughout the
genome (Fig. 2). Additionally, six large, variable regions,
which are predominantly located in the SSC region, repre-
sent the major cpDNA sequences between the two H.
akashiwo strains.
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Table 3: Presence of Single Nucleotide Polymorphisms in
protein coding genes between H. akashiwo CCMP452 and

NIES293

Gene Synonymous

Non-synonymous

Ribosomal

rpl12
rpl19
rps12
rps|4
rps31

Translational

rpoB
rpoC2

Photosystem/energy

psaA
psaD
psaE
psbB
ycfo4A
atpA
atpl
petD

Metabolic

cpC

ftsH

ivB

secA

secY
rbcL* (x2)
tsgl
ycf248

ycf/orf

_—_— = —_ 1 = N

—_ —_T N — — — — =

ycf36

ycf39

ycf46

ycf66
orf006* (x2)
orf021
orf026
orfo41

Highly impacted genes
XerCC
orf014P

v ol —

* located on the inverted repeat
A photosystem | assembly protein
B ABC transporter protein

C within the first 275 AAs

D within the first 65 AAs
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The extent to which cpDNA sequence varies among H.
akashiwo ecotypes is not known. Unicellular algae, such as
H. akashiwo, often exist in high-density populations that
are generated via rapid cell division. If DNA replication
serves as a mutational driver, then chloroplast genetic pro-
files might be expected to shift during the biogenesis of an
algal bloom [88]. When examining genetic difference
between strains, analyzing incomplete genomes or stand-
ard nuclear markers may be misleading. For example,
analysis of chloroplast rbcL/S as well as nuclear 18S and
ITS rDNA (markers that have proven to be reliable in
other taxa) suggested that approximately 40 H. akashiwo
strains of different geographic origin were of identical
genotype (Ki and Han, 2007; Connell, 2000). This con-
clusion led the authors to propose that geographic distri-
bution of H. akashiwo is due to a global dispersal
mechanism. By sequencing whole genomes, the presence
of appreciable genetic differences in ¢pDNA between
strains was made clear, and suggests a diverged ancestry
for CCMP452 and NIES293. Continued sequence analysis
of additional strains may show an even greater variation
among H. akashiwo populations. For example, six variants
of the cfxQ gene (1 to 2 nucleotide changes) are seen when
24 H. akashiwo strains are analyzed (Lee, Hoyt, Lakeman
and Cattolico, unpub.). In-silico modeling suggests that
the non-synonymous changes observed in the sequence of
cfxQ, may impact protein function [89].

Repeats

Analysis of the H. akashiwo chloroplast genome reveals the
presence of numerous AT-rich repeats (Table 4).
CCMP452 has 40 inverted and 25 tandem repeats that
represent 2.62% of the total genome, whereas NIES293
cpDNA has 36 inverted and 23 tandem repeats encom-
passing 2.38% of this genome. Both strains retain many
identical repeat structures. Substitution, loss or gain of
nucleotides within a repeat motif is not confined to one
H. akashiwo strain. Essentially all major changes in these
repeat elements occur within intergenic regions.

Inverted repeats found in H. akashiwo cpDNA are com-
prised of a stem structure which ranges from 17 to 87 bp
in length (average 36.9 +/- 15.6 bp). The loop domain of
these inverted repeat arrays is very small, averaging only
5.49 +/- 3.5 bp. Thus the average inverted repeat structure
is approximately 42 bp in size. Tandem repeats have a
period of 18.1 +/- 5.9 bp (CCMP452) or 19.9 +/- 4.0 bp
(NIES293) with a copy number ranging from 1.9 to 7.5.
Thus, the average tandem repeat element is 37.5 +/- 5.0 bp
in size. Whether the repeat size maintenance of approxi-
mately 40 bp for both inverted and tandem repeats has
functional significance is not known.

