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Abstract

Background: Epstein-Barr virus (EBV) presumably plays an important role in the pathogenesis of
nasopharyngeal carcinoma (NPC), but the molecular mechanism of EBV-dependent neoplastic
transformation is not well understood. The combination of bioinformatics with evidences from
biological experiments paved a new way to gain more insights into the molecular mechanism of
cancer.

Results: We profiled gene expression using a meta-analysis approach. Two sets of meta-genes
were obtained. Meta-A genes were identified by finding those commonly activated/deactivated
upon EBYV infection/reactivation. These genes could be key players for pathways de-regulated by
EBV during latent infection and lytic proliferation. Meta-B genes were obtained from differential
genes commonly expressed in NPC and PEL (primary effusion lymphoma). We then integrated
meta-A, meta-B and associated factors into an interaction network using acquired information. Our
analysis suggests that NPC transformation depends on timely regulation of DEK, CDK inhibitor(s),
p53, RB and several transcriptional cascades, interconnected by E2F, AP-1, NF-xB, STAT3 among
others during latent and lytic cycles.

Conclusion: In conclusion, our meta-analysis strategy re-analyzed EBV-related tumor data sets
and identified sets of meta-genes possibly involved in maintaining latent or switching to lytic cycles
of EBV in NPC. The results of this analysis may shed new lights to further our understanding of the
EBV-led neoplastic transformation.

Background

Nasopharyngeal carcinoma (NPC), whose onset can be
found in the epithelial cells of the nasopharyngeal region,
causes a high incidence of fatality in patients mostly in
southern China and southeast Asia [1]. Epstein-Barr virus
(EBV), a ubiquitous human herpes virus, is thought to be

closely associated with NPC, as well as other hematopoi-
etic malignancies such as African Burkitt's ymphoma, pri-
mary effusion lymphoma (PEL), Hodgkin's disease, and
adult T-cell leukemia. Although infection by EBV occurs in
most individuals, it is usually asymptomatic. EBV is orally
transmitted and can be detected in oropharyngeal secre-
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tions from infected individuals [2]. Subsequently EBV set-
tles in resting B lymphocytes and renders infected B cells
immortalized and unrestricted for proliferation [3]. Some
lines of evidence suggest that EBV enters B cells by pairing
its glycoprotein gp350/220 with the complement receptor
(CR2/CD21) [4]. Once in the primarily infected host, this
virus can establish a long and persistent latent infection
during which only few viral genes are active, presumably
to escape cellular defense. Several viral proteins including
EBNA1, LMP1 and LMP2 are active to maintain and regu-
late this latent state. The lytic production occurs after a
long viral latency and can be triggered by spontaneous or
artificially-induced reactivations, and eventually leads to
the production of a large number of virions released
through cell lysis. This is accompanied by the expression
of certain lytic genes. Z protein, encoded by viral BZLF1
gene, is a potent transactivator of multiple viral and cellu-
lar genes critical for switching from latent to lytic cycle.
Epithelial cells generally do not express CD21 in vivo and
can be infected in vitro by direct contact with virus-con-
taining cells or supernatant. This suggests that epithelial
tissues might be infected by being close to lytically
infected B cells. It remains to be shown that the transform-
ing potential of EBV might ultimately contribute to the
pathogenesis of NPC.

