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Abstract
Background: Ionizing-radiation-resistant bacteria (IRRB) show a surprising capacity for adaptation
to ionizing radiation and desiccation. Positive Darwinian selection is expected to play an important
role in this trait, but no data are currently available regarding the role of positive adaptive selection
in resistance to ionizing-radiation and tolerance of desiccation. We analyzed the four known
genome sequences of IRRB (Deinococcus geothermalis, Deinococcus radiodurans, Kineococcus
radiotolerans, and Rubrobacter xylanophilus) to determine the role of positive Darwinian selection in
the evolution of resistance to ionizing radiation and tolerance of desiccation.

Results: We used the programs MultiParanoid and DnaSP to deduce the sets of orthologs that
potentially evolved due to positive Darwinian selection in IRRB. We find that positive selection
targets 689 ortholog sets of IRRB. Among these, 58 ortholog sets are absent in ionizing-radiation-
sensitive bacteria (IRSB: Escherichia coli and Thermus thermophilus). The most striking finding is that
all basal DNA repair genes in IRRB, unlike many of their orthologs in IRSB, are subject to positive
selection.

Conclusion: Our results provide the first in silico prediction of positively selected genes with
potential roles in the molecular basis of resistance to γ-radiation and tolerance of desiccation in
IRRB. Identification of these genes provides a basis for future experimental work aimed at
understanding the metabolic networks in which they participate.

Background
In this paper, we consider ionizing-radiation-resistant
bacteria (IRRB) as "non-spore-forming bacteria that can
protect their cytosolic proteins from oxidation and toler-
ate many DNA double-strand breaks (DSBs) after expo-
sure to high, acute ionizing radiation (dose greater than 1
kilogray (kGy) for 90% reduction (D10) in Colony Form-
ing Units (CFUs)), and can resist prolonged desiccation."

Over the past five decades, Deinococcus radiodurans (D10 ≈
15 kGy) has been a model for understanding many of the
basic principles that govern resistance to ionizing radia-
tion and tolerance of desiccation (for review see [1]).
Recent findings indicated that the mutual nature of D.
radiodurans's γ-radiation resistance and desiccation toler-
ance resides in cytosolic Mn-dependent mechanisms that
protect proteins from oxidative modifications that intro-
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duce carbonyl groups [2,3]. Like most IRRB, D. radio-
durans accumulates about 300 times more Mn(II) than
ionizing-radiation-sensitive bacteria (IRSB) [4] such as
Escherichia coli (D10 ≈ 0.7 kGy) and Thermus thermophilus
(D10 ≈ 0.8 kGy) [5,6]. Due to its high concentration of
intracellular Mn(II) ions and the consequent protection of
proteins, D. radiodurans can survive 10 kGy of ionizing
radiation, a dose that causes approximately 100 DNA
DSBs per genome. This species can also survive 8 days in
a desiccator with no obvious DNA DSBs [2-4,7,8]. Early
on, analysis of D. radiodurans's transcriptional response
revealed that the cellular responses to ionizing radiation
and desiccation exhibit substantial overlap [9]. In this
context, 41 ionizing-radiation-sensitive strains of D. radi-
odurans were also shown to be sensitive to desiccation [7].
Furthermore, the mutational inactivation of the genes
DR_1172 – encodes a homolog of LEA76, a group 3 LEA
(late embryogenesis abundant) protein – and DR_B0118
– encodes a protein that is expressed during dehydration
by the resurrection plant, Craterostigma plantagineum –
greatly sensitized D. radiodurans to desiccation, but not to
ionizing radiation [10]. The former result based on a col-
lection of ionizing-radiation-sensitive strains of D. radio-
durans is consistent with evidence that dried bacterial cells
exhibit a substantial number of DNA DSBs, single-strand
breaks, and DNA crosslinks [11], DNA damage that is also
observed following exposure to ionizing radiation [12].
Indeed, ionizing radiation and desiccation introduce sim-
ilar types of DNA damage – DNA DSBs – in D. radiodurans
[7]. The latter result based on the mutational inactivation
of the genes DR_1172 and DR_B0118 considerably
strengthens the hypothesis that the D. radiodurans's desic-
cation tolerance could be a consequence of this organ-
ism's adaptation to ionizing radiation (radiation
adaptation hypothesis), particularly that the origin of ion-
izing-radiation resistance in bacteria can be explained as
an adaptation to environmental radiation [13]. For exam-
ple, Deinococcus sp. have been isolated from the subsur-
faces of hydrothermal vents at depths of 64.8–128.9 m
below the sea floor (mbsf) [14]. D'Hondt and colleagues
[15] have recently surveyed environments representative
of a broad range of subsurface conditions that can be
found in marine sediments. Among the most striking fea-
tures of deeply buried sediments (20–100 mbsf) are Mn-
rich sites with high natural γ-radiation levels. Ionizing-
radiation levels in such deposits might have been much
higher on ancient Earth (Daly MJ, personal communica-
tion, 2006). Concerning the close relationship between
bacterial ionizing-radiation resistance and desiccation tol-
erance [2,3,7,9], many of the environments from which
IRRB have been isolated can be considered to be dry, and
it has been shown that many of these strains are also des-
iccation tolerant [16]. Moreover, it was demonstrated that
IRRB are present at higher numbers in an arid soil than in
a nonarid soil, and that IRRB in the arid soil are recovered

