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Abstract

Background: Nasal carriage of Staphylococcus aureus is a major risk factor in clinical and
community settings due to the range of etiologies caused by the organism. We have identified
unique immunological and ultrastructural properties associated with nasal carriage isolates
denoting a role for bacterial factors in nasal carriage. However, despite extensive molecular level
characterizations by several groups suggesting factors necessary for colonization on nasal
epithelium, genetic determinants of nasal carriage are unknown. Herein, we have set a genomic
foundation for unraveling the bacterial determinants of nasal carriage in S. aureus.

Results: MLST analysis revealed no lineage specific differences between carrier and non-carrier
strains suggesting a role for mobile genetic elements. We completely sequenced a model carrier
isolate (D30) and a model non-carrier strain (930918-3) to identify differential gene content.
Comparison revealed the presence of 84 genes unique to the carrier strain and strongly suggests
a role for Type VIl secretion systems in nasal carriage. These genes, along with a putative
pathogenicity island (SaPIBov) present uniquely in the carrier strains are likely important in affecting
carriage. Further, PCR-based genotyping of other clinical isolates for a specific subset of these 84
genes raise the possibility of nasal carriage being caused by multiple gene sets.

Conclusion: Our data suggest that carriage is likely a heterogeneic phenotypic trait and implies a
role for nucleotide level polymorphism in carriage. Complete genome level analyses of multiple
carriage strains of S. aureus will be important in clarifying molecular determinants of S. aureus nasal

carriage.
Background multi-drug resistant (MDR) strains. The majority of sta-
Staphylococcus aureus is a versatile pathogen capable of a  phylococcal infections are nosocomial or community-
wide spectrum of etiologies ranging from benign coloni-  acquired, and for both types, there is a strong correlation

zation of epithelia to fatal cases of septicemia. S. aureus  between staphylococcal infection and its colonization of
has been identified as a global risk with the emergence of ~ the human nasal epithelium. Asymptomatic carriage of S.
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aureus in the anterior nasal vestibule occurs in approxi-
mately a quarter of the population to different degrees of
severity [1], and can be either temporary or persist over
many years. Nasal carriage of S. aureus has been identified
as a risk factor in the clinical treatment of diabetic foot
ulcers [2], post-operative recovery from heart surgery 3],
and hemodialysis [4] amongst others.

Nasal carriage of S. aureus is multifactorial and likely
involves both host and bacterial determinants [5-8]. One
primary determinant of nasal carriage is the permissibility
of host nasal fluid for bacterial growth. Indeed, a single
strain of S. aureus (502-A) was shown to differentially col-
onize various hosts, underscoring the importance of host
factors in nasal carriage [9]. Apart from host factors, sev-
eral studies, including ours [1,10] and others [11,12],
attribute a role for bacterial factors in carriage. It is notable
that carrier strains, but not non-carrier strains, of S. aureus
were able to persist and replicate within nasal fluids from
carrier donors and on the surface of organotypic nasal epi-
thelia [13], suggesting that carrier strains of S. aureus elab-
orate factors to aid in their nasal colonization.

Our group has extensively characterized two strains of S.
aureus, one a clinical nasal carriage strain isolated from a
persistent carrier (strain D30) [1,13,14] and another was
isolated from a burn victim (strain 930918-3) [1,15-17].
Of these two strains, D30 was able to survive in the nasal
fluid extracted from carrier host [1]. It was also shown to
produce a capsular covering upon incubation with nasal
fluid [1], which is likely a protective biofilm [14]. Contra-
rily, the strain 930918-3 was not capable of surviving in
the nasal fluid of carriers and did not produce biofilms
[1,14]. Most importantly, we revealed that D30 sup-
pressed the innate immune response by downregulating
TLR expression and TLR-mediated signaling in primary
nasal epithelial cells while 930918-3 did not [13].

Several bacterial genes have been identified, which can
potentially influence colonization on nasal epithelia.
Notable amongst them are sortase A (srtA) [18,19],
clumping factor B (clfB) [19-23] and tagX [24], which are
involved in cell adhesion (srtA and clfB) and cell wall bio-
synthesis (tagX), respectively. In addition, studies impli-
cating enterotoxins in S. aureus nasal carriage [11,12,25-
28] show that enterotoxins were found in most but not all
carrier strains. However, as we reveal herein, these collec-
tive genes may be necessary but not sufficient factors for
nasal carriage. Taken together, these reports suggest that
nasal carriage is a multifactorial process, although our
knowledge of bacterial factors responsible for nasal car-
riage of S. aureus is still quite limited.