Currently, NPC studies aim to achieve the following
objectives: providing an early and sensitive diagnosis, and
trying to understand the molecular basis underlying the
disease formation [5,6]. The availability of the human
genome sequence, a large collection of microarray expres-
sion data together with the development of bioinformat-
ics will enable us to achieve these objectives. The Gene
Expression Omnibus (GEO) [7] has made available hun-
dreds of thousands of experimental data of gene expres-
sion for users to explore. However, the interrelationship
of many these data sets has not been explored. To identify
genes associated with various cancers, techniques such as
filtering by fold change, expression level or significance
flag, as well as statistical analysis (for instance t-test and
ANOVA) have been applied to select candidate genes
associated with tumorigenesis [8,9]. With these simple
screening techniques for a given data set, one might end
up with hundreds if not thousands of genes needed for
further validation. Recently, research exploring interac-
tions and regulatory networks of selected genes and their
products began to gain momentum in studying diseases
[10,11]. Many computational methods have been devel-
oped to facilitate expression data analysis. Gene cluster-
ing, pathway analysis and gene ontology (GO) analysis
are commonly used [12-14]. Moreover, literature mining
enables us to extract the meaningful biological informa-
tion from publications and to identify known networks or
pathways [15,16]. The information, collected from
human curation and comprehension of specific experi-
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ments, is very important in our analysis to further our
understanding of the etiology of NPC.

In this study, we have utilized a meta-analysis approach to
identify meta-genes across different data sets. This is based
on the belief that those significant genes shared by multi-
ple data sets could be the ones which are more important
to focus on. This allows us to turn our attention and
resources to potentially high value targets as they are less
likely to be derived from randomness of analysis. Using
such strategy, we have identified two sets of meta-genes
(meta-A and meta-B) and discussed the potential roles
some of them might play in the course of EBV-related neo-
plastic transformation.

Results

Screening strategy for meta-genes

To overcome the weakness of conventional microarray-
based data analysis, meta-analysis was applied to hetero-
geneous microarray data of various origins [11,17]. We
designed a strategy (the workflow is shown in Figure 1) to
build up lists of meta-genes in EBV-positive tumors. This
can be organized in two phases. In phase one, we first ana-
lyzed data sets derived from EBV primary infection and
lytic production to identify meta-genes de-regulated by
EBV when switching to lytic cycle. Next, we extracted dif-
ferential genes shared by two EBV+tumors (NPC and PEL)
to find meta-genes commonly de-regulated by EBV. In
phase two, gene clustering, pathway and network predic-
tion were done in four steps: (i) Meta-genes were classi-
fied based on known functional categories and similar
ontological terms; (ii) Over-represented transcription fac-
tor binding sites (TFBSs) were predicted; (iii) Literature
mining was conducted to analyze transcription factors
that are co-cited with the meta-genes and (iv), Tissue spe-
cificity and subcellular localization of the meta-genes
were analyzed. Finally, we integrated all the above infor-
mation into a gene interaction network and proposed our
hypothesis.

Differential genes

The Venn diagram in Figure 2A shows the distribution of
differential genes between GSE2370 (EBV-/normal) and
GSE2371 (EBV*/EBV-). In brief, of the 260 differentially
up-regulated genes in GSE2371, 32 were also up-regulated
and 14 others were found down-regulated in GSE2370. Of
the 253 genes in the down-regulated group in GSE2371,
25 genes were up-regulated and 16 were down-regulated
in GSE2370. A total of 87 differential genes were identi-
fied as likely targets by EBV during primary infection.
Many of these genes have been discussed [18].

Figure 2B shows the Venn diagram of differentially
expressed genes between primary infection and reactiva-
tion in GSE6472. Of the 82 differentially up-regulated
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Figure |
The workflow of our strategy. The red lines represent
the iteration between TFBSs prediction and literature mining.

genes in R1 (initial reactivation), 18 genes were up-regu-
lated and 3 were down-regulated in R15 (recurrent reacti-
vation). Of the 402 genes down-regulated in R1, 88 genes

A

O GSE2371
O GSE2370

Figure 2
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were up-regulated and 7 were down-regulated in R15. A
total of 116 differential genes were found in common
between R1 and R15.

When cross-comparing these 116 differential genes
expressed during EBV reactivation to the 87 differential
genes found during primary infection, 23 meta-genes
(named as meta-A, Table 1) were found to be the key can-
didates responsive to EBV.