after exposure to higher doses than the doses which allow
recovery of bacteria from the nonarid soil [16]. In this
context, many IRRB (i.e. Deinococcus deserti, Deinococcus
sonorensis, etc.) have been isolated from the desert [16,17],
indicating they have the capacity to adapt to harsh envi-
ronments.

Three principal mechanisms may have contributed to the
adaptability of IRRB: positive Darwinian selection, lateral
gene transfer, and gene regulation [18]. Previous studies
have discussed the importance of lateral gene transfer and
gene regulation in Deinococcus evolution [5,6]. However,
no previous research has addressed the role of positive
Darwinian selection in resistance to ionizing-radiation
and tolerance of desiccation in IRRB. In this paper, we
assess the role of positive Darwinian selection by analysis
of the genomes of IRRB. Among the many IRRB, com-
pletely sequenced genomes are only available for D. geo-
thermalis (D10 ≈ 15 kGy), D. radiodurans, Kineococcus
radiotolerans (D10 ≈ 2 kGy), and Rubrobacter xylanophilus
(D10 ≈ 5.5 kGy) [1,6,19,20]. When bacterial species of the
genera Deinococcus (D. geothermalis and D. radiodurans)
and Kineococcus (K. radiotolerans) were tested in vitro for
desiccation tolerance, all were found to be tolerant to des-
iccation [4,21]. We are not aware of any studies that exam-
ined R. xylanophilus for desiccation tolerance, but since (1)
many IRRB isolated from the desert – they are one way or
another tolerant to desiccation – cluster within the mono-
phyletic Rubrobacteria subgroup which is specialized for
particular niches present in arid soils [22,23], (2) bacterial
species of the genus Rubrobacter (R. radiotolerans, R. tai-
wanensis, and R. xylanophilus) belong to IRRB [24,25], and
(3) there has to our knowledge never been a report of des-
iccation-sensitive IRRB, we included R. xylanophilus in our
study.

Positive Darwinian selection leads to the fixation of
advantageous mutations and is the fundamental process
behind adaptive changes in genes (reference [26] and cita-
tions therein). Many statistical methods have been devel-
oped for detecting adaptive molecular evolution [27-29],
such as the "conservative" PAML program [30,31]. In this
report, we used a freely available software package with a
user-computer interface (DnaSP) [32] to identify genes
under positive selection in IRRB. This program calculates
the ratios of nonsynonymous to synonymous mutation
rates (Ka/Ks) in protein coding genes. The Ka/Ks ratio
measures the strength of selection, with values > 1 indica-
tive of positive selection [29].

