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Abstract
Background: Microarrays have the capacity to measure the expressions of thousands of genes in
parallel over many experimental samples. The unsupervised classification technique of bicluster
analysis has been employed previously to uncover gene expression correlations over subsets of
samples with the aim of providing a more accurate model of the natural gene functional classes.
This approach also has the potential to aid functional annotation of unclassified open reading frames
(ORFs). Until now this aspect of biclustering has been under-explored. In this work we illustrate
how bicluster analysis may be extended into a 'semi-supervised' ORF annotation approach referred
to as BALBOA.

Results: The efficacy of the BALBOA ORF classification technique is first assessed via cross
validation and compared to a multi-class k-Nearest Neighbour (kNN) benchmark across three
independent gene expression datasets. BALBOA is then used to assign putative functional
annotations to unclassified yeast ORFs. These predictions are evaluated using existing experimental
and protein sequence information. Lastly, we employ a related semi-supervised method to predict
the presence of novel functional modules within yeast.

Conclusion: In this paper we demonstrate how unsupervised classification methods, such as
bicluster analysis, may be extended using of available annotations to form semi-supervised
approaches within the gene expression analysis domain. We show that such methods have the
potential to improve upon supervised approaches and shed new light on the functions of
unclassified ORFs and their co-regulation.

Background
Gene expression microarrays enable the expressions of
thousands of genes to be measured in parallel over many
experimental samples (growth conditions, time points,
cell types etc.). The results from microarray experiments

are generally presented in the form of an expression data
matrix, where rows represent genes and columns repre-
sent samples (or vice versa depending on the experimen-
tal objective). Analysis of such gene expression data has
shown that functionally related genes may have correlated
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expression profiles [1]. Sample profiles too, such as cell or
disease types, often exhibit characteristic expression pro-
files [2]. From a data modelling perspective, a sample or
gene profile may be thought of as a 'data object' with the
gene or sample name representing the object's descriptor
variable or label and the corresponding expression values
representing the object's predictor variables or features.
This raises the prospect of characterising and classifying
genes or samples based on their expression profiles. In the
case of experimental samples, such analysis is most often
performed in relation to cell types e.g. the molecular char-
acterisation of clinically similar cancer subtypes [2-4]. In
this paper, however, we will focus on the functional clas-
sification of unannotated genes via their corresponding
expression levels. Hereafter unannotated gene profiles
will be referred to as 'open reading frame' (ORFs), rather
than genes, as a functional protein product has yet to be
verified.

Several modes of analysis may be applied to gene expres-
sion data depending on objectives of the study in ques-
tion. Statistical methods such as differential analysis of
gene expression over samples may be used to identify
genes that show significantly different expression across
sample classes. This can lead to the ab initio elucidation of
gene function as well as the identification of key 'marker'
genes whose expression are tightly correlated with sample
classes [5]. Should sample or gene class labels be availa-
ble, supervised machine learning methods may be applied
to 'learn' the characteristic expression patterns of a class.
Techniques such as k-nearest neighbour (kNN) and sup-
port vector machines (SVMs) have been applied success-
fully to classify both unlabelled genes and samples [6-8].

When class labels are unavailable, or perhaps debatable,
unsupervised methods may be applied to attempt to model
the class structure by analysing inter-object similarities
with reference to features alone. Cluster analysis has been
the most prevalent unsupervised method within the
domain of expression data analysis and has been applied
to model both sample and gene classes [1,9,10]. This tech-
nique typically separates the data into k disjoint groups of
objects that have high similarity within groups and low
similarity between groups. Expression similarity is best
computed via a correlation based distance measure, such
as Pearson's Correlation, rather than an absolute measure
such as Euclidean distance, as such functionally related
genes may be expressed at different absolute levels. In
gene expression data analysis, genes exhibiting similar
expression patterns may be co-regulated to perform a
common function in vivo. Cluster analysis of genes there-
fore attempts to model the gene functional modules that
exist within the expression data.

Conventional cluster analysis of genes computes expres-
sion similarity across the full set of sample features. How-
ever, as datasets increase in size it becomes increasingly
unlikely, due to noise and measurement error that even
functionally related genes will retain expression similarity
over all experimental samples. Furthermore, some experi-
mental samples may simply be irrelevant with regard to
stimulating co-regulation within a gene functional mod-
ule. As a result, measuring gene expression similarity
exclusively over all samples has the potential to miss sig-
nificant 'local' signals that may only be apparent over sub-
sets of experimental samples.

To address this drawback, the 'two-way' clustering tech-
nique of bicluster analysis was proposed [11]. In this
domain, biclustering involves grouping genes whose
expression may correlate over a subset of experimental
samples only. Apart from guarding against the prospect of
missing significant local signals within the data, bicluster-
ing allows data objects to belong to more than one group-
ing, or to none at all. This aspect is also beneficial as a
gene may belong to two or more functional modules
expressed over different subsets of experimental condi-
tions.

The question of how to best evaluate the class model
retrieved by bicluster analysis is an important considera-
tion. In some cases biclustering methods have been eval-
uated in terms of internal data-derived criteria alone [12-
14]. Such evaluations however lack validation within the
domain context. When applying unsupervised methods to
gene expression data analysis any complete evaluation
must include an assessment of the biological meaning of
proposed classes. Generally, in expression data there are at
least some gene labels available. As a result, bicluster anal-
ysis may be partially assessed in terms of 'functional
enrichment' [15]. Functional enrichment is akin to the
supervised machine learning term of precision, except of
course we must decide upon our 'correct' label. The func-
tional enrichment, E, of a bicluster may be given by E = M/
N, where M is number of genes from the predominant
functional category and N is the total number of genes in
the bicluster. This simple metric may be extended to
account for the distribution of the dominant class in the
population by calculation of a p-value from the hypergeo-
metric distribution (or in large populations its binomial
approximation). However, in some cases, i.e. when the
bicluster is large or it captures part of a relatively small
class, a bicluster may have a seemingly significant p-value
but a low, and uninformative, functional enrichment. As
a result bicluster quality should be assessed using both
measures.