The 585 differential genes in GSE2371 (EBV+-NPC) and
729 genes in GSE2149 (EBV+-PEL) were integrated in Fig-
ure 2C. The intersection represents 45 overlapping meta-
genes (named as meta-B, Table 2) expressed in both
tumor types, including a group of 30 common genes (20
commonly up-regulated and 10 commonly down-regu-
lated in both NPC and PEL), 7 up-regulated in NPC but
down-regulated in PEL, and 8 down-regulated in NPC but
up-regulated in PEL. It is interesting to note that meta-A
genes and meta-B genes, also referred to meta-genes col-
lectively, share three genes in common: DEK, DUSP1 and
ITGAG.

Functional analysis and gene annotation

23 meta-A genes listed in Table 1 are mainly involved in
MAPK signal cascade (p = 0.047), macromolecule metab-
olism (p = 0.021), phosphorylation (p = 0.037), biopoly-
mer metabolism (p = 0.008), protein complex (p = 0.028),
cellular metabolism (p = 0.042) and organ morphogene-
sis (p = 0.037) based on DAVID (Database for annotation,
visualization and integrated discovery) analysis. The 45
meta-B genes in NPC and PEL are related to organelle
lumen (p = 0.044), cellular physiological process (p =

Venn diagrams of the differential genes identified from the data sets used. (A) Intersection of differential genes
between GSE2370 and GSE2371; (B) Intersection of differential genes between R15/P1 and R1/P1 of GSE6472; (C) Intersection

of differential genes between GSE2371 and GSE2149.
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Table I: List of 23 meta-A genes between the EBV-reactivation and EBV*/EBV--NPC

Latent infection expression Recurrent infection expression

Gene symbol

Total

Up-regulated
Up-regulated
Down-regulated
Down-regulated

Up-regulated
Down-regulated
Up-regulated
Down-regulated

MAP3KS, TOPI, EMP3, GNG7 4
FCGBPI, KMO, PSPH, PITXI, DEK, RPS28 6
ITGAé6, PPP2R2D, SMARCCI 3
DUSPI, ST5, APPBPI, DUSP6, TRIP12, PABPCI, TKT, CD9, IMPDH2, |
HOXA9

0

0.030), macromolecule metabolism (p = 0.050), ribonu-
cleoprotein (p = 0.038), regulation of cell process (p =
0.048), cell adhesion (p = 0.012) and transferase activity
(p =0.018).

TFBSs prediction

TELIS analysis (p < 0.05) revealed that HLF-01, ATF-01,
MYCMAT-01, E2F-01, CREB-02, NFE2-01, MAX-01,
CREB-01, TATA-01 and OCT-01 are over-represented
within the proximal promoter region of many meta-A
genes. We then looked for any common regulatory mod-
ule by sifting through each of the promoter sequences. As
a result, DUSP1, IMPDH2, RPS28, TOP1, PBPC1 and
EMP3 found in our study share these two TFBSs: ATF and
CREB.

The results of the Genomatix Bibliosphere analysis
showed that DEK, PITX1, TGIF1, RB and JUNB encode for
transcription factors/activators. Transcription factor RB is
known to bind E2F; TGIF can complex with TALE; JUNB
associates with AP1F. Moreover, RB was often co-cited
with DEK, CDKN1A and GADD45A [19].

Tissue specificity and subcellular localization

Lymph node, one reservoir of resting B cells latently
infected by EBV after primary infection, was chosen as a
closely related tissue for NPC because of the absence of
nasopharyngeal epithelia data when studying tissue spe-
cificity. Previous study has generated a list of tissue selec-
tive genes among which 34 are highly expressed in lymph
node [20]. When comparing genes found in this study
(prior to cross-comparison) with the 34 genes (please see
the Additional file 1), no intersection was found.

Analysis using GeneCards showed that most meta-genes
and related transcription factors expressed predominantly
in blood tissue. CD9, ITGA6, CDKN1A, TP53, EGR1 and
ST5 have been reported to be related to many tumor types
including squamous epithelium tumor. In addition, most
differential genes are localized either to nucleus or cyto-
plasm, except that CD9 and ITGAG encode for membrane
proteins. CDKN1A, RB, DEK, Daxx and MAP3K5 genes,
which are downstream of the BZLF1 pathway, all reside
on chromosome 6.