In this work, we have strived to bridge the genome level
knowledge gap that exists in S. aureus nasal carriage. First,
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we assessed the lineage specific differences between carrier
strains and non-carrier strains using multi-locus sequence
typing (MLST) [29]. Subsequently, in order to determine
the genome level differences between the model carrier
strain and non carrier strain, we undertook a complete
genome sequencing effort for our two highly character-
ized strains, D30 (carrier) and 930918-3 (non-carrier),
and identified differential gene complements in both
strains. Furthermore, for a specific subset of 76 genes that
are non-fragmented and unique to either strain, we per-
formed comparative PCR-based multi-locus genotyping.
Notably, the results revealed the unique presence of genes
in the carrier strain derived from bovine pathogenicity
islands (SaPIBOV) [30,31], possible constituents of the
type VII secretion system (T7SS) [32] and various other
genes that are likely involved in pathogenesis. These stud-
ies provide a foundation for genome level analyses of S.
aureus specific to human nasal carriage and will be instru-
mental in furthering our understanding of the carriage
trait.

Results and discussion

MLST Analysis reveals no lineage specific differences
between carrier and non-carrier strains of S. aureus
MLST analysis has been used as a powerful tool to identify
lineage specific differences between various strains of a
given bacterial species [33]. This technique has been
applied extensively to S. aureus by several groups to char-
acterize lineage specific differences in epidemiology [34-
39] and infectivity [40-48]. We used MLST to identify pos-
sible differences between carrier and non-carrier strains of
S. aureus (strain details provided in Table 1). For the test,
we used the following strains D20, D30, D38, D85, D94,
D98 and 930918-3. The strains whose names start with
"D" are clinical nasal isolates while 930918-3 served as
the non-carrier control. We also analyzed 9 completely
sequenced strains of S. aureus for their allele types (Table
1 - marked in italics).

The dendrogram in Figure 1 presents the evolutionary
relationship between all strains of S. aureus. It is readily
apparent from the dendrogram that there is no lineage
distinction between carrier strains and the non-carrier
strain (930918-3). Importantly, our model carrier strain
(D30) was on the same clade as was the model non-carrier
strain (930918-3). These results raised the possibility that
bacterial determinants of nasal carriage result from the
variable genome content of S. aureus. It is important to
note that the variable genome of S. aureus is not entirely
made of mobile genetic elements and presence of a gene
in the chromosomal backbone does not establish it as a
core genome component. Thus, the determinants of nasal
carriage, though necessarily a part of the variable genome,
need not be restricted to those borne on mobile genetic
elements.
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Table I: Strains of S. aureus used in the study
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Strain Status Notes/Accession No.

D20 Carrier Clinical isolate/carrier strain
D30* Carrier Clinical Isolate/Model Carrier
D37 Carrier Clinical isolate/carrier strain
D39 Carrier Clinical isolate/carrier strain
D85 Carrier Clinical isolate/carrier strain
D94 Carrier Clinical isolate/carrier strain
D98 Carrier Clinical isolate/carrier strain
930918-3* non-carrier Model Non-carrier

502A opportunistic carrier host dependent carriage persistence
N315 Not known NC_002745

Mu50 Not known NC_002758

COoL Not known NC_002951

MRSA252 Not known NC_002952

MSSA476 Not known NC_002953

MwW2 Not known NC_003923

RFI122 Not known NC_007622

USA300 Not known NC_007793

NCTC8325 Not known NC_007795

JH9 Not known NC_009487

JHI Not known NC_009632

Newman Not known NC_009641

* denotes strains sequenced in the study.

Italicized strain names denote completely sequenced strains whose carriage status is unknown.

Genome sequencing and analysis of D30 and 930918-3 to

identify differential gene content

MLST results revealed no lineage specific differences
between the carrier and non-carrier strains. An analysis of
S. aureus core and variable genomes revealed the presence
of 1970 genes in all 12 previously sequenced genomes.
The remaining ~700 genes were derived from the variable
genome repertoire. Such a large number of variable genes,
many of which are borne on mobile genetic elements,
generates staggering diversity and variability in the S.
aureus genome [10]. Such variability is compounded by
the lack of carriage information for the completely
sequenced strains and the lack of functional knowledge
for most S. aureus genes. Due to these reasons, meaningful
inference regarding the genetic determinants of nasal car-
riage from these strains is not possible.