Until now, the principal goal of bicluster analysis has
been to reveal the natural underlying class structure (gene
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functional modules) within the expression data. Once this
higher level class structure is modelled however, one may
employ it to infer added functions for known genes or,
more interestingly, assign functional labels to unclassified
ORFs. The success of this latter objective clearly depends
on the accuracy of the former class modelling approach.
The utilization of the class model derived by bicluster
analysis to aid functional annotation of unclassified ORFs
has been under-explored. One possible method of assign-
ing putative functions to unclassified ORFs is by examin-
ing biclusters in which these ORFs are present. If these
biclusters have a high enrichment of genes from one func-
tional category we might surmise that these unannotated
ORFs may also belong to this category. This guilt by associ-
ation method for ORF classification is discussed in the
Methods section. In this paper we extend bicluster analy-
sis to shift the focus onto unclassified ORF annotation
rather than performing it as a secondary objective to class
analysis. Referred to as BALBOA (Bicluster AnaLysis Based
Orf Annotation), this approach is a more systematic and
directed method of predicting functional labels for
unclassified ORFs using expression data. BALBOA's
strength lies in the fact that it combines both the informa-
tion on class structure, retrieved by bicluster analysis, and
the available gene label information. In machine learning
such approaches are often referred to as being 'semi-super-
vised' in nature.

BALBOA begins by partitioning the gene expression data-
set into annotated genes and unannotated ORF subsets.
Bicluster analysis is then performed on the annotated
gene set alone. The resulting fully labelled biclusters are
then assessed and used as 'classifiers' to label similarly
expressed ORFs in the unannotated set. As BALBOA is
based on bicluster analysis we briefly review this topic
within this gene expression analysis domain in the Meth-
ods section. We then describe the BALBOA ORF classifica-
tion strategy. An advantage of the BALBOA approach is
that it may be evaluated via cross validation. In the Results
section we compare BALBOA to the standard classifica-
tion approach of k-nearest neighbour (kNN). The specific
multi-class kNN implementations used are also described
in this section. In this evaluation we use three independ-
ent gene expression datasets derived from Saccharomyces
cerevisiae or budding yeast. In the second part of the
Results section we then attempt to functionally classify
yeast's unclassified ORFs using BALBOA. In the last part of
the Results section we also attempt to model novel func-
tional modules present within the unclassified ORF set.

Importantly, an advantage of using three independently
generated gene expression datasets is that they represent
different 'views' of the same transcriptome. Therefore any
putative predictions concerning the functions of unclassi-
fied ORFs may be cross-referenced across datasets. This

has the potential to significantly increase the support for
both single annotations and predicted functional mod-
ules. We also attempt to support our putative annotations
via external experimental and protein sequence informa-
tion from the Saccharomyces Genome Database (SGD).
We first give a brief review of bicluster analysis in the gene
expression analysis domain.

Methods
Bicluster analysis of gene expression data
In the context of gene expression data, conventional clus-
ter analysis involves computing similarity over all experi-
mental samples, i.e. the full set of features. This approach
may not be the most suitable for analyzing high dimen-
sional gene expression datasets. Gene expression data may
contain a significant amount of noise from sample varia-
tion and errors within the experimental measurement
process itself. Furthermore, even the expressions of func-
tionally related genes may not necessarily correlate over
the full set of experimental samples. For example, co-reg-
ulation within a gene functional module may only be
stimulated at certain stages in the cell cycle or environ-
mental conditions. Cluster analysis, therefore, has the
potential to miss significant subspace similarities within
the data that may contribute to the modelling of the nat-
ural set of functional classes. To address this problem, the
concept of biclustering was introduced to gene expression
data analysis by Cheng and Church [11].

In a gene expression data matrix of genes and samples, a
bicluster is defined as a subset of genes that show similar
expression over a subset of experimental samples. In
examining different sample subsets one can also see that
different behaviours of the same gene can be captured.
This aspect of biclustering enables it to model overlapping
gene functional classes i.e. where genes have more than
one function.

Cheng and Church proposed a bicluster scoring metric
called the mean squared residue (H) to evaluate the correla-
tion of the rows and columns within selected sub-matrices
in the expression data matrix. This is given by:

where aij is the entry at position ij in the sub-matrix (I, J),
aiJ is the mean of the ith row, aIj is the mean of the jth col-
umn and aIJ mean of the whole sub-matrix. A sub-matrix
with a mean squared residue score below a chosen thresh-
old (δ) is termed a δ-bicluster. The number of sub-matri-
ces, S, (possible δ-biclusters) in an M × N matrix is:

SMN = (2N - 1)(2M - 1)                        (2)

H I J
I J

a a a aij Ij iJ IJ

i I j J

( , ) ( )
,

= − − +
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∑1 2

(1)
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In such an exponential search space an exhaustive search
through all possible sub-matrix solutions is NP-hard [16]
and therefore impracticable in large gene expression data
matrices.