Regulatory network

23 meta-A genes were used as input into pSTIING to visu-
alize any known functional associations, physical interac-
tions or transcriptional regulations (Figure 3A, global
view; Figure 3B, close-up; see Additional file 2). There
exist two main subnets: one contains APPBP1, CD9,
PITX1 and SP1, the other one involves DUSP1, TOP1I,
RPS28 and PABPCI.

Literature mining using iHOP was conducted to find sup-
port for the proposed networks. Based on existing knowl-
edge, a few more related transcription factors such as JUN,
MYC, PGR and NFKB1 were added by Genomatix Biblio-
Sphere to connect the 23 meta-A genes (Figure 4A) or the
45 meta-B genes (Figure 4B). As shown in Figure 4B, most
of the 45 meta-B genes cluster around CDKN1A, RB, JUN,
NFKB1, TP53 and MYC (see Additional file 3).

Having integrated all the above information, we obtained
a regulatory network of our meta-genes found to be
related to NPC (Figure 5).

Table 2: List of 45 meta-B genes between EBV*/EBV--NPC and EBV*/EBV--PEL

Expression in NPC Expression in PEL Gene symbol Total
Up-regulated Up-regulated BMPI, BTGI, CAVI, CAV2, CD53, DEK, EFEMPI, GADD45A, GALNT3, GAS7, 20
GATM, ITGA6, LLGL2, LSPI, SECI4LI, UBEIL, INPPI, PGRMCI, PHGDH, TGIF
Down-regulated Down-regulated CTSS, EIF5A, FHL2, INSIGI, LYN, MME, OAS|, PYGL, TAFI5, ALDH2 10
Up-regulated Down-regulated CDKNIA, LAMCI, LY6E, MFAP2, RBI, RPL10, SQSTMI 7
Down-regulated Up-regulated DUSPI, JUNB, KRT5, MGST3, SEPPI, SPTBNI, ITGAV, NFKBIA 8
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Figure 3

Visualization of physical interactions and transcriptional associations of meta-A genes. (A) Global network involv-
ing the 23 meta-A genes labeled in red with the extended subnets centered on interaction input. (B) Close-up of two subnets
of many input genes. For better viewing experience and more details, please see the Additional file 2.

Discussion

Four microarray data sets (Table 3) were chosen to explore
the molecular mechanism of EBV-dependent NPC in our
study. A few points can be drawn from this study as fol-
lows. (i) EBV seems to have a preference of targeting dif-
ferentially expressed genes than those expressed
ubiquitously in NPC cells [18]. This suggests that infecting
EBV triggers cellular changes by de-regulating many fac-
tors in signal transduction or regulatory pathways in order
to remain in its host after primary infection. (ii) Nonethe-
less, only a fraction of these genes (meta-A genes) stay dif-
ferential during recurrent EBV reactivations and most
other genes return to stable expression gradually. Those
remain differentially expressed (about a quarter of the
original number) during recurrent reactivation worth
more attention. They might be responsible for subsequent
cellular transformation and possibly metastasis by spread-
ing the virions through EBV's lytic proliferation and trans-
forming more vulnerable host cells into NPC. (iii) The 45
meta-B genes shared by EBV-associated NPC and PEL
would give important clue to understand the common
pathogenesis of the EBV-led pathogenesis. The fact that
both meta-A and meta-B gene sets share DEK, DUSP1 and
ITGAG in common indicates that all three cancer-related
genes are more important to look at among all others.