Furthermore, genes that are reportedly necessary for nasal
colonization [6-9,20] were, as we determined, in fact a
part of the common minimal genome (CMG), implying
an innate capability for any S. aureus strain to colonize
nasal epithelium. Therefore, additional bacterial determi-
nants are likely involved that can regulate the extent of
nasal carriage. Indeed, we have experimentally shown that
not all strains are equally capable of establishing carriage
or survival in presence of nasal fluids [1]. Therefore, while
certain genes necessary for nasal colonization have been
functionally characterized, they may not be sufficient to
establish carriage by themselves. To begin delineating

genetic determinants of nasal carriage, we sequenced and
compared the genomes of highly characterized carrier
(D30) and non-carrier (930918-3) strain of S. aureus.

Pyrosequencing was utilized to sequence strains D30 and
930918-3 to 15x and 16x coverage, respectively. To iden-
tify the genes that were found in these two strains, we
mapped the raw sequence reads to all the genes in the sta-
phylococcal pan-genome. We defined the staphylococcal
pan-genome as the non-redundant ORF set derived from
all the Staphylococcal genomes sequenced at the time of
this report (12 S. aureus, 2 S. epidermidis, 1 S. haemolyticus,
and 1 S. saphrophyticus: described in methods and Table
1). For each orthologous set of genes identified by BiDi-
rectional Best Hit BLAST [49], one representative gene was
retained. The final pan-genome for the genus consisted of
6122 ORFs (Additional file 1). We analyzed the whole sta-
phylococcal pan-genome instead of the S. aureus pan-
genome since an instance of horizontal gene transfer from
S. epidermidis to S. aureus has been documented [50].

The mapping of raw reads to ORF's was a two-step process
wherein we first removed ORFs that were not represented
in the raw reads. This step reduced the probable number
of ORFs from 6122 to less than 3600 (3359 in D30 and
3582 in 930918-3). In the second step, each gene that had
matching raw sequence reads was analyzed individually
for its coverage and assembly gaps in both genomes.
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Figure |

MLST analysis of carrier and non-carrier strains
reveal no lineage specific differences. The dendrogram
shows the various lineages of S. aureus tested by MLST. In all
seven genes tested for MLST, D30 (double asterisk) and
930918-3 (single asterisk) were identical. Interestingly,
strains D30 and 9309 18-3 belong to the same clonal complex
as strain USA300 and NCTC8325. It can also be seen that
MRSA252 is similar to the carrier strains D39 and D20.
Strain 502-A, which is capable of experimentally induced
intermittent nasal carriage, was seen to belong to the same
clonal complex as strains Mu50 and N3 15 (found in the same
clade in the dendrogram) and the carrier strain D94. Such
varied clustering of carrier strains shows nasal carriage is not
dependent on vertical lineage of the strains.

All genes that could be assembled without gaps in the two
genomes were considered to be present ("Tier 1"; defini-
tion of tiers is found in the Methods section). In total, 1952
genes in D30 and 2128 genes in 930918-3 belonged to
this group. The remaining genes (~1500 in each genome)
had varying degrees of gaps and coverage. For a gene with
gaps, to be considered present in a given genome, the cov-
erage threshold was set at 90%. Applying the threshold to
"Tier 2" assemblies resulted in the selection of 751 genes
in D30 and 746 genes in 930918-3. In a very small
number of cases (8 genes in D30 and 5 genes in 930918-
3) genes in "Tier 3" had coverage of 90% or greater. Owing
to their high coverage, these Tier 3 genes were also consid-
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ered present in their respective genomes. Table 2 summa-
rizes the three tiers, the assembly and the gene coverage in
the two strains. When the final gene content of Tiers 1-3
were tabulated for any coverage >90%, the genomes of
D30 and 930918-3 contained 2715 and 2879 genes
respectively (Table 2), of which 2631 genes were common
to both strains. The overall gene content of the two strains
depicted in Figure 2 suggests that the non-carrier strain
930918-3 has a wider variable repertoire than does the
carrier strain D30.

Once we had identified the genes for the each genome, we
revised the CMG to include these two strains. Now with
14 sequenced genomes, we observed that the overall CMG
content had fallen to 1792 genes from a previous estimate
of 1970 genes. On the other hand, the combined non-
redundant variable genome of these two strains (D30 and
930918-3) comprised of 1127 genes of which 835 were
shared. Thus the genomes of D30 and 930918-3 differed
from each other by 84 and 248 genes respectively (Figure
3A). As a next step, we used the combined variable
genome set (1127 genes) to assess the relationship
between these strains and all previously sequenced
strains. The results shown in Figure 3B reiterate the trends
observed in MLST dendrogram where D30 and 930918-3
are in the same clade as NCTC8325 and USA300 with
COL being a neighbor in the tree. However, the strains
D30 and 930918-3 were closest to each other in their var-
iable genome content.