To tackle this issue Cheng and Church formulated the
bicluster analysis problem as a 'greedy' search heuristic.
The central iteration of this approach is a node deletion step
that utilizes the means squared residue as the objective
function. This seminal study spawned numerous directly
related biclustering approaches [12,14,17] as well as con-
ceptually similar strategies that incorporated alternative
methods and metrics [18,19]. However, the mean squared
residue was subsequently shown to contain some biases
that directed searches towards less interesting biclusters
containing genes with low expression variance [20], see
Figure 1. Recently, we proposed BUBBLE (Bottom-Up
Biclustering By Locality Expansion) bicluster analysis
strategy [21]. BUBBLE demonstrated improved results
over the competitive graph theoretic approach, SAMBA,
proposed by Tanay et al. (2002) over several gene expres-
sion datasets. BUBBLE begins by locating small, highly
correlated regions within the gene expression data matrix
via a simulated annealing based search method. These are

referred to as bicluster seeds. Interestingly BUBBLE does not
aim to find the global optimum only 'regional optima'.
Furthermore, this method does not require selection on
an arbitrary δ threshold. Importantly, BUBBLE utilizes a
new metric, the Hv-score, which is unencumbered by the
bias affecting the mean squared residue. This is defined
by:

where aij is the entry at position ij in the sub-matrix (I, J),
aiJ is the mean of the ith row, aIj is the mean of the jth col-
umn and aIJ is the mean of the sub-matrix. The Hv-score
includes the row variance of the bicluster in the denomi-
nator which compensates for the bias inherent in the
mean squared residue (equation 1).

In BUBBLE, once the bicluster seeds have been located
they are then expanded in a deterministic manner by add-
ing the most similar gene profiles to produce a full biclus-

Hv I J

aij aIj aiJ aIJ
i I j J

aij aiJ
i I j J

( , )

( )
,

( )
,

=

− − +
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∑

−
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∑

2

2 (3)

Change in H-score and Hv-score with increasing bicluster scaleFigure 1
Change in H-score and Hv-score with increasing bicluster scale. Figure 1 illustrates how the H-score and improved 
Hv-score change as the scale of the bicluster being measured changes. Biclusters of different scales, but with the same relative 
row correlation, receive very different H-scores but approximately the same Hv-score. Biclusters were generated as in [28].
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ter. The 'stopping' criterion for this expansion is based on
the largest disimprovement in the Hv-Score of the growing
bicluster.

BALBOA's bicluster analysis step is based upon the BUB-
BLE algorithm with some important extensions, discussed
in the next section, designed to improve the subsequent
ORF functional classification process. In the next section
we shall examine the 'co-occurrence' method of ORF func-
tional classification that has been thus far employed with
both cluster and bicluster analysis of gene expression data.

Unclassified ORF annotation via unsupervised class 
modelling
ORF annotation by co-occurrence analysis: 'guilt by association'
It is evident from previous cluster and bicluster analysis
studies of gene expression data that functionally related
genes tend to group together [1,22]. Extending this logic
would suggest that similar functions be attributed to any
unclassified ORFs also present. The support for this func-
tional inference increases with the ratio of annotated to
unclassified ORFs within the grouping and the functional
enrichment of the annotated genes present. This co-occur-
rence analysis has also been referred to as the guilt by asso-
ciation approach [23].

Wu et al. applied several gene clustering techniques to
expression data [15]. Using the above premise, they
inferred putative functions for unannotated ORFs and
labelled the clusters using the MIPS functional database
(see Results section). To assess the precision of this strat-
egy they iteratively re-labelled each annotated gene in turn
as 'unclassified' and re-assessed all the cluster enrichments
(and resultant ORF classifications). They achieved an
accuracy of up to 80% with a recall of 40% in the case of
the Protein Synthesis functional category. Although Wu et
al. did some filtering on the basis of p-values they did not
take into account the functional enrichment of the clus-
ters, only whether the gene was present or not. Also, a sig-
nificant number of the clusters contained many
unannotated genes and therefore added limited informa-
tion to the model. Lastly, as this annotation approach is
built upon conventional clustering only, it does not uti-
lize input from the gene relationships that only occur over
significant subsets of experimental samples.

In another study, biclusters generated by the SAMBA
biclustering algorithm were subsequently analyzed to pro-
duce a so called 'naive functional annotations' of unclas-
sified ORFs [19]. Again p-value filtering was carried out
but in this case the evaluation involved hiding 30% of the
known annotations and then assessing the precision. Here
the authors used the 10 Gene Ontology (GO) categories
(rather than the more specific 17 MIPS categories). It was
also noted that genes could be assigned more than one

annotation as a result of this process. However, as p-values
were used to select significant biclusters (p > 10-4) and no
weight was given to functional enrichment of the biclus-
ters, we can see that many annotations, some poorly sup-
ported, may be assigned to an ORF. It is also difficult to
gauge the success of this approach as the authors only pro-
vide the specificity (percentage of true negatives correct)
and the selectivity (recall) of their annotations. Both of the
above classification approaches use a 'co-occurrence' strat-
egy to putatively label unannotated ORFs. An alternative
strategy might be to borrow from the 'labelled training set'
approach used in supervised learning.

The BALBOA strategy for unclassified ORF annotation
In the BALBOA strategy for annotation of unclassified
ORFs the gene expression dataset is first partitioned into
labelled and unlabelled subsets, i.e. annotated genes and
unannotated ORFs respectively. Gene labels are provided
by the MIPS database, see Results section. Bicluster analy-
sis is then applied to model the classes in the annotated
subset. This produces fully labelled biclusters that can be
used as 'classifiers' to direct labelling of the unclassified
ORFs in the unannotated subset. This type of approach, in
which both knowledge of labels and object similarities are
combined to drive classification, may be referred to as
'semi-supervised' as the classification is partially directed
by the labels that are available. This approach has several
advantages over the 'co-occurrence' ORF annotation
method described in the last section. Firstly, the biclusters
are fully labelled, containing no unclassified ORFs, and
therefore all will be more informative. The biclusters gen-
erated in this manner also tend to have higher functional
enrichments than those generated over the total expres-
sion dataset. Furthermore, during evaluation the dataset
may be partitioned into 'training' and 'testing' subsets
enabling cross validation in accordance with standard
practice (where training and testing sets remain separated)
to be applied.