Notably, many repeats (including both tandem and

inverted types) are localized within the spacer region that
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Table 4: Occurrence of tandem and inverted repeats in chloroplast genomes of rhodophytes and algae with chloroplasts of secondary

endosymbiotic origin

Organism Genome Size Inverted # (bp) % Tandem # (bp) % Repeat % Total
Heterosigma akashiwo CCMP452 160,149 40 (3060) 1.91 25 (1150) 0.71 2.62
Heterosigma akashiwo NIES293 159,370 36 (2879) 1.81 23 (916) 0.57 2.38
(C) Odontella sinensis 119,704 21(1394) 1.16 2 (74) 0.06 1.22
(C) Thalassiosira pseudonana 128,814 26 (1,600) 1.24 5(210) 0.16 1.40
(P) Phaeodactylum tricornutum 117,369 14(751) 0.64 4 (132) 0.11 0.75
Emiliana huxleyi 105,309 15 (784) 0.74 | (34) 0.03 0.77
Guillardia theta 121,524 16 (1080) 0.09 I (32) 0.03 0.12
(F) Gracilaria tenuistipitata 183,883 8 (421) 0.23 5(184) 0.10 0.33
(F) Porphyra purpurea 191,028 10 (489) 0.26 I (30) 0.02 0.28
(F) Porphyra yezoensis 191,952 13 (672) 0.35 3(132) 0.07 0.42
(B) Cyanidium caldarium 164,921 9 (526) 0.32 2 (62) 0.04 0.36
(B) Cyanidioschyzon merolae 149,987 3(152) 0.10 71 (1984) 1.32 1.42
Cyanophora paradoxa 135,599 47 (3268) 241 26 (1,435) 1.06 3.46

C-Centric diatom; P-Pennate diatom F-Floridiophyte B-Bangiophyte

lies between the 3' terminus of two genes that are tran-
scribed toward one another on opposite DNA strands.
These "shared repeats" are located at seventeen identical
sites within H. akashiwo CCMP452 and NIES293 cpDNA
including between psbA /psbC, psaC/ccsA, psal/petA, psal/
clpC, ycf54/psbY and ycf30/pet]. CCMP452 has three addi-
tional sites. The observation of repeat sharing between
two genes is similar to that seen in bacterial genomes
where inverted repeats with stem lengths longer than
eight nucleotide pairs are found most frequently in "short
non-coding regions bounded by two 3' ends of conver-
gent genes" [90]. Additionally, both H. akashiwo genomes
have repeats, at 15 identical sites, that lie in the spacer
region between genes that are transcribed on the same
DNA strand. In some cases, inverted repeats overlap with
the genes themselves. The largest examples include over-
laps at the 3' end of psbI (20 bp), psal (36 bp), petD (39
bp), and dnaK (24 bp). Repeats are also found internal to
genes. CCMP452 0rf97 (Heak452_Cp014), which over-
laps chll, contains a perfect 24 base pair tandem repeat.
This repeat is located 61 bases 5' to the ATG start of chil
[34]. A tandem repeat is also found within the 3' terminus
of rpoB (CCMP452, 26 bp; NIES293, 36 bp).

Dispersed repeats occur in both H. akashiwo CCMP452
and NIES293 chloroplast genomes, but they are of low
similarity and number (less than 100 total dispersed
repeats greater than 90% similarity). The largest and most
similar of these are conserved between the two H. akash-
iwo genomes. These elements are likely to have limited
influence on recombination, unlike those observed for
Chlamydomonas reinhardtii [52].

Though repeats are found in rhodophytic chloroplast
genomes and other chloroplast genomes of secondary
endosymbiotic origin, they are often present at a much

lower frequency than that seen in H. akashiwo (Table 4).
The glaucophyte Cyanophora paradoxa and the thermo-tol-
erant unicell, C. merolae, appear to be exceptions to this
observation. The former retains high numbers of both
tandem and inverted motifs while the latter appears to
have retained almost exclusively tandem arrays.

It was of interest to determine whether a repeat structure
is associated with a specific gene and whether that associ-
ation is maintained among chloroplast genomes that
maintain regional, but little global (Fig. 5), gene co-line-
arity. Notably, genes encoding cytochromes appear to be
targeted for repeat embellishment. In H. akashiwo an
inverted repeat is found within the 3' spacer of all pet
genes (except petL) and the gene cssA, which encodes a
cytochrome assembly protein [91]. This pattern of
inverted repeat localization for the cytochrome complex is
partially maintained in all the taxa examined in Table 5.
Also striking is the uniformity of repeat placement among
many taxa in the 3' spacer adjacent to rbcS, rps10, and atpA
genes. For example in the glaucophyte C. paradoxa not
only is an inverted repeat associated with the 3' termini of
pet A, B/D, F, G, L, rbcS, and atpA, but a 3' inverted repeat
remains associated with rps10 even though the "ribos-
omal protein block" is significantly disrupted in this chlo-
roplast genome. Maintenance of repeat association with a
specific gene is particularly notable in a genome such as P.
purpurea, which has many coding genes (253) and few
repeats (11). In this red algal chloroplast genome, the
probability of finding an inverted repeat in the 3' spacer of
any one gene is approximately 4.3%. Selective placement
of specific repeats may extend beyond the rhodophytes
and algae with chloroplast genomes of secondary endo-
symbiotic origin. For example, although rbcS is nuclear-
localized in terrestrial plants and green algae, in those
cases, the remaining chloroplast-encoded rbcL gene is usu-
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Table 5: Conservation of gene-associated repeats