Analysis of D30 unique gene content reveals potential
effectors of nasal carriage

There were 84 genes unique to the carrier strain D30 (Fig-
ure 3A red spots) out of which only 25 genes could be
assigned functions based on their sequence similarity to
genes in the non-redundant NCBI sequence database. We
found 4 genes that were genetically linked to bovine path-
ogenicity island (SaPIBov ORF BPI12, BPI13:14 and
BPI17) (Figure 4A). The genes BPI13:14 represent a fusion
gene product in a single open reading frame. Further,
there were two genes encoding superantigen-like proteins
and a capsular polysaccharide synthesis enzyme Cap5P.
Other genes included oligopeptide transporter protein
and an ATP dependent proteinase, traG and FtsK/SpollIE
family protein, a phiSLT lysin amongst others. The
remaining 59 genes comprised of either hypothetical
open reading frames (30 genes) or transposons (29
genes). The functional genes are discussed in detail below
with implications for nasal carriage. A roster of these
genes along with their annotation is given in Additional
file 2.

Bovine pathogenicity island (SaPIBov) was first observed
in S. aureus isolates extracted from teats of milk cows. It
was described as a mobile element capable of exhibiting
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1 C1l

> C86
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Genome content of S. aureus strains D30 and 930918-3. The figure illustrates the occurrence of genes in strains D30
(panel A) and strain 930918-3 (panel B). We also depict genes belonging to core, variable and unique gene complements of the
two strains in their respective panels. The genes are represented in the array where the rows are named R1 through R72 and
the columns are named C| through C86. Each array element indexes a single gene. For example the index RI:Cl, or simply
(1:1) represents the first gene and (1:86) represents gene 86 and so forth. The number of genes in D30 and 930918-3 are cal-
culated to be 2714 and 2879 respectively. The dark blue dots represent the core genome of S. aureus, the red dots represent
the ORFs from the variable genome that are shared between the strains. The light blue dots represent ORFs unique to each
strain with respect to the other and the black dots represent absence. A complete list of gene IDs (this study) and matrix posi-
tions are provided in Additional file I, wherein the information is similarly color coded for the ease of identification.

high variation and was shown to encode several super
antigens including toxic shock antigen (tst), and entero-
toxin C (sec) and was shown to modulate the host
immune response [30]. However, the roles of other SaPI-
Bov genes, including BP112, BPI13:14 and BPI17 are not
known. Presence of these genes uniquely in the strain D30
raises the possibility of their involvement in nasal car-
riage. The difference in BPI between D30 and 930918-3
are illustrated in Figure 4A where the reference BPI map is
adopted from citation [30].

Apart from the SaPIBov genes, the presence of TraG and
FtsK/SpollIE in D30 is particularly interesting. In a recent
review discussing the presence of Type VII secretion sys-
tems, Abdallah and coworkers [32] argue that FtsK/Spol-
IIE family proteins are homologous to the type VII
secretion systems (T7SS) in mycobacteria (the Esx sys-
tem). An independent report [51] shows that a FtsK/Spol-
IIE family member (traJ) and traG product act as a

bipartite translocation system in an E. coli plasmid. Fur-
ther, studies by Burts and coworkers show that the Esx sys-
tem is present in S. aureus [52] and is necessary for
pathogenesis in the S. aureus Newman strain [53]. In both
these reports, the authors mention the need for the FtsK/
SpollIE family protein (FtsK/Spolll[E Domain/FSD pro-
tein) for Esx effector translocation. These reports, in con-
junction with our results, suggest a role in nasal carriage
for protein translocation systems in general and for T7SS
in particular. While the T7SS transporter system was
found uniquely in D30, we did not find the known effec-
tor molecules in both strains. This is not to be construed
as the presence of only a partial T7SS since the complete
secretome associated with the T7SS in S. aureus is yet
unknown and only a third of the genes in this pathogen
have been assigned a function. The mobile genetic ele-
ment that carries the traG and FtsK/SpolIIE genes is shown
in Figure 4B.
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Table 2: Overall ORF Content Statistics

Strain D30 Coverage(%)

Group 100%  >90% <=90%
Tierl 1952  * *

Tier2 * 754 343
Tier3 * 8 305
Total ORF 3355 Total ORF considered 2714
Strain 930918-3 Coverage(%)

Group 100%  >90% <=90%
Tierl 2128  * *

Tier2 * 746 355
Tier3 * 5 348
Total ORF 3582 Total ORF Considered 2879

Total number of ORFs considered in each strain is the sum of
numbers represented in boldface for each tier.