In BALBOA, the bicluster analysis step employs several
extensions to the previous BUBBLE approach. Firstly, the
diversity within the final bicluster population is increased
by masking bicluster seeds as they are discovered. This
masking involves replacing the entries of the dataset that
represent the bicluster seed with random values from the
inter-quartile range of the dataset. Selection from this
range plus the fact that masking is limited to the bicluster
seed minimizes the random interference referred to in [12].
Secondly, the number of bicluster solutions generated by
BALBOA is also increased. As in ensemble clustering it is
advantageous to increase the size and diversity of the set
of biclusters as this will enable better determination of the
most 'stable' relationships [24]. In this case however this
stability adds increased support to our subsequent ORF
classification step.
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The full BALBOA strategy is illustrated in Figure 2. In step
1 the gene expression dataset is partitioned into annotated
(genes with known functional labels) and unannotated
(unclassified ORFs) subsets. In step 2 biclusters are then
generated in the unannotated subset only. In step 3 biclus-
ters that have relatively high functional enrichments, E,
i.e. with E ≥ αEmax, where α is user defined and Emax is the
maximum functional enrichment for a functional cate-
gory, are used to assign labels to similarly expressed
unclassified ORFs in the unannotated subset.

In practice unclassified ORF profiles are first standardized
(divided by their standard deviation). They are then
sorted according to their mean squared residue score rela-
tive to the bicluster classifier. This relative profile scoring
was first used by Cheng and Church in their node deletion
approach. In this case, the stopping point for the annota-
tion process is determined retrospectively by the largest
'jump' in dissimilarity that occurs as the ordered ORFs are
presented to the classifier.

Illustration of the steps in the BALBOA ORF classification algorithmFigure 2
Illustration of the steps in the BALBOA ORF classification algorithm. This figure shows the various step of the BAL-
BOA ORF prediction algorithm. In step 1 the expression dataset is divided into its annotated genes and unannotated (unclassi-
fied) ORFs. In step 2 biclusters are generated in the annotated gene set only. In step 3 selected biclusters (where E ≥ Emax) are 
used to classify similarly expressed ORFs in the unclassified set. In step 4 ORFs are combined into weighted frequency list for 
each functional category. Each ORF label weight is derived from the functional enrichments of the classifying biclusters. In step 
5 the top ORFs (where F ≥ Fmax) are selected from this list. In step 6 ORFs consistently classified across independent datasets 
are returned.
Page 6 of 15
(page number not for citation purposes)



BMC Genomics 2008, 9(Suppl 2):S20 http://www.biomedcentral.com/1471-2164/9/S2/S20
The label assigned to an unclassified ORF by a bicluster
classifier is also weighted based on the functional enrich-
ment of the bicluster. Unclassified ORFs may receive
labels from more than one bicluster classifier. Where
assigned labels agree weights are additively combined. So
for example, if unclassified ORF YAAxxx is classified by
two annotated biclusters with functional enrichments
0.90 amd 0.75 for the Transcription functional category,
YAAxxx is assigned the label Transcription with a weight of
1.65. In step 4 this weighted frequency, F, is used to rank
unclassified ORFs within lists for each functional cate-
gory.

Unclassified ORFs that have many supporting biclusters
with high functional enrichments for functional category
A should top the weighted the list for category. In step 5,
to reduce the potential for returning false positives, the
best supported labels at the top of each list are then
selected. We define a selection threshold, F ≥ βFmax, where
Fmax is the highest weighted frequency in the list. Like the
bicluster filtering parameter (a) the frequency threshold
parameter, β, is user defined. In the extreme case, where α
and β are set to 1.00, only unclassified ORFs labelled by
the most enriched biclusters (Emax) for each functional cat-
egory and labelled most frequently (Fmax) will be assigned
labels.

Since three yeast datasets are available in this study, a final
cross-referencing step (step 6), where unclassified ORF
labels are only assigned if they are consistent across mul-
tiple expression datasets, may also be performed.

As BALBOA involves separate 'training' and 'labelling'
stages we may evaluate it via standard cross validation.
Furthermore, although the set of unannotated ORFs are
all officially designated as 'unclassified' by MIPS, for many
there does exist some 'wet lab' experimental and/or pro-
tein sequence information. Although, evidently, this
information is not sufficient to allow an official func-
tional annotation it may still support the putative func-
tional labels assigned by BALBOA.

Evaluation
Datasets
We use three yeast expression datasets in our evaluation.
The 'Eisen' dataset contains 6,221 genes and 80 samples
related to yeast cell-cycle, sporulation, and diauxic shift
[1]. The 'Hughes' dataset contains 6,316 genes and 300
samples from an extensive functional analysis expression
study [25]. The 'Gasch' dataset contains 6,129 genes and
150 samples from a yeast cell stress study [26]. Missing
entries were randomly imputed from the inter-quartile
range of each dataset. To reduce the impact of this impu-
tation we removed all rows and columns containing
extensive (≥ 25%) missing values.

ORF profiles were annotated via the MIPS (Munich Infor-
mation Centre for Protein Sequences) database [27].
Approximately 1500 ORFs in yeast are assigned category
99 (Unclassified). These MIPS labels were used to evaluate
the functional enrichment after our bicluster generation
phase, allowing selection of good bicluster 'classifiers'.

Lastly, to avoid classification of non-coding ORFs those
specified as 'dubious' (≈ 500) by the Saccharomyces
Genome Database (SGD) were removed from each data-
set. Datasets and algorithms are available on-line at http:/
/mlg.ucd.ie/balboa.html.