http://www.biomedcentral.com/1471-2164/9/211

Cytochrome Associated Genes

Organism rbcS rps10 atpA petA B/D F G J L M/N cssA
Heterosigma akashiwo CCMP452 IR T/IR T IR IR IR IR IR - IR# IR
Heterosigma akashiwo NIES293 IR - T IR IR IR IR IR - IR# IR
(C) Odontella sinensis IR IR IR IR/T* - IR/T* IR/IR 0 - IR# -
(C) Thalassiosira pseudonana - T/IR IRIT IR - - - 0 - IR -
(P) Phaeodactylum tricornutum IR IR IR IR* IR IR* - 0 IR# - -
Emiliana huxleyi IR IR - IR - 0 IR 0 - - IR
Guillardia theta IR T/IR* - IR T T* IR# 0 - - IR#
(F) Graciliaria tenuistipitata - IR* - - IR IR* - IR 0 - -
(F) Porphyra purpurea - IR IR - IR - IR IR - - -
(F) Porphyra yezoensis IR IR IR - - - IR/T IR - - -
(B) Cyanidium caldarium IR - - - - T - - 0 - -
(B) Cyanidioschyzon merolae IR - T T - T# - - - - T
Cyanophora paradoxa IR IR IR IR IR IR IR 0 IR IR IR

IR: inverted repeat; T: tandem repeat; — no repeat; 0 gene absent from cpDNA ; * shared repeat; # located 5' to the gene. All other repeats are 3'

to the gene.

ally followed by a repeat element in its 3' intergenic
region.

The highly conserved association of a secondary element
with a specific gene in one taxon may offer clues for its
function in others. For example, both strains of H. akash-
iwo retain a tandem repeat (77 bp) and an inverted repeat
(212 bp) in the spacer 5' to rpl3, which is the first gene in
the putative ribosomal operon. Like bacteria [84], chloro-
plasts [85] transcribe the approximately 30 genes within
this motif as a single transcript. Disruption of the E. coli
inverted repeat structure that lies 50 bp upstream of the
pl3 gene eliminates the transcription of this operon [92].
Well-documented information is available concerning the
impact on terrestrial plant and green algal chloroplast
mRNA function by the presence of inverted repeats within
both the 5' and 3'UTR of a gene [93-95]. There is no doubt
that intergenic regions contain significant information
critical to organelle function. As more chloroplast genome
sequences become available, we may find it just as instruc-
tive to compare and catalogue these domains, as it is to
compare "coding" domains.

Conclusion

The fosmid-cloning-based chloroplast genome sequenc-
ing approach described here allows chloroplast genomic
analysis for algal species that would be refractory to con-
ventional organellar DNA isolation and analysis. In this
study, we have presented new information on the chloro-
plast genome architecture and function in the strameno-
pile class raphidophyceae. Our ongoing studies target
additional underrepresented stramenopile taxa for chlo-
roplast genome analysis. The generated data will help
resolve evolutionary patterns and provide insight into the

mechanisms of chloroplast genome function within this
marginally analyzed taxon.

Methods

Algal growth and strains

H. akashiwo (Hada) Hada ex Hara et Chihara strains
CCMP452 and NIES293 were used in this study.
CCMP452 was isolated from Long Island sound in 1952
and is commercially available from the Provasoli-Guillard
National Center for Culture of Marine Phytoplankton;
NIES293, isolated from Onagawa Bay, Japan in 1984, is
from the collection of the National Institute for Environ-
mental Studies in Japan. Vegetative cultures were axeni-
cally maintained on an artificial sea-water (O-3 medium)
as previously described [50,96]. One-liter cultures were
grown in 2.8 liter Fernbach flasks with continuous rotary
shaking at 60 rpm under 60 pmol Q m2s! cool white light
on a 12 hrlight: 12 hr dark (diel) photoperiod. Cells were
counted using a Coulter Counter (model ZBI, Coulter
Electronics Inc., Hialeah, Fla.) equipped with a 100 x 120
pm aperture. All cultures were tested for fungal and bacte-
rial contamination by inoculating 1 ml of H. akashiwo cul-
ture into 5.0 ml of a medium containing 2.0 g of nutrient
broth (Difco laboratories, MI) and 1.25 g yeast extract in
0.25 liter of O-3 algal growth medium.