Results and discussion
At the time we began this work, the GOLD database [20]
documented four completely sequenced IRRB genomes:
D. geothermalis DSM 11300 [6], D. radiodurans R1 [19], K.
radiotolerans SRS30216 [21], and R. xylanophilus DSM
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9941 [24]. We identified 734 orthologs that were present
in all four species. To validate our subsequent results, we
deduced hits in IRSB genomes (Escherichia coli 536,
Escherichia coli K-12, Thermus thermophilus HB8, and Ther-
mus thermophilus HB27) of the 734 ortholog sets in IRRB
[see Additional file 1]. Then, we used DnaSP to examine
the aligned ortholog sets among IRRB [see Additional files
2, 3, 4, 5, 6, 7, 8] and IRSB [see Additional files 9, 10, 11]
to search for evidence of positive selection [32]. We iden-
tified 689 ortholog sets among IRRB as potentially subject
to positive Darwinian selection (Additional file 1, genes
in bold). Supporting our conclusion that these genes have
been under selective pressure from niches with high natu-
ral γ-radiation or desiccation levels [13], we found that
many of these positively selected genes are involved in
resistance to γ-radiation resistance and tolerance of desic-
cation [6,9]. To find out if there were any biais due to phy-
logenetic relationships, patterns of positive selection in
Deinococcus and Thermus species were compared, because
phylogenetically the closest relative of Deinococcus is the
genus Thermus [5]. As patterns of positive selection in Dei-
nococcus and Thermus species were different [see Addi-
tional file 1], we concluded that DnaSP scores are related
to resistance to ionizing-radiation and tolerance of desic-
cation phenotypes and not to the phylogenetic relation-
ships of the species. But it should be noted that our
bioinformatical method used to detect positive selection
is based on sequence alignments, and therefore we cannot
exclude that in some cases we have included false posi-
tives because of improper alignments.

We defined two important families of positively selected
genes in IRRB: i) Group-I genes, which are under positive
selection in IRRB but under neutral or purifying selection
in IRSB (125 genes, highlighted in light gray in Additional
file 1), and ii) Group-II genes, which are under positive
selection in IRRB but absent in all IRSB (58 genes, high-
lighted in dark gray in Additional file 1). These two groups
of positively selected genes in IRRB may provide insight
into the molecular adaptations to ionizing radiation and
desiccation. For instance, Group-II includes DNA repair-
related proteins (DR_0192, MutT/NUDIX family protein;
DR_2074, putative 3-methyladenine DNA glycosylase),
oxidative damage-related proteins (DR_2242, thiol-spe-
cific antioxidant protein; DR_2538, cytochrome P450)
and water stress-associated proteins (DR_0463, maltooli-
gosyltrehalose synthase; DR_0464, putative maltooligo-
syltrehalose trehalohydrolase). These conclusions are in
concordance with DNA-centric hypotheses (for example,
[33]), protein-centric hypotheses [2,3], and the water
replacement with trehalose hypothesis [34] as protection
mechanisms against ionizing radiation and desiccation.
Our results support the idea that resistance to ionizing
radiation and tolerance of desiccation are two complex

phenotypes, and suggest that protection and repair mech-
anisms are complementary in IRRB.

The D. radiodurans genome has most of the DNA repair
proteins found in E. coli [19]. Broad-based bioinformatic
and experimental studies have concluded that D. radio-
durans uses a relatively conventional set of DNA repair
and protection mechanisms, but that these mechanisms
are much more efficient than in IRSB [2,3,9,19]. We found
that some of the accessory DNA repair genes in Deinococ-
cus that are extremely important for resistance phenotypes
(e.g., pprI (DR_0167, Dgeo_0395) and pprA (DR_A0346,
Dgeo_2628) [35,36]) have no orthologs in Kineococcus
and Rubrobacter. Similarly, the five transcripts of D. radio-
durans (ddrA, DR_0423; ddrB, DR_0070; ddrC, DR_0003;
ddrD, DR_0326; pprA, DR_A0346) that are most highly
induced following ionizing radiation and recovery from
desiccation [9] were not present in Kineococcus and Rubro-
bacter.