With knowledge gathered by in-depth analysis, a detailed
regulatory network was set up by joining newly identified
meta-genes with related transcriptional factors. As shown
in Figure 5, many of our meta-genes are involved in path-
ways rooted by LMP1 and BZLF1. A transcriptional circuit
involving SP1, CD9, EGR1 and IMPDH?2 connects three
pathways led by LMP1 to the BZLF1 cascade through the
inter-network between SP1 and STAT3 [21]. It is worth
noting that E2F binding site can be found within the pro-
moter region of SP1 [22], and SP1 binding site can be
found within the EBV early promoter [23,24]. This sug-
gests that SP1 may be one of the key players in switching
between the latent infection and lytic proliferation. The
associations among meta-genes suggest that EBV latent
infection probably depends on important regulators such
as JUN, MYC, NF-«B, and p53 as previous thought
[25,26].

In latent infection, CDK2 activity is needed to maintain
cell cycle progression and to phosphorylate RB. The pair-
ing of RB/E2F as a complex plays important role in cell
cycle regulation, apoptosis, differentiation [27] and EBV
replication [28]. When RB gets hyperphosphorylated, E2F
is released from the complex to transactivate its target
genes needed for proliferation. In line with our predic-
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Network of meta-A genes or meta-B genes by adding the related transcriptional factors. (A) Network of the 23
meta-A genes in EBV infected cells linked by some related transcriptional factors. The main nodes involves transcription factors
JUN, CD9 and HOXA9. (B) The network of the 45 meta-B genes connected by a few related transcriptional factors:
CDKNIA, NFKBI and MYC. Readers are referred to the Additional file 3 for more details.

tion, expression of DEK has been shown to be targeted
and activated directly by E2F [29]. DEK, an abundant and
ubiquitous chromatin protein and transcription repressor
[30], can then regulate JUN, MYC, and p53 through Daxx
and MAP3K5. For example, DEK can inhibit apoptosis by
interfering with p53 [31]. It has also been reported that
RB-dependent over-expression of DEK blocks senescence
or apoptosis of infected cells [31,32]. Cell death in
response to DEK knockdown was accompanied by
increased protein stability and transcriptional activity of
the p53 tumor suppressor [31]. When RB loses its activity,
expression of both E2F and DEK becomes up-regulated
[33].

BZLF1 and BRLF1, the switches from latency to lytic infec-
tion, are the drivers of the EBV lytic replication [34]. Their
expression are inactive in latent cells but can be activated
by a number of triggers [35-37]. The activation depends
on the existence of specific binding sites in their promot-
ers, some of these binding sites can be bound by SP1,

CREB, ATF-1/2 and ¢-JUN [38,39]. We predicted that the
forming of ATF/CREB heterodimers, also commonly
found in Hodgkin's disease [40], may be important for
regulating BZLF1 during recurrent reactivation. Expres-
sion of the Z protein, encoded by BZLF1, is known to
arrest cell cycle progression in several epithelial tumor cell
lines lacking the entire EBV genome. Such arrest is medi-
ated by Z-induced expression of p53 and two inhibitors of
CDK, namely p21 (CDKN1A/CIP-1) and p27 (KIP-1), fol-
lowed by the accumulation of the underphosphorylated
RB protein and the down-regulation of EBV immediate-
early and early proteins [41].

Expression level of DEK is much lower in reactivation
state than in latent state. The lack of E2F released from the
hypophosphorylated RB-E2F complex may have a causal
effect on the down-regulation of DEK and thus promotes
apoptosis in the presence of apoptotic factors such as p53.
This suggests that DEK may have been down-regulated in
response to BZLF1 activation to favor the lytic cycle. Com-
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Figure 5

Regulatory network of important genes involved in EBV-dependent NPC. The genes circled in yellow represent the
meta-A genes involved in different life cycles of EBV. Those circled in blue represent the meta-B genes found in EBV*-tumors.
Those circled in green are three genes in common between meta-A genes and meta-B genes. The area shadowed in gray on
the lower left shows the BZLF| pathway in latent and lytic replication. The dotted rectangle shows the common DEK/E2F path-
way. The genes, framed in rectangle, were up-regulated during latency while down-regulated in lytic proliferation. And the
green dashed lines represent the circuit of the transcriptional association of SPI, IMPDH2, CD9 and EGRI.