Chloroplast DNA purification

cpDNA from H. akashiwo CCMP452 was purified using a
modified Hoescht dye/CsCl technique [97-99]. Pellets of
approximately 6 x 108 late logarithmically growing cells
(roughly 2 L of culture per pellet), were resuspended in 20
ml of 50 mM Tris- 50 mM EDTA buffer, pH 8.0 (TE buffer)
at 5°C, after which 1 ml SDS (20% SDS in TE buffer) was
added. After gentle mixing, 0.25 ml of Hoescht dye (10
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mg/ml dH,0) was added, the mixture was placed on ice
for 5 min, then 20 g of solid CsCl was added. When the
salt dissolved, the refractive index was adjusted to 1.398.
The solution was centrifuged using a Beckman Ti70.1
fixed angle rotor at 45,000 rpm for 20 hrs at 20°C. This
centrifugation step separates the nuclear (highest den-
sity), mitochondrial (middle density) and chloroplast
(lowest density) DNAs according to their different %G+C
content. cpDNA, visualized by UV light, was recovered by
puncturing the centrifuge tube wall using a 20-gauge nee-
dle. cpDNA fractions were pooled into a 5.0 ml tube, the
refractive index readjusted to 1.3080 and the solution cen-
trifuged for 20 hrs at 45,000 rpm and 20°C in a vertical
Beckman Vti65.2 rotor. This last step was repeated until a
single, clean cpDNA band was recovered. Hoescht dye was
removed by adding to the DNA/CsCl solution an equal
volume of isopropanol that was extracted with NaCl- sat-
urated TE buffer. The isopropanol wash was repeated 10
times. To remove salts, the cpDNA solution was dialyzed
(22 mm snake skin dialysis tubing, Pierce, Rockford, II)
overnight with stirring at 4 °C against 2 liters of TE buffer.
To concentrate the DNA solution, 100% butanol was
added (0.5 ml butanol:1 ml DNA solution), the alcohol
discarded, and the process repeated until the final DNA
solution was reduced to approximately 0.5 ml. cpDNA
was precipitated by the addition of 50 pl of 3 M sodium
acetate (in H,O, pH 6.0) and 1 ml of 95% ethanol. The
purified cpDNA was stored at -20°C until use. Approxi-
mately 80 liters of culture were harvested to retrieve suffi-
cient cpDNA (10 pg) for the conventional shotgun
sequencing protocol (about 15 cpDNA purification runs).

Total genomic DNA purification

Total high molecular weight DNA was extracted for long
PCR and for fosmid library construction using Qiagen
Genomic-Tip kits (100 G or 500 G) according to manufac-
turer's directions (Qiagen, Valencia, CA, USA). Briefly, H.
akashiwo cells, grown to a density of 1.3 x 105 cells/ml,
were harvested by centrifugation at 1,000 x g for 5 min.
Cells were resuspended at a density of 8.7 x 10> cells/ml
in 20 ml of cold lysis buffer (20 mM EDTA, 10 mM TrisCl,
pH 8, 1% Triton X, 500 mM Guanidine-HCI, and 200 mM
NaCl). The lysed cell suspension was incubated at 37°C
for 1 hour with gentle agitation. The DNA was further
treated with RNAse (20 pg/ml) for 30 minutes at 37°C
followed by Proteinase K (0.8 mg/ml) treatment for 2 h at
50°C with gentle agitation. To remove cell debris, the
lysed cell suspension was pelleted by centrifugation at
9,750 x g for 20 min and the cleared lysate was removed.
Three ml of the lysate were added to each Qiagen
Genomic tip, previously equilibrated with QBT (750 mM
NaCl, 50 mM MOPS, pH 7.0, 15% isopropanol, 0.15%
Triton). The columns were washed twice with 10 ml of
buffer QC (1.0 M NaCl, 50 mM MOPS, pH 7.0, 15% iso-
propanol). DNA was eluted from the genomic tip with
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buffer QF (1.25 M NaCl, 50 mM Tris-Cl, pH 8.5, 15% iso-
propanol) and precipitated by the addition of 0.7 volume
of room-temperature isoproponal. The DNA was pelleted
by centrifugation at 9,750 x g for 20 minutes. This pellet
was then washed with 4 ml of cold 70% ethanol, and cen-
trifuged at 9,750 x g for 10 minutes, before the superna-
tant was removed and the pellet air-dried. The pellet was
resuspended in a total of 1 ml of Tris-Cl, pH 8.5. A single
round of total DNA purification from 2 L of culture pro-
duced sufficient DNA (50 pg) to make a fosmid library.