Multi-class k-NN implementations
Supervised approaches such as k-Nearest Neighbour
(kNN) and Support Vector Machines (SVMs) have been
used to classify unlabelled ORFs within expression data
[6-8]. Recently, the 'local' kNN approach (that looks at the
labels of the k most similar data object only) has been
shown to out-perform the 'global' SVM approach (that
searches for a class separating hyperplane) in the gene
expression domain [23]. This is perhaps unsurprising as
given the overlapping nature of gene functional classes a
good class partition may be difficult to find.

In kNN an unlabelled 'query' object is compared with its
k nearest labelled objects in feature space. This 'nearness'
depends on its feature values and is defined by a suitable
similarity metric. In our context the query consists of an
unannotated ORF and its feature values are its expression
levels. We use Pearson's correlation as the similarity met-
ric. We use k = 10, which was previously used in this
domain [23], and is also the number of genes present in
the initial bicluster seed in BALBOA.

Also important in kNN is the voting process. Firstly, we
use a majority voting scheme in which we assign the most
prevalent label from our k nearest neighbours. We also
implement a unanimous voting scheme in which we only
assign a label to the query object if all k neighbours 'agree'
or contain that label. This will reduce the recall but enable
higher precision and reduce the potential for false posi-
tives. To cater for the possibility of a gene having multiple
functional labels, we must implement these kNN in a
multi-class manner. Therefore when two (or more) labels
are equally prevalent among the k nearest neighbours we
assign all labels to our query.

Results
Comparative cross validation with kNN
Before applying BALBOA to classify the unannotated yeast
ORFs we must first determine its prediction accuracy, or
precision, by cross validation. To do this we divide the
annotated gene set into a training set and test set. We then
train BALBOA on the training set and use the resultant
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bicluster classifiers to predict the functional labels of the
test set. We perform two rounds of 4-fold cross validation.
This 3:1 split reflects the natural annotated to unanno-
tated ratio in yeast. In practice our a and β thresholds,
described in the Methods section, are set as follows. Our
set of best biclusters for each functional class are chosen
by selecting biclusters with functional enrichment E ≥
αEmax, where α = 0.9 and Emax is the maximal enrichment
for a functional class. We combine the resultant labelled
ORFs for each class into a weighted frequency list and
select the best supported ORFs, such that F ≥ βFmax, where
β = 0.9 and Fmax is the label with the highest weighted fre-
quency. Although we could finely tune these parameters
to achieve better results for each functional class these val-
ues allowed for best average predictions across all func-
tional categories and all datasets. This fact may also reduce
the possibility of over-fitting our training data. Cross vali-
dations for each yeast dataset are given in Table 1. Here we
compare BALBOA's classification precision (P) and recall
(R) with majority and unanimous voting multi-class kNN.
In column one we see that majority kNN has a high recall
but low precision and as a result its use as an ORF classi-
fier is unfeasible. In column two we can see that unani-
mous voting markedly improves precision at the expense
of recall. The final column shows that BALBOA out-per-
forms unanimous kNN achieving a higher mean precision
over all functional classes.

As opposed to kNN, BALBOA allows for the capturing of
signals that occur over subsets of the experimental fea-
tures in the dataset. In the Transcription (11) functional
category in particular this facet seems to allow for a greater
classification precision to be achieved across all three
datasets. In other categories such as Protein Synthesis (12)
UkNN is more competitive. This is not surprising as it is
well known that genes in this fundamental functional cat-
egory are strongly co-expressed over most conditions.

Functional annotation of unclassified ORFs
Now that we have determined BALBOA's classification
precision for each functional class we can apply it to clas-
sify unannotated yeast ORFs. Heretofore our evaluation
has focused on the top level MIPS categories (01, 02 etc.).
However in some cases it may be possible to assign a more
specific and informative functional label. A prime exam-
ple is that of Protein Synthesis (12). Expression correlations
of genes from this category are most often due to the
highly co-regulated sub-category of ribosomal proteins
(12.01.01). In this study we have also observed that this
ribosomal co-regulation is also evident in the ribosomal
RNA (rRNA) processing genes. This sub-category, specifi-
cally rRNA processing (11.04.01), often dominates the
biclusters that are functionally enriched for Transcription
(11). These sub-category labels are provided where avail-
able and allow for a more specific putative annotation.

Of the 954 unclassified ORFs, BALBOA made putative
functional predictions for 135 from the Eisen expression
data, 113 from the Gasch data and 119 from the Hughes
data. These span 13 of the 17 MIPS functional categories.
Interestingly, despite the different experimental condi-
tions investigated in the three independent expression
studies, 21 annotations, spanning 7 MIPS functional cate-

Table 1: Comparative cross validation of BALBOA with majority 
& unanimous voting kNN. 

MIPS Category KNN UkNN BALBOA

Eisen P R P R P R

Metabolism (01) 0.46 0.43 0.50 0.00 0.54 0.01
Energy (02) 0.48 0.15 0.63 0.01 0.57 0.05
Cell Cycle (10) 0.48 0.41 0.86 0.03 0.89 0.02
Transcription (11) 0.47 0.36 0.13 0.00 0.58 0.03
Protein Synthesis (12) 0.51 0.52 0.97 0.24 1.00 0.08
Protein Fate (14) 0.38 0.26 0.94 0.01 0.91 0.02
Transp. Elements (38) 0.29 0.57 0.25 0.09 0.50 0.43
Cell Fate (43) 0.30 0.09 0.00 0.00 0.58 0.05