Table 3: List of the data sets used in this research

Accession number Gene chips' type Samples (cell lines)

GSE2370 7500 K microarray NPC(TWOI, TWO03, TW04, TWO06, CGBMI)/normal nasal nucosal epithelia
GSE2371 7500 K microarray EBV*/EBV--NPC(TWOI, TWO03, TWO04, TW06, CGBMI)/common reference RNAs
GSE6472 Agilent 4410B EBV reactivations in NPC (PI/P15/R1/RI5)

GSE2149* Affymetrix HG-133A EBV+/EBV--PEL

* Nine cell lines (BC-1, BC-2, BC-3, BC-5, BCBL-1, BCKN, IBL-4, PEL-5 and SM1) derived from patients with lymphomatous effusions and three
PEL patient samples were used in GSE2149.
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paring to latent cycle, the lytic cycle produces infectious
virions up to 1000 folds and possibly leads to the infec-
tion and transformation of more host cells. The accumu-
lative effect of this could ultimately leads to aggressive
tumor growth and metastasis. The potent lytic inducer
BZLF1 has been explored to treat EBV+ tumors [42,43].
BZLF1, if over-expressed exclusively in tumor cells using a
tumor-specific vector (such as a specially-designed adeno-
viral vector), could induce potent cell lysis and serve as a
general strategy to treat many cancers.

Our meta-analysis approach re-analyzed four EBV-related
tumor data sets and identified meta-genes using expres-
sion profiling and integrated bioinformatics. Based on
this information, we constructed a gene network to better
our understanding of EBV-regulated neoplastic transfor-
mation. It should be pointed out that we have not specif-
ically addressed the false discovery rate directly and thus
our statistical analysis might have unavoidably produced
some false positive hits or missed some important genes.
However, gene set intersection can somehow prevent a
large number of random genes from entering into our
selection. Like any other analytical approach, this process
depends on data quality and completeness. It may not
identify all the desirable inner networks if data is sub-opti-
mal.

Conclusion

This study has identified two sets of meta-genes, including
23 meta-A genes expressed differentially when switching
to recurrent reactivation, and 45 meta-B genes expressed
in both EBV-dependent NPC and PEL. The integrated
meta-gene network suggests that NPC transformation is
likely to depend on timely regulation of DEK, CDK inhib-
itor(s), p53, RB and several transcriptional cascades, inter-
connected by E2F, AP-1, NF-«xB, STAT3 among others
during EBV's life cycle. The result of this analysis demands
for further investigation to validate and to justify. More
data analyses are needed to support and to complement
ours in order to explore thoroughly the molecular mecha-
nism of NPC. It is hope that research like this could point
to the right direction for conquering this deadly disease
eventually. In the meanwhile, the causal effect of EBV for

Table 4: Web resources used

http://www.biomedcentral.com/1471-2164/9/322

NPC remains for open discussion even though it is known
for long that EBV is omnipresent in NPC. Future research
should also pay attention to impacts of other factors as
well since NPC is quite restricted to some local popula-
tions and geographic locations. These factors include
environmental, dietary ones in addition to ethnic genetic
susceptibility and polymorphism.