1 C1 » C86
R1

6122
Bl Genes unique to D30
Bl Genes unique to 930918-3

Figure 3
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Another notable pair of genes that were unique to D30
was the urease (alpha subunit - ureA) and clpL protease.
Ureases are important survival factors in various patho-
gens including Helicobacteri pylori [54], Staphylococcus saph-
rophyticus [55], and Proteus mirabilis [56]. All these
organisms use urease to withstand acidity or to enhance
nitrogen utilization. Further, in a genome wide transcrip-
tome analysis, Bore and colleagues [57] show that acid
shock response is tightly linked to antioxidant mecha-
nisms in S. aureus and the ureA gene shows considerable
upregulation under acid stress.

While ureA is directly linked to acid response specifically,
the cIpL gene is involved at a global level in mediating
stress responses in S. aureus. The clp family of genes is
implicated in a variety of stress responses, including but
not limited to biofilm formation and heat shock
responses [58]. This comprehensive analysis of responses
mediated by various clp members demonstrated the role
of clpB and cIpL in conferring induced thermotolerance. It
is possible that these genes would allow the strain D30 to

B
1127

NCTC8325
USA300

RF122
MSSA476
MRSA252

30918-3
| D30
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A comparison and analysis of D30 and 930918-3 variable genome content. In this figure, we illustrate the differential
gene content of D30 and 930918-3 (Panel A) and compared the variable genome content of | 127 genes to all other completely
sequenced S. aureus strains. Panel A depicts the differential gene content of D30 (red spots) and 930918-3 (blue spots) as
mapped on to the staphylococcal pan-genome. The genes are represented in the array where the rows are named R1 through
R72 and the columns are named CI through C86 and each array element indexes a single gene (R#:C#). Panel B compares the
combined variable gene content of strains D30 and 930918-3 to other 12 completely sequenced strains of S. aureus. The gray-
scale denotes the number of shared genes in the variable genome. The strain 930918-3 is the closest in variable gene content
to D30, followed by strains NCTC8325 and USA300. This result is reminiscent of the MLST dendrogram (Figure |) where

these four strains were present on the same clade.
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Figure 4

PCR-based genotyping of carrier strains for 18 genes absolutely unique to D30 and in-silico comparison with
other genomes. Panel A represents the bovine pathogenicity island present in D30 and 930918-3 as compared to the com-
plete BPI described. Polymorphism in BPIl is common and it is apparent in the two strains. Panel B details the transposon that
carries the putative T7SS in D30. Many genes of this transposon are absent in 930918-3. Panel C in the figure shows the pres-
ence (black) or absence (white) of the I8 genes that constitute the Unique Non-Fragmented (UNF) gene group in D30. The
genes are divided based on the mobile element of origin. It can be seen majority of these genes are borne on a transposable
element. Also the bovine pathogenicity element (SaPIBov) contributes to four genes in three reading frames where genes
BPI13 and BPI14 are fused. It is interesting to note the placement of strains USA300 and NCTC8325 in this figure. USA300 is
similar to D30 (14 of 18 genes present) while NCTC8325 has a profile very similar to 930918-3. This placement is in contrast
with their overall proximity to each other (Figures | and 3B). Such disparity between overall proximity and carriage status
stresses the importance of mobile genetic elements in nasal carriage.

counter a myriad of host innate immune responses in the  phiSLT is known to be a helper phage for the pathogenic
nasal epithelium. phage phi-PVL in S. aureus [59]. phiSLT is implicated in

leukocytotoxicity and is known to lysogenize PVL phages
Last in the list of putative nasal carriage modulators is the ~ and render them active. This phage carries a lytic locus
phiSLT ORF484 like protein (phiSLT lysin) gene. The phage  that is similar to that of phi-PVL and may also be involved
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in pathogenesis directly. Presence of these genes in D30,
and their absence in 930918-3, suggests a role for many or
all of them in nasal carriage.

The strain 930918-3 was larger than the strain D30 and
shared 2631 genes with the latter. Strain 930918-3 has
248 unique genes of which 125 (50%) were hypothetical
ORFs. However, contrary to unique gene set of D30, the
overall share of transposons was much less (15 of 248,
6%) and phages were the predominant mobile elements
(65 of 248, 26.2%). Of the remaining 43 genes, most were
metabolic enzymes (Additional file 1). There were also
some pathogenesis related genes like the SaPI protein,
SaPI integrase, phiPVL encoded proteins and Type I sta-
phylococcal enterotoxin. The occurrence of these 248
genes in the pan-genome is illustrated in Figure 3A (blue
spots).