Shotgun library preparation, DNA sequencing and genome
assembly

DNA (CsCl-purified, or cosmid or fosmid clones) was
sheared to 3-5 kb fragments using a Hydra-Shear (Gen-
eMachines Inc. USA), and transformed into a blunt-ended
pUC18 library, using 100 pug/mL carbenicillin and X-Gal/
IPTG on for selection on solid agar bioassay plates (Nunc
#240845). White colonies were picked using a Q-pix auto-
mated colony picker (Genetix Ltd. UK) and inoculated
into 384-well freezing plates (Genetix cat# X7001) using
UWGC freezing medium (10 g/L tryptone, 5 g/L yeast
extract, 10 g/L NaCl, 6.3 g/LK,HPO,, 1.8 g/L KH,PO,, 0.5
g/L sodium citrate, 0.9 g/L (NH,),SO,, 4.4% glycerol, 100
pg/mL Carbenicillin). Templates were amplified using
TempliPhi (Amersham/GE USA), and sequenced accord-
ing to standard protocols using the Big Dye Terminator
reagent BDT v3.1 (0.25 pL per reaction). Sequencing reac-
tions were analyzed using ABI 3730 automated sequenc-
ers (Applied Biosystems USA). Sequencing reads were
processed using the phred/Phrap/consed package of base-
calling, sequence assembly, and finishing/editing soft-
ware [100-103].

Long PCR

To determine the orientation of the LSC relative to the
SSC, four primers were designed based on H. akashiwo
CCMP452 cpDNA sequence obtained from shot-gun
cloning. The primers were designed to the unique regions
of the chloroplast genome and were used to amplify
cpDNA from the SSC region through the IR to the LSC
region. The primer set one ORAC 210 (5' cgatcgttaactagt-
ggtacttgctgtc 3') and ORAC 214 (5' caatcagtggaacacaag-
cagtgaag 3') generates a ~28 kb fragment while primer set
two, ORAC 212 (5' ccacgtttctatacgacagatttcgag 3') and
ORAC 216 (5'catatgcatcagaaacccaaatacctg 3'), produces a
~29 kb product. These primers were also used in two alter-
nate combinations: set three (ORAC 212; ORAC 214) and
set four (ORAC 216 and ORAC 210) were expected to gen-
erate ~29 kb and ~26 kb PCR products respectively only if
a second isomeric form of cpDNA was present.

The long PCR reactions were performed using the LA Taq™
PCR system from Takara Mirus Bio inc. (Madison, WI) in
a 50 4l reaction following the manufacturer's recommen-
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dations. The PCR reaction contained 1 X LA PCR™ buffer
IT (Mg2* plus), 400 uM of each ANTP, 200 nM each of the
downstream and upstream primers, 2 U of Takara LA
Taq™ and 280 ng of high molecular weight DNA. A nega-
tive control was performed for each primer set by exclud-
ing the DNA from the PCR reaction. The PCR reactions
were mixed by pipetting, briefly centrifuged, then placed
in the thermal cycler (Eppendorf Mastercycle Gradient)
for an initial denaturation step at 94 °C for 3 min followed
by 29 cycles of 94°C for 30 sec, and 68°C for 20 min.
After the 30t cycle, a final extension was performed at
68°C for 10 min. The size of the PCR products was esti-
mated using Roche DNA molecular weight marker XV
(Roche Applied Science, Indianapolis, In) on a 0.5% TAE
gel (4.84 g/L Tris-Base, 1.1% glacial acetic acid, 1 mM
EDTA, pH 8.5 plus 5 g/L electrophoresis-grade agarose)
run at 10 volts for 60 h. The PCR products were cloned
into Expand Vector III vector using the Expand Cloning
Kit from Roche according to the manufacturer's instruc-
tions. The presence of inserts was confirmed using the
restriction enzyme Not1 (Roche). The four unique cosmid
clones were shotgun sequenced to confirm the orientation
of the SSC and LSC regions relative to the IR.