Methods

Data sets

Four data sets retrieved from the GEO database are listed
in Table 3 and the open-access analysis tools selected are
shown in Table 4. Data sets GSE2370 [44] and GSE2371
[45] submitted by Lee contain 15 samples surveyed by the
7500 K microarray representing approximately 7411 dis-
tinct human transcripts expressed in five representative
NPC cell lines: TW01, TWO03, TW04, TW06 and CGBM1.
TWO1 is a Homo sapiens NPC cell line derived from a kerat-
inizing squamous cell carcinoma; TWO3 is derived from a
lympho-epitheliomatous undifferentiated NPC;, TWO04
and TWO6 are derived from two distinct undifferentiated
carcinomas; and CGBM1 line is derived from bone mar-
row metastatic NPC tumor tissue. GSE 2370 used the five
EBV- NPC cell lines (labeled with cy5) mentioned above
against normal nasal mucosal epithelial (labeled with
cy3) as a control. GSE2371 used the same five EBV- NPC
cell lines and EBV* cell lines (labeled with cy5) against
common reference RNAs (labeled with cy3). Dataset
GSE6472, supplied by Chia [46] and based on Agilent
4410B microarry, contains three groups of expression data
(R1/P1, R15/P1 and P15/P1) representing different EBV
reactivations of NPC-TWO01 cell line using dye-swap. P1,
an EBV-positive NPC cell line (NA) derived from NPC-
TWO1 infected with recombinant Akata EBV but without
having EBV reactivation, serves as the source of primary
reference sample. P15 refers to latently infected NA cell
line subjected to 15 times or more regular passages of EBV
without having EBV reactivation. R1 and R15 are NA cells
experienced EBV recurrent reactivation one and fifteen
times induced artificially by sodium n-butyrate (SB) and
12-o-tetradecanoylphorbol-13-acetate (TPA), respectively.
Dataset GSE2149, supplied by Fan [47] and based on the
Affymetrix HG-133A microarray, has eleven samples (21

Name Address Content used

GEO http://www.ncbi.nlm.nih.gov/geo/ Accession numbers GSE2370, GSE2371, GSE2149 and GSE6472, Microarray data
Genomatix  http://www.genomatix.de/ BiblioSphere, Matlinspector, literature mining

iHOP http://www.ihop-net.org/UniPub/iHOP Literature mining

DAVID http://david.abcc.ncifcrf.gov/ Pathway and GO classification

GO http://www.geneontology.org/

TELIS http://www.telis.ucla.edu/index.php?cmd=retrieve
pSTIING http://pstiing.licr.org/
GeneCards  http://www.genecards.org/index.shtml

GO terms, biological process, molecular function and cellular component
TFBSs information

Networks of gene interactions

Subcellular localization and tissue specificity
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microarrays) from EBV+/EBV--PEL. More information of
the four data sets is shown in Table 3.

Data preprocessing

The raw data from each experiment was normalized using
Lowess smoother (per spot and per chip: intensity-
dependent normalization) for data sets GSE2370,
GSE2371 and GSE6472, or using median over entire array
for GSE2149 to minimize randomness of signals among
microarrays and spots. To focus on high-quality and
stronger hybrid signal spots, we excluded all data points
whose signal intensities below 100. Filtering on flags,
which we required all present calls only, was applied to
GSE2370 and GSE2371. Filtering on expression level with
threshold of standard error averagex 4 were used for
GSE6472. Probes with 20% data points missing were then
filtered out for GSE2149.

Selection of differential genes

We utilized GeneSpring GX 7.3.1 (Agilent technologies,
US) to analyze two-channel data and BRB ArrayTools
3.5.0 (Dr. Richard Simon and Amy Peng Lam) to ana-
lyze one-channel data. GeneSpring GX was used to ana-
lyze GSE2370, GSE2371 and GSE6472 using cross gene
error model [48]. The following thresholds were used to
obtain sets of differential genes as close to those
described by the authors of the data sets as possible. The
statistical comparison (p < 0.05) of GSE2370 revealed
that 1182 genes were differentially expressed, including
617 genes with greater than 1.765 fold-changes as an
up-regulated group and 565 genes with less than -1.765-
fold defined as a down-regulated group. Similarly, anal-
ysis of GSE2371 revealed that 513 were differentially
expressed, including 260 genes showing greater than
1.25-fold as up-regulated group and 253 showing less
than -1.25-fold as down-regulated group. The differen-
tial genes identified from analyzing GSE2370 and
GSE2371 were designated as potential target genes of
primary EBV infection.