Mean 0.42 0.35 0.53 0.05 0.70 0.09

Hughes P R P R P R

Metabolism (01) 0.47 0.50 0.85 0.03 0.85 0.04
Energy (02) 0.59 0.16 0.98 0.03 0.76 0.08
Cell Cycle (10) 0.49 0.24 0.85 0.01 0.57 0.03
Transcription (11) 0.44 0.43 0.62 0.01 0.81 0.03
Protein Synthesis (12) 0.52 0.47 0.95 0.18 1.00 0.05
Protein Fate (14) 0.39 0.24 0.50 0.00 0.47 0.02
Prot. Bind. Func. (16) 0.29 0.14 0.00 0.00 0.57 0.01
Cell Transport (20) 0.36 0.20 0.80 0.02 0.50 0.03
Transp. Elements (38) 0.38 0.48 0.00 0.00 0.77 0.47
Biogen. Cell. Comp. (42) 0.32 0.15 0.41 0.01 0.74 0.04

Mean 0.43 0.31 0.60 0.03 0.70 0.09

Gasch P R P R P R

Metabolism (01) 0.46 0.49 0.88 0.01 0.83 0.03
Energy (02) 0.52 0.20 0.94 0.05 0.83 0.09
Cell Cycle (10) 0.46 0.29 0.75 0.00 0.58 0.03
Transcription (11) 0.45 0.37 0.64 0.00 0.74 0.06
Protein Synthesis (12) 0.50 0.55 0.95 0.31 0.98 0.17
Protein Fate (14) 0.40 0.29 1.00 0.03 0.93 0.01
Cell Transport (20) 0.36 0.20 0.25 0.00 0.66 0.01
Transp. Elements (38) 0.79 0.52 0.00 0.15 0.75 0.50
Biogen. Cell. Comp. (42) 0.33 0.12 0.38 0.00 0.60 0.03

Mean 0.48 0.34 0.64 0.06 0.77 0.10

The highest precisons for each MIPS category in each dataset 
evaluated are shown in bold. BALBOA achvieves the highest mean 
precision over all MIPS categories in each dataset. P = Pecision, R = 
Recall.
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gories, were consistent across 2 or more datasets. We will
now focus on these consistent annotations, presented in
Table 2. We can see from this table that some of BALBOA's
putative functional annotations seem to be well sup-
ported given the external experimental and sequence
information. One case which stands out in particular is
that of YCR072C. This ORF was unclassified by MIPS
when we labelled the data. However this ORF has subse-

quently been labelled by MIPS as being involved in tran-
scription of ribosomal RNA (rRNA) and assigned category
rRNA processing (11.04.01). This functional label agrees
with our predicted function. In fact six of the seven ORFs
assigned to the Transcription (11) functional category
seem to have good supporting external evidence. This
includes YDL167C and YJR003 both of which are sup-
ported by previous computational evidence defined as

Table 2: BALBOA annotation of unclassified ORFs that are consistent over two or more datasets.

ORF Predicted Function Experimental Evidence (SGD) Protein Sequence

YJR154W Metabolism: Amino Acid (01.01) Putative protein, unknown function. GFP-
fusion protein localizes to cytoplasm.

Similarity (p = 2.8e-5) to cytosolic L-
asparaginase (YDR321W).

YDL072C (YET3) Energy: Respiration (02.13) Null mutant has decreased level of secreted 
invertase (enables respiration of sucrose).

Human BAP31 homolog.

YGR149W Energy: Respiration (02.13) Putative protein, unknown function Predicted integral membrane protein.
YCR072C (RSA4) Transcription: rRNA (11.04.01) Recently verified by MIPS – ribosomal 

biogenesis.
YDL167C (NRP1) Transcription: rRNA (11.04.01) Role in ribosome biogenesis and assembly 

(RCA).
YMR259C Transcription: rRNA (11.04.01)/

Transport Routes (20.09)
Putative protein, unknown function; GFP-
fusion protein localizes to the cytoplasm.

YNL022C Transcription: rRNA (11.04.01) Putative protein of unknown function. GFP-
fusion protein localizes to a single spot in the 
nucleus.

Similarity (p = 1.2e-18) to YNL061W 
involved in rRNA processing.

YDR361C (BCP1) Transcription (11)/Ribosomal 
Proteins (12.01.01)

Associated with RPL23a & PL23b (Ribosomal 
sub-units) in Affinity Capture Expts.

YJL122W (ALB 1) Transcription (11)/Ribosomal 
Proteins (12.01.01)

Shuttling pre-60S factor; involved in the 
biogenesis of ribosomal large subunit.

YJR003C Transcription: rRNA (11.04.01)/
Transport Routes (20.09)

Putative protein. Detected in purified 
mitochondria. Role in ribosome biogenesis and 
assembly (RCA).

YLR196W (PWP1) Ribosomal Proteins (12.01.01)/
Transcription (11)

Protein with WD-40 repeats involved in rRNA 
processing.

YER049W (TPA1) Ribosomal Proteins (12.01.01)/
Cellular Transport (20)

Interacts with Sup45p (eRF1) and Sup35p 
(eRF3) and Pab1p; role in translation 
termination efficiency.

YDR282C Transported Compounds(20.01)/
Tansposable Elements (38)

Putative protein of unknown function. Similarity (p = 2.2e-21) to YDL001W 
required for sporulation.

YGR266W Transport Routes (20.09) Protein of unknown function. Localizes to 
mitochondrial outer membrane and plasma 
membrane

Predicted to have single trans-
membrane domain.

YIL039W Transport Routes (20.09) GFP-fusion localizes to the ER. Deletion 
confers sensitivity to GSAO (angiogenesis 
inhibitor drug).

YOR175C Transport Routes (20.09) Protein of unknown function. Co-purification 
with Ribosomes.

Member of MBOAT putative 
membrane bound O-acyltransferases.

YPL105C Transport Routes (20.09)/
Transcription (11)

Protein of unknown function. Co-purification 
with both Ribosomes & mitochondria.

YIL060W Tansposable Elements (38) Putative protein of unknown function. Mutant 
accumulates less glycogen than does wild type.