The revised CMG, which incorporated the D30 and
930918-3 strains as well as the 12 previously sequenced
strains of S. aureus, included 1792 genes. Although the
size of the CMG was reduced by 178 genes once D30 and
930918-3 were added, genes necessary for globally medi-
ating pathogenesis like the enterotoxins, TSST and the agr
locus and many others were still a part of the CMG. Fur-
ther, comparison of CMG genes lost in D30 and 930918-
3 showed that they shared 169 of the 178 missing genes
of which 129 belonged to the same tier in either genome
with gaps in very similar loci. In the 40 genes that did
belong to different tiers, 21 genes had the same coverage
in both strains. Finally, only 4 of the remaining 19 genes
had a higher coverage (>1% difference in coverage) in
D30 as compared to 930918-3. All four of these genes
were hypothetical ORFs whose functions are yet
unknown. Thus, the drastic reduction in CMG while strin-
gent is unlikely to affect the current interpretation of the
results.

As a next step, we stringently filtered the unique gene set
to identify a specific subset of genes unique to D30, and
tested their distribution in 7 other strains capable of nasal
carriage.

Evidence for existence of multiple gene sets determining
nasal carriage: PCR-based multilocus genotyping of carrier
strains

There were 84 intact genes that were unique to the carrier
strain, but fragments of a majority of these genes (66 of
84) were found in the strain 930918-3. Similarly, there
were 190 intact genes in 930918-3 whose fragments were
found in D30. Most of these genes were borne on mobile
genetic elements and hence this observation was not com-
pletely unexpected. However, a set of 18 genes in D30 and
58 in 930918-3, which had no fragments or vestiges in the
other genome was termed the Unique Non-Fragmented
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(UNF) genes. The list of the 18 UNF genes in D30 is given
in Figure 4C while the complete list of UNF genes in both
genomes is provided in Additional file 2. We analyzed the
UNF set by PCR in six other carrier isolates and one strain
(502-A) that when experimentally applied to the nose can
intermittently colonize the nasal epithelium in certain
individuals [9]. The result of the PCR-based genetic profil-
ing of these 18 genes is summarized in Figure 4C.

Of the seven tested carrier strains, four (D30, D20, D39
and D85) strains contained a majority these 18 genes. The
closest was D20, which contained 15 of the 18 genes
while D85 and D39 contained 12 and 13 of the 18 genes
respectively. Of particular importance was the presence of
the transposon carrying traG and FtsK/SpollIE proteins,
which are likely a part of the T7SS in S. aureus. Presence of
these genes in 4 carrier strains reinforces the possible role
for T7SS in nasal carriage. Further, presence of most of
these genes in strains MRSA252 and USA300 may imply a
carriage status for these strains. Statistical tests based on
randomly generated genomes (in-silico) of S. aureus show
that the presence of these genes in D30, D20, D39 and
D85 is highly significant (P-value = 0.0 after Bonferroni
correction).

On the other hand, strains D37, D94 and D98 contained
very few (2 genes of 18 in D94 and D98) or none of the
18 genes (D37). A similar trend was seen for the intermit-
tent carrier strain 502-A (0 of 18). Absence of the traG/
FtsK/SpollIE system in these strains might denote the
existence of more than one set of genes responsible for
nasal carriage, or may signify that this system is required
for persistent carriage in certain host types. Overall, our
results raise the possibility that nasal carriage is brought
about by more than one set of genes. Further, it is interest-
ing that the strains 930918-3 and NCTC8325 share a sim-
ilar profile in this clustering (0 of 18). These two strains,
along with strain USA300 belonged to the same allotype
as strain D30 (Figure 1). This observation reinforces our
hypothesis that genetic determinants of nasal carriage are
borne on mobile elements. The presence of these genes in
4 of the 7 carrier strains along with the functionality
reported for the transporter complex [32,52,53] argues
against random inclusion of these genes in carrier strains,
and reinforces their role in nasal carriage.

Apart from being contributed to by whole genes and sets
of genes, nasal carriage may also depend on other factors
in the genome. Foremost of these is the presence of nucle-
otide level polymorphisms in the genome. Genes that
play a role in nasal colonization of S. aureus like clumping
factors [19,23] and tagX [24] also accumulate a high pro-
portion of non-synonymous mutations (KS and AMC,
manuscript in preparation). Such variation in these genes
could possibly affect the carriage capabilities of a given
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strain. Additionally, nasal carriage involves a dynamic
interplay between the host and the bacterium and as sev-
eral reports indicate, there are host components involved.
A comprehensive understanding of nasal carriage would
require that these collective factors be addressed in con-
text.