Up-regulated or down-regulated genes in GSE6472 were
identified using an absolute threshold of 1.5-fold. Then,
the differential genes of R1/P1/R15/P15 were cross-com-
pared to those from GSE2371 to obtain meta-A genes
which are targeted by EBV and subjected to EBV reactiva-
tion of various duration and frequency.

GSE2371 and GSE2149 come from EBV*/EBV--NPC and
EBV+*/EBV--PEL respectively. We collected the common
differential meta-B genes infected by EBV between the two
tumors by cross-comparing the gene sets obtained after
analyzing the two data sets using BRB ArrayTools. Genes
showing an absolute 1.5 fold-changes (p < 0.05) in either
direction were counted as either up-regulated or down-
regulated.

http://www.biomedcentral.com/1471-2164/9/322

Functional analysis and gene annotation

We postulate that the differentially expressed genes we
identified may be functionally related and not independ-
ent. Hierarchical clustering and K-means clustering
[13,49], two popular methods to infer similar regulation
or biological function, were used to create gene clusters
based on similar expression patterns. DAVID (NIAID,
NIH, USA) [50], a functional annotation tool, was used to
analyze the enriched metabolic and signal pathways, as
well as GO terms of biological process (BP), molecular
function (BF), and cellular component (CC).

TFBSs prediction

The differentially expressed genes related to NPC, which is
a complicated disease, might be co-regulated by a regula-
tory module rather than any individual factor. Therefore,
we searched for TFBSs using Transcription Element Listen-
ing System (TELiS) (Weihong Yan, Steve Cole, USA) [51]
with a default of 600 bp upstream within the transcription
start site and a filtering stringency of 90%. TFBSs prediction
was also done with Genomatix's Matlinspector (Munich,
Germany) accompanied by literature mining to confirm
the correlation of the involved transcription factors.

Integration and construction of a regulatory network
iHOP [52] was used to conduct literature-mining to
uncover significant pairs among the differential genes.
Regulatory networks which represent gene interactions
correlated with transcription profiling were modeled by
the Genomatix's Bibliosphere software. pSTIING, which
stands for protein, signaling, transcriptional interactions
and inflammation networks gateway [53], was used to
describe and to confirm the known interactions and tran-
scriptional associations of these differential genes. The
regulatory network in NPC with EBV infection was con-
structed based on the acquired knowledge.

Tissue Selectivity

Tissue-specific/selective gene expression is believed to be
of physiological importance [54]. We compared our genes
with those found to be tissue-selective from previous anal-
ysis of the BioExpress database [20]. Lymph node and
nasopharyngeal epithelia data were considered to be two
important tissues for EBV infection even though the
mechanism for EBV entry into epithelial cells and mainte-
nance of latency is less well understood. In the absence of
nasopharyngeal epithelia-selective genes, we opted to
compare our meta-genes with those found to be lymph
node-selective. Subcellular localizations of our genes and
their products were identified using GeneCards [55,56] to
complement the regulatory network.
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Additional material

Additional file 1

34 lymph node-selective genes. This file shows the gene IDs, gene names
and gene symbols of 34 lymph node-selective genes.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-9-322-S1.xls]

Additional file 2

Figure 3. This file contains two figures of visualization of physical inter-
actions and transcriptional associations of meta-A genes. (A) Global net-
work involving the 23 meta-A genes labeled in red with the extended
subnets centered on interaction input. (B) Close-up of two subnets of
many input genes.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-9-322-S2.rar|

Additional file 3

Figure 4. This file contains two figures of the network of meta-A genes or
meta-B genes by adding the related transcriptional factors. (A) Network
of the 23 meta-A genes in EBV infected cells linked by some related tran-
scriptional factors. The main nodes involves transcription factors JUN,
CD9 and HOXA9. (B) The network of the 45 NPC-PEL meta-B genes
connected by a few related transcriptional factors: CDKN1A, NFKB1 and
MYC.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-9-322-S3.rar|
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