It seems likely that the shared ability of IRRB to survive the
damaging effects of ionizing radiation and desiccation is
the result of basal DNA repair pathways and that basal
DNA repair genes have been acted upon by positive selec-
tion. Table 1 shows that, unlike many of their orthologs in
IRSB [37], all DNA replication, repair, and recombination
genes in IRRB were subject to positive selection. Three
major DNA repair genes showed remarkably strong evi-
dence for positive selection: DR_1707 (Ka/Ks = 3.15),
DR_0906 (Ka/Ks = 3.4) and DR_1913 (Ka/Ks = 3.48).

Zahradka et al. [33] reported the remarkable efficiency of
DNA repair enzymes in D. radiodurans during recovery
from ionizing radiation and proposed a model named
'Extended Synthesis-Dependent Strand Annealing'
(ESDSA). This model proposes that DNA polymerase I
(PolA, DR_1707) accounts for the high fidelity of RecA-
dependent DNA DSB fragment assembly. recA
(DR_2340), a central gene to genomic restoration, is up-
regulated in D. radiodurans cultures recovering from ioniz-
ing radiation and desiccation [9], and Table 1 shows that
recA is positively selected. In particular, PolA of D. radio-
durans supports very efficient DNA replication at the earli-
est stages of recovery and is present at higher levels than
during normal DNA replication [33]. It is unclear whether
polA paralogs participate in ESDSA. However, the presence
of polA paralogs that are subject to positive selection
(unlike orthologs in IRSB) suggests that these paralogs
may be involved in genomic networks of resistance to γ-
radiation and tolerance of desiccation (see Table 1). A
positively selected polA paralog set might also explain the
results of Gutman et al. [38], who showed that ionizing-
radiation-sensitive D. radiodurans polA mutants are fully
complemented by expression of the polA gene from the
relatively ionizing-radiation sensitive E. coli. A more com-
Page 3 of 7
(page number not for citation purposes)



BMC Genomics 2008, 9:297 http://www.biomedcentral.com/1471-2164/9/297
plete examination of these paralogous proteins will be
necessary to prove this hypothesis.

Genes encoding the two subunits of the DNA gyrase,
DR_1913 (gyrA) and DR_0906 (gyrB), are also induced by

ionizing radiation and desiccation [9], and this presuma-
bly explains their strong positive selection values. This
implies that DNA supercoiling is important for DNA
repair following the deleterious effects of ionizing radia-
tion and desiccation.

Table 1: Replication, repair, and recombination genes under positive selection in ionizing-radiation-resistant bacteria (IRRB)a.

Orthologs Function (Ka/Ks)b D value (Tajima test)b

DNA polymerase

DR_0467 Dgeo_1609 Krad_R0056 Rxyl_0486 Hypothetical DNA polymerase♠ n.a.c -1.779
DR_0507 Dgeo_0255 Krad_3187 Rxyl_1096 DNA polymerase III, α subunit* n.a. -1.725
DR_0856 Dgeo_1818 Krad_3247 Rxyl_2984 DNA polymerase III, ε subunit� 2.81
DR_1244 Dgeo_0745 Krad_3423 Rxyl_1518 Putative DNA polymerase III, δ subunit� 1.68
DR_1707 Dgeo_1666 Krad_2951 Rxyl_2025 DNA-directed DNA polymerase* 3.15
DR_1751 Dgeo_1556 Krad_1521 Rxyl_0503 DNA polymerase-related protein� n.a. -1.744
DR_2410 Dgeo_2135 Krad_R0007 Rxyl_2444 DNA polymerase III, τ/γ subunit* 2.3