Conclusion

We have completely sequenced and compared the
genomes of a highly characterized clinical nasal isolate of
S. aureus (D30) and a non-carrier S. aureus strain (930918-
3). Comparison of ORF content of these two strains
revealed the presence of several genes in D30 that might
be critical determinants of nasal carriage. The presence of
FtsK/SpollIE family member and an associated protein
TraG uniquely in D30 implies a role for Type VII secretion
systems in S. aureus nasal carriage. While our work sug-
gests a possible role for a Type VII Secretion System in
nasal carriage, a complete genomic analysis of a large
number of carrier strains, properly stratified from both
intermittent carriers and persistent carriers, will be neces-
sary to confirm this and elucidate other bacterial determi-
nants of S. aureus nasal carriage.

Methods

Bacterial Strains used in this study

S. aureus strains D20, D30, D37, D39, D85, D94, D98,
930918-3 are described in previous studies [1,13-17].
Apart from these strains, we also used an opportunistic
carrier strain (502-A) [60] in our analyses. 502-A has been
shown to be capable of carriage in certain hosts [9] in both
persistent and intermittent carriers. All strains were prop-
agated on Trypticase Soy Agar (TSA) plates and liquid cul-
tures in Trypticase Soy Broth (TSB). D30 and 930918-3
have been confirmed as being S. aureus by using S. aureus
specific 16S-TRNA primers [61] and others by using a Sta-
phyloslide kit (BD and Co., MD, USA) that has been pre-
viously validated [1].

MLST analysis of S. aureus strains

Primers reported by Enright and colleagues [29] were
obtained from Invitrogen (Carlsbad, CA) and PCR per-
formed using conditions reported therein. The amplicons
were cloned into TOPO-4 (Invitrogen, Carlsbad, CA) and
transformed into chemically competent Topl0 E. coli
cells. Transformants were selected on LB-Agar plates with
75 pug/mL Ampicillin and cultures of transformants grown
overnight in LB broth with 75 pg/mL ampicillin at 37°C,
shaken at 270 rpm. Plasmids were extracted from the
overnight cultures using a QuickLyse kit (Qiagen, Valen-
cia, CA) as per the manufacturer's instructions, and the
extracted plasmid was assessed for quantity and purity by
O.D. measurements using a SpectraMax spectrophotome-
ter (Molecular Systems, Sunnyvale, CA). These plasmids
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were then sequenced by the dye-terminator Sanger double
barrel sequencing method using standard T3 and T7-For-
ward primers, and the sequence was used to identify the
allotype by querying the MLST database http://
www.mlst.net.

Genomic DNA extraction from S. aureus strains

S. aureus was plated on to TSA plates and incubated over-
night at 37°C. Single colonies were subsequently inocu-
lated in 3 ml TSB and grown overnight at 37°C, diluted
1:200 in TSB, and incubated an additional 3 hrs to obtain
cells in log phase growth. Cells were sedimented and
genomic DNA was extracted using Genomic Tip kits (Qia-
gen, Valencia, CA). Lysostaphin (Sigma-Aldrich, St. Louis,
MO) from S. staphylolyticus was used to lyse the cell wall of
S. aureus. Genomic DNA from S. aureus strains D30 and
930918-3 were extracted and resuspended in Tris-EDTA
(TE) to a final concentration of 382 pg/ml and 500 pg/ml
respectively. Prior to genomic sequencing, the two strains
were confirmed as being S. aureus by using species-specific
16S-1RNA primers [61].

Genome Sequencing, Assembly and Sequence Analysis
Genomic DNA from S. aureus strains D30 and 930918-3
were subjected to pyrosequencing [62]. De novo sequence
assembly of the sequence reads into large contigs (>500
bases) was performed using Newbler. We created a non-
redundant set of ORFs representing the staphylococcal
pan-genome using bidirectional best hit. For this, each of
the available Staphylococcus ORFs (12 S. aureus genomes,
two S. epidermidis genomes, and one S. haemolyticus
genomes [50,63-68] - details given in Table 1) were taken
in chronological order and orthologs were identified in
the remaining set using BLAST [49]. While the ORF itself
was retained, the orthologs were removed from further
consideration. We considered all the Staphylococcal plas-
mids that have been sequenced as separate genetic entities
and analyzed them similarly. The staphylococcal pan-
genome was then used to identify the core and variable
genome constituents of the sequenced strains D30 and
930918-3. Further, the contig assemblies were subject to
gene prediction using Glimmer trained on the staphyloco-
ccal pan-genome. These contigs were submitted to NCBI
(ABFA0O0000000 and ABFB00000000 for D30 and
930918-3 respectively). The statistics of contig assembly
are provided in Table 3.