Fosmid library construction, and end-sequencing

Large-insert fosmid clones were prepared from high
molecular weight DNA as previously described [104].
Briefly, sheared (45 kb) total cellular DNA was size-
selected by agarose gel-electrophoresis using a DRIII
CHEEF gel apparatus (Bio-Rad, Hercules, CA), followed by
end-repair and packaging into the PCC1Fos Vector, using
the Epicentre CopyControl Fosmid Library Production Kit
(Cat CCFOS110, Epicentre Biotechnologies, Madison,
WI). Clones were plated after chloramphenicol selection,
and picked using the Q-pix automated colony picker
(Genetix Ltd. UK) and inoculated into 384-well freezing
plates using UWGC freezing medium (defined above,
under Shotgun library preparation, but with 12 ug/mL
chloramphenicol as the antobiotic). Fosmid DNA was
recovered using a standard alkaline-lysis protocol, and
sequenced according to ABI manufacturer's directions, in
an 8 pL reaction using 0.5 pL BDT version 3.1, 5 pmol of
vector end-sequencing primers, and 100 ng DNA per reac-
tion. Cycle sequencing was carried out in standard ther-
mocycling conditions (3 min denature at 94°C, followed
by 99 cycles of the following regime: 94°C 30 sec, 50°C
20 sec, 60°C 4 min), and analyzed on an ABI 3730 auto-
mated sequencer (ABI Biosystems, USA). Vector
sequences were removed and sequences were further
trimmed from both ends until a window of 12 bp with
90% of positions having a Phred score of Q20 or greater
was reached. Sequences were compared using BLASTX to
the GenBank non-redundant database and to a custom
database consisting of published chloroplast genomes.
Fosmids in which both end sequences had high quality
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matches (E value < 104) to a chloroplast gene as judged
by both BLAST analyses were identified as chloroplast
derived. All fosmid end sequences are available on our
web site [105]. In addition to end-sequencing, six 384-
well freezer plates of fosmids from the NIES293 library
were screened using Real-Time PCR (RT-PCR) and assayed
on an ABI 7900HT Sequence Detection System. PCR reac-
tions were prepared using ABI Sybr Green PCR Master Mix
(ABI Cat #4334973), and primer pairs designed to regions
of the draft NIES293 genome (as well as the completed
CCMP452 genome, since it was available). Primer pairs
were standard oligonucleotide primers, designed to pro-
duce a 150 bp product. Reactions were inoculated using a
384-pin plastic plate replicator (ISC bio express cat#
832404) directly from the 384-well fosmid glycerol stock
(see above). Positive clones were end-sequenced to con-
firm their identity, and sequenced by shotgun methods
(see above).

Annotation

Open reading frames were initially predicted using Glim-
mer 2.0 [106] and then refined manually. The compara-
tive RNA Database [107] was used to refine the locations
of the ribosomal RNAs. Genes for tRNAs and tmRNAs
were identified using tRNASCAN-SE [108]. SRPscan [109]
was used to search for signal recognition particle RNAs.
An initiator methionine tRNA was differentiated from the
two elongator methionine tRNAs by identifying the con-
served, characteristic nucleotide sequence of its anticodon
loop (ttgggctcataacccga) using a chloroplast-specific tRNA
data-base [110]. Predicted gene functions were assigned
using a BLASTP search of the GenBank Non-Redundant
database [78]. Conserved protein motifs were identified
using the PFAM [111] database. BLASTP searches were
used to identify orthologous genes (reciprocal best BLAST
hits) in other chloroplast genomes. Tandem repeats were
found with Tandem Repeat Finder [112] using default set-
tings. Inverted repeats were found with E-inverted from
the EMBOSS package [113] using the default settings and
the additional constraint that repeats had to be more than
80% similar and the length of the loop shorter than the
stem. Dispersed repeats were found using the cross-match
function within Consed with the following parameters:
minmatch = 12, minscore = 20, % similarity = 90%. A
more stringent % similarity was used to filter out spurious
repeats identified as extensions of more exact repeats.
Additional dispersed repeats were found using pipMaker
[114], using the default parameters and comparing each
genome to itself. For analysis of the putative G-protein
coupled receptor protein trans-membrane segment pre-
diction was performed using the HMMTOP [115], Top-
PredIl [116] and TMpred [117] programs. Global synteny
analysis and SNP identification was performed using
MUMMER [118]. Artemis and the Artemis Comparison
Tool were used to visualize the comparative genome
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architecture and localization of SNPs [119,120]. Circular
genome maps were created with CGview [121]. All
genome data used in this manuscript may be accessed
through our publicly available website [105].
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