Replication complex

DR_0100 Dgeo_0165 Krad_4338 Rxyl_0045 Single-stranded DNA-binding protein* n.a. -1.872
DR_0549 Dgeo_2037 Krad_4333 Rxyl_0852 Replicative DNA helicase♠ n.a. -1.539
DR_0601 Dgeo_R0043 Krad_3361 Rxyl_1502 DNA primase* n.a. -1.770
DR_0906 Dgeo_0546 Krad_0006 Rxyl_0005 DNA gyrase, subunit B* 3.4
DR_1374 Dgeo_2001 Krad_0487 Rxyl_1964 DNA topoisomerase I* 3.13
DR_1913 Dgeo_1016 Krad_0007 Rxyl_0006 DNA gyrase, subunit A* 3.48

Other DNA-associated proteins

DR_0120 Dgeo_2345 Krad_1409 Rxyl_1396 smf protein♠ 1.87
DR_0289 Dgeo_0248 Krad_0422 Rxyl_2676 Endonuclease III♠ 2.82
DR_0440 Dgeo_0327 Krad_3056 Rxyl_1322 Holliday junction resolvase* 2.06
DR_0493 Dgeo_0442 Krad_1377 Rxyl_2433 Formamidopyrimidine-DNA glycosylase� 2.37
DR_0596 Dgeo_0404 Krad_3053 Rxyl_1324 Holliday junction DNA helicase* n.a. -1.789
DR_1089 Dgeo_1620 Krad_0004 Rxyl_0004 RecF protein* n.a. -1.342
DR_1105 Dgeo_1212 Krad_0603 Rxyl_2178 DNA repair protein* 2.61
DR_1274 Dgeo_0726 Krad_3054 Rxyl_1323 Holliday junction binding protein♠ 1.88
DR_1354 Dgeo_1124 Krad_2935 Rxyl_2010 Excinuclease ABC, subunit C* n.a. -1.411
DR_1477 Dgeo_1194 Krad_3147 Rxyl_1453 DNA repair protein♠ 2.08
DR_1532 Dgeo_0545 Krad_1067 Rxyl_0909 Transcription-repair coupling factor* 3.05
DR_1771 Dgeo_0694 Krad_2940 Rxyl_2016 Excinuclease ABC, subunit A♠ n.a. -1.678
DR_1775 Dgeo_0868 Krad_0757 Rxyl_0825 DNA helicase II* n.a. -1.450
DR_1916 Dgeo_1139 Krad_1368 Rxyl_1371 DNA helicase RecG* 3.35
DR_1921 Dgeo_0824 Krad_2554 Rxyl_0449 Exonuclease SbcD, putative� 2.36
DR_1922 Dgeo_0823 Krad_2553 Rxyl_0448 Exonuclease SbcC♠ 1.82
DR_1949 Dgeo_1623 Krad_1405 Rxyl_1394 Ribonuclease HII♠ n.a. -1.642
DR_2074 Dgeo_1660 Krad_3154 Rxyl_1309 Putative 3-methyladenine DNA glycosylase♣ 3.25
DR_2275 Dgeo_1890 Krad_2942 Rxyl_2021 Excinuclease ABC, subunit B* n.a. -1.767
DR_2285 Dgeo_0019 Krad_0599 Rxyl_2229 A/G-specific adenine glycosylase* 1.85
DR_2340 Dgeo_2138 Krad_1492 Rxyl_1423 RecA protein* n.a. -1.179
DR_2584 Dgeo_0107 Krad_4325 Rxyl_1215 DNA-3-methyladenine glycosidase II, putative* n.a. -1.607