Figure 5 illustrates the method we adopted to identify
OREFs. In brief, each ORF in the pan-genome was used to
comparatively map and assemble matching raw sequence
reads (using BLAST [49]) and in the first iteration, all the
ORFs that could be tested affirmatively for consistency
(no in-frame stop codons in at least one frame) and com-
pleteness (no gaps/read gaps) were pooled and designated
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Table 3: Genome sequencing and contig assembly statistics.

Parameters D30 930918-3
Total No. of Reads 818689 862963
No. of Assembled Reads 802249 839907
No. of Large Contigs 75 139
Total No. of Bases 2727791 2838563
Average Contig size (bases) 36370 20421
N;, Contig size (bases) 73183 42932
Largest Contig size (bases) 175032 148157

"Tier 1". Further analysis included only those genes that
were a part of the S. aureus common minimal genome
(CMG). The CMG was derived from the pan-genome and
is defined as the set of genes that are present in all S. aureus

Raw Sequence Reads

http://www.biomedcentral.com/1471-2164/9/433

strains. For those CMG genes that were not present in Tier
1 (due to read gaps), we identified those with small (gap
< maximum read length) and large gaps (gap > maximum
read length). The former group was designated "Tier 2"
while the latter was designated "Tier 3" (Table 2). Those
ORFs, which had at least 90% coverage were included in
comparative analysis studies.

In order to define the set of Unique Non-Fragmented
(UNF) genes, we used subtractive BLAST analysis on the
raw sequence data sets and removed all matching
sequences from both genomes. The remaining sequence
reads were then searched using the staphylococcal pan-
genome and genes were identified.

Assembled Contigs

Newbler Assembler
!

Unassembled
* Raw Sequences W—

—— Prediction

==== Tier 1 Tier 1

== == BLAST Assembly No Read Gaps

—— = —— | > —=" -
Staphylococcus NR /-'
ORF database l

' — Gene Content
Gap Length G

Tier 3 Genes

Tier 2 Genes

If Coverage > 90% l

Figure 5

lllustration of the method used for gene identification in S. aureus D30 and S. aureus 930918-3. The raw sequences
were assembled into contigs using Newbler with a contig size threshold of 500 bases. The raw reads that were not assembled
were then aligned against individual matching genes and the assemblies were tested for completeness. Those genes that were
covered over at least 90% of their length were considered present. The sum total of genes thus identified in each genome was

subjected to comparative genome analysis.
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PCR for analyzing differential gene complement in carrier
strains

All genes that were identified by sequence analysis to be a
part of the UNF between strains D30 and 930918-3 were
confirmed by PCR analysis. The primers and conditions
for each gene are given in Additional file 3. The primers
were designed using Primer-3 software at the MIT web
server http://frodo.wi.mit.edu/cgi-bin/primer3/
primer3_www.cgi and PCR was performed for the 76
unique genes using 10 different strains of S. aureus (D20,
D20-2006, D30, D37, D39, D85, D94, D98, 930918-3
and 502-A). The amplicons were subject to electrophore-
sis in a 2% agarose gel in Tris-Borate EDTA buffer and vis-
ualized using Ethidium bromide stain in a Bio-Rad gel
documentation system (Hercules, CA).

Statistical analysis to test significance of PCR genotyping
We created 1000 random S. aureus genomes using the
core-genome (1792 genes) and 850 genes (average varia-
ble genome size) derived from the variable repertoire.
Using these random genomes, we calculated the probabil-
ity of accumulating all the 18 UNF genes within a single
strain. All the raw probabilities were adjusted and Bonfer-
roni correction applied to estimate the P-values. All statis-
tical analyses were performed using R package on a Linux
platform.
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Additional material

Additional file 1

The file contains information of genes analyzed in this study. This file
also shows the indexing of spots shown in figures 2 and 3A in the text. The
color codes used in this file are similar to those used in the figure legends.
Blue represents the common minimal genome, red the shared variable
genes, light blue the unique genes and black represents ORFs that are
absent. The file also contains NCBI accession for each of the 6122 ORFs
and NRID used specifically in this study to identify ORFs.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-9-433-S1.pdf]

Additional file 2

The file lists unique genes as assessed by this study in both D30(Table
1lin Additional file) and 930918-3(Table2in Additional file). These
genes are cross referenced by a) their NCBI accession numbers and b)
project specific NRID and annotations where applicable are provided.
Genes marked in turquoise blue belong to UNF set.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-9-433-S2.pdf]
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Additional file 3

The file lists the primers used in this study for analyzing the distribution
of UNF genes in strains D30 and 930918-3. Also provided are conditions
of PCR including the annealing temperature for each primer pair.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-9-433-S3 xls]
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