Similarity (p = 4.2e-06) to TyA & TyB 
Retrotransposons.

YJR030C Tansposable Elements (38) Putative protein of unknown function. 
Expression repressed in carbon limited 
cultures

Similar to YJL181w (cell cyle 
regulator) & MBP-1 binding site (cell 
cycle).

YIL157C Biogenesis of Cellular 
Components: Mitochondrion 
(42.16)

Detected in Co-purified mitochondria. Null 
mutant is defective in cytochrome oxidase.

YML030W Biogenesis of Cellular 
Components: Mitochondrion 
(42.16)

Putative protein of unknown function; GFP-
fusion protein localizes to mitochondria.

Unclassified ORFs consistently annotated over two or more datasets, additional labels in italics are from one dataset only. GFP = Green 
Fluorescent Protein; Rca = Reviewed Computational Analysis.
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Reviewed Computational Evidence (RCA) by the SGD.
Another notable annotation is that of YIL060W. This ORF
is putatively assigned to Transposable Elements (38) func-
tional category and is the only ORF given the same anno-
tation across all three datasets. Interestingly, the
translation of this ORF seems to have a significant similar-
ity (p-value = 2.2e -21) to retrotransposons TyA Gag and
TyB Pol genes. This would seem to corroborate our puta-
tive annotation. The two unclassified ORFs labelled as
ribosomal proteins (12.01.01) also have additional labels
supported over two datasets. In the case of YLR196W both
predicted functions appear to be supported given that this
ORF is already thought to be involved in rRNA processing.

Of BALBOA's other putative annotations, the ORF
assigned to amino acid metabolism (01.01), YJR154W, has
been localized to the cytosol by green fluorescent protein
(GFP) fusion localization experiments. Furthermore, the
translation of YJR154W has some small similarity (p-value
= 2.8e-5) to cytosolic L-asparginase. Two ORFs were puta-
tively assigned to respiration (02.13) functional category.
Of these the YDL072C null mutant shows decreased levels
of secreted invertase. Invertase is an enzyme involved in
converting sucrose into glucose and fructose, a required
step if sucrose to be used as an energy source. Of the ORFs
assigned to the transport routes (20.09) category the best
supported seems to be YIL039W. The fact that deletion of
this ORF confers sensitivity to the drug GSAO might sug-
gest a possible involvement in the export of this com-
pound. Lastly, the two ORFs putatively annotated as
Biogenesis of Cellular Components: mitochondrion (42.16)
are actually both localized to the mitochondrion,
YIL157C by co-purification and YML030W by GFP-
fusion. The YIL157C null mutant also shows some defect
in cytochrome oxidase, a mitochondrial enzyme involved
in generating the proton gradient needed for ATP synthe-
sis.

Intuitively, annotations that correspond across two inde-
pendent datasets should have more support than those
from a single dataset only. One method of quantifying
this cross dataset support is the union of probability rule for
two corresponding independent events, given by P1
<Math4font>½ P2 = P1 + (1 - P1)(P2). As a result, even the
least supported annotations, i.e. those of Cellular Transport
(20) with cross validation precision 0.50 and 0.66,
become more significant when consistently supported
over two datasets, increasing to 0.83. With better sup-
ported classes, such as Transcription (11), such cross refer-
encing achieves precision values close to 1.

The α and β values we use in BALBOA may be somewhat
stringent, especially if we include the dataset cross refer-
encing step. However, looking at the final list, we see that
most functional annotations seem to be supported by

external evidence. One may consider this final cross refer-
encing step a more valid selection procedure than the β
selection threshold, as it is derived from the data. Interest-
ingly, we find that upon reducing β to 0.5, 56 ORF anno-
tations then agree across two or more datasets. This
includes 12 that agree across all three. However, that
being said, our chosen α and β values are perhaps more
conducive to minimizing false positives and also proving
the efficacy of the BALBOA classification approach via
external corroboration. In this section we applied BAL-
BOA to annotate individual unclassified ORFs. In the next
section we look at a related semi-supervised strategy of
predicting novel functional modules within the unclassi-
fied ORFs.

Discovery of novel functional modules
In the previous section functional labelling of individual
unclassified ORFs was performed. The best supported
annotations, that agreed across two or more datasets, were
presented along with supporting experimental and pro-
tein sequence evidence. In this section we aim to analyse
the similarly expressed groups within the set of unclassi-
fied ORFs in an attempt model unclassified functional
modules or at least unclassified parts of known functional
modules.

As in the previous section we first employ an initial data-
set partitioning in which the expression data is split into
its annotated genes and unannotated ORFs. Again this
allows the class specific gene expression patterns (labelled
biclusters) to be used as classifiers. The full process is illus-
trated in Figure 3. In this process each annotated bicluster
generally labels several similarly expressed ORFs from the
unannotated set. Unlike BALBOA we now employ dataset
cross-referencing at this stage to discover which ORF
groups are maintained across multiple independent data
views. Groups of unclassifed ORFs, consistently associ-
ated together across independent expression datasets may
represent novel functional modules. The nature of these
predicted functional modules may then be gauged by ref-
erence to the functional enrichment of the annotated
biclusters. The largest unclassified ORF groupings
retrieved in this manner are presented in Table 3.

By far the largest group of unclassified ORFs associated
together in the Eisen, Gasch and Hughes expression data-
sets was a set of 19 ORFs: YBR271W, YCR016W,
YDL063C, YDL167C, YDR361C, YGR187C, YIL064W,
YIL096C, YIL110W, YIL127C, YJR003C, YLR051C,
YLR196W, YLR287C, YOL022C, YOR021C, YOR154W,
YOR252W, YPL183C. As we can see from Figure 4 this set
is highly correlated across all three datasets. The nature of
this possible functional module may be inferred by exam-
ining the functional enrichment of the annotated biclus-
ters used to predict this set in each dataset. In all three
Page 10 of 15
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datasets the predicting annotated bicluster was signifi-
cantly functionally enriched for genes from the Ribosomal
RNA processing (11.04.01) functional category with p-val-
ues of 2.61 × 10-11, 1.53 × 10-14 and 1.24 × 10-8 in the
Eisen, Gasch and Hughes datasets respectively. Eisen and
Gasch biclusters were also enriched to a lesser extent in
Ribosome biogenesis (12.01) genes, 2.66 × 10-6 and 2.08 ×
10-7 respectively. Interestingly, YDL167C, YDR361C,
YJR003C and YLR196W were individually predicted to be
involved in these processes by BALBOA in the last section.
Further physical/genetic association and functional evi-
dence from the SGD is provided in Table 3.

Another set of unclassified ORFs consistently grouped
together across the three expression datasets is YBL112C,
YEL076C, YER189W, YHR219W These are predicted by
annotated biclusters highly enriched for the DNA Topology
(10.01.02) functional category with p-values of 7.26 × 10-

29, 6.58 × 10-14 and 2.89 × 10-7 in the Eisen, Gasch and
Hughes expression datasets respectively. The correlated
expression of this group of unclassified ORFs, across all
three datasets, can be seen in Figure 5. In Table 3 we see
that these ORFs are located in the telomeric regions and
YHR219W has some similarity to helicases.

Another set of unclassified ORFs, consistently predicted
by annotated biclusters across the Hughes and Gasch

Illustration of the steps in the semi-supervised functional module discovery processFigure 3
Illustration of the steps in the semi-supervised functional module discovery process. This figure shows the various 
step of the functional module discovery algorithm. This algorithm is related to the BALBOA algorithm and begins in the same 
manner with the dataset splitting in step 1 and the bicluster analysis of the annotated genes only in step 2. In step 3 however all 
biclusters are selected for analysis. In step 4 dataset cross validation is carried out to establish groups of ORFs that are consist-
ently grouped together by biclusters over the three datasets. In step 5 these consistently grouped unclassified ORFs are 
returned as predicted functional modules, where the function may be inferred by the enrichment and significance of the domi-
nant functional class in the classifying biclusters.
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datasets is YDR493W, YKL137W, YLR204W, YLR218C,
YML030W, YMR157C. These annotated biclusters were
highly enriched in Mitochondrial (42.16) and Ribosomal
Proteins (12.01.01) with significances of 2.48 × 10-53 &
5.88 × 10-40 and 1.23 × 10-36 & 4.23 × 10-34 for these func-
tional categories in the Hughes and Gasch datasets respec-
tively. The correlated expression of this group of
unannotated ORFs can be seen in Figure 6 and additional
supporting interaction and functional evidence is shown
in Table 3.

Discussion
BALBOA represents a novel, systematic approach for ORF
classification using expression data. BALBOA's novelty
lies both in the use of biclustering for training and classi-
fication and also in the subsequent 'ensemble-like' predic-
tion strategy in which information provided by multiple
biclusters is combined. Although such ensemble tech-
niques are conceptually simple, resulting predictions tend
to be more robust. In the first part of the Results section,
cross validation showed that, on average, BALBOA

Table 3: Predicted functional modules of unclassified ORFs. 

ORF Physical/Genetic Associations (SGD) Functional Evidence

Ribosomal RNA procesing (11.04.01)

YBR271W Localizes to the cytoplasm S-adenosylmethionine-dependent methyltransferase.
YCR016W YGL120C (PRP43) RNA helicase/maturation of rRNA, 

YPR135W (CTF4) Chromatin-associated protein
YDL063C YPL131W (RPL5-Protein of (60S) ribosomal subunit) GO ribosome biogenesis & assembly (RCA)
YDL167C (NRP1) GO ribosome biogenesis & assembly (RCA)
YDR361C (BCP1) Protein component of the large (60S) GO ribosomal large subunit export from nucleus (IMP); 

Export of Mss4p lipid kinase
YGR187C (HGH1) YDR188W (CCT6-Chaperonin Containing TCP-1) GO ribosome biogenesis & assembly (RCA)
YIL064W GO ribosome biogenesis & assembly (RCA). S-

adenosylmethionine-dependent methyltransferase
YIL096C YLR009W (RLP24) 60S ribosomal subunit biogenesis GO ribosome biogenesis & assembly (RCA)
YIL110W Putative S-adenosylmethionine-dependent methyltransferase
YIL127C Localizes to the nucleolus GO ribosome biogenesis & assembly (RCA)
YJR003C Detected in purified mitochondria GO ribosome biogenesis & assembly (RCA)
YLR051C (FCF2) Essential nucleolar protein, 35S rRNA processing
YLR196W (PWP) YPL131W (RPL5-Protein of (60S) ribosomal subunit), 

YDR188W (CCT6-Chaperonin Containing TCP-1)
GO rRNA processing (IMP, ISS)

YLR287C YPR135W (CTF4) Chromatin-associated protein
YOL022C Null mutant accumulates 20S pre-rRNA
YOR021C (TSR4) GO ribosome biogenesis & assembly (RCA)
YOR154W (SLP1) SUN like protein
YOR252W (TMA16) YLR009W (RLP24) 60S ribosomal subunit biogenesis, 

YGL120C (PRP43) RNA helicase/maturation of rRNA
YPL183C Negative regulation of transposition, RNA-mediated (IMP)

DNA Topology (10.01.02)
YBL112C Contained within telomere TEL02L, TEL02L-YP
YEL076C Contained within telomere TEL05L, TEL05L-YP, YEL076C-A
YER189W Contained within telomere TEL05R, TEL05R-YP
YHR219W Putative protein of