aIRRB are Deinococcus geothermalis, Deinococcus radiodurans, Kineococcus radiotolerans and Rubrobacter xylanophilus.
bPositive selection: (Ka/Ks) > 1 or Tajima's D < 0.
cnot available. See Methods.
♠Genes under positive selection in IRRB and under neutral or purifying selection in ionizing-radiation-sensitive bacteria (IRSB). *Genes under 
positive selection in both IRRB and IRSB.
� Genes under positive selection in IRRB for which orthologs were present in some, but not all, IRSB.
♣ Genes under positive selection in IRRB for which there are no orthologs in all IRSB.
See Methods and Additional file 1.
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Four additional proteins involved in DNA repair are also
subject to strong positive selection: (1) DR_1374 (Ka/Ks =
3.13; DNA topoisomerase I, Uniprot Q9RUL0), (2)
DR_1532 (Ka/Ks = 3.05; a transcription-repair coupling
factor, Uniprot Q9RU62), (3) DR_1916 (Ka/Ks = 3.35;
RecG helicase likely to be involved in DNA DSB repair,
Uniprot Q9RT50), and (4) DR_2074 (Ka/Ks = 3.25; puta-
tive 3-methyladenine DNA glycosylase, Uniprot
Q9RSQ0). This is likely the result of continuous interac-
tion between IRRB and natural niches, which have high
levels of γ-radiation or high probability of desiccation [13-
17].

The present work has identified the first suite of genes that
are under positive Darwinian selection in IRRB. Our
results can serve as a useful background to guide future
physiological and biochemical experiments examining
resistance to ionizing radiation and tolerance of desicca-
tion. As more IRRB genome sequences become available,
particularly in more distantly related species, we expect
that our methods will provide a sensitive and controlled
approach for detection of genes that have been subject to
positive Darwinian selection for resistance to ionizing
radiation and tolerance of desiccation.

Methods
To identify genes under positive selection in IRRB, the
DnaSP program requires an aligned set of orthologous
sequences [32]. Thus, we initiated our analyses by per-
forming comparisons between all fully sequenced IRRB
genomes (Deinococcus geothermalis DSM 11300 [6], Deino-
coccus radiodurans R1 [19], Kineococcus radiotolerans
SRS30216 [21], and Rubrobacter xylanophilus DSM 9941
[24]). Information on complete and ongoing IRRB
genome sequencing projects was obtained from the
GOLD database [20]. Genome sequences were down-
loaded from the National Center for Biotechnology Infor-
mation (NCBI) RefSeq repository [39]. For comparison,
we used the genomes of 4 IRSB: Escherichia coli 536
(UPEC), Escherichia coli K-12 MG1655, Thermus ther-
mophilus HB8, and Thermus thermophilus HB27 [20,39].
MultiParanoid was used to find orthologous relationships
[40]. Orthologous sequences were imported into Bioedit
Sequence Alignment Editor (version 7.0.9) [41], and the
sequences for each ortholog set were aligned with CLUS-
TAL W [42]. To test for positive selection, we used DnaSP
(version 4.0) [32]. Using the Jukes and Cantor method
[43], DnaSP calculates the nonsynonymous (Ka) and syn-
onymous (Ks) substitution rates for each codon. When
the nonsynonymous rate was greater than the synony-
mous rate (Ka/Ks > 1), this is indicative of positive Dar-
winian selection [29,32]. When it was not possible to
calculate Ka or Ks, we calculated Tajima's D value (in addi-
tion to a statistical significance P value), with the confi-

dence limit of D equal to 99.9%. Negative values of
Tajima's D indicated positive selection [27,44].
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Common genes in ionizing-radiation-resistant bacteria (IRRB) and 
positive Darwinian selection. Bold letters denote genes under positive 
selection, whilst non-bold letters denote genes under neutral or purifying 
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IRRB and under neutral or purifying selection in IRSB. Dark gray shading 
indicates genes that are under positive selection in IRRB for which 
orthologs are absent in all IRSB (see Methods).
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Alignment of sets of orthologs in ionizing-radiation-resistant bacteria 
(IRRB). Sets of orthologs present in all IRRB were aligned with CLUSTAL 
W following detection with MultiParanoid (see Methods).
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[http://www.biomedcentral.com/content/supplementary/1471-
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Alignment of sets of orthologs in ionizing-radiation-resistant bacteria 
(IRRB). Sets of orthologs present in all IRRB were aligned with CLUSTAL 
W following detection with MultiParanoid (see Methods).
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[http://www.biomedcentral.com/content/supplementary/1471-
2164-9-297-S3.rar]

Additional file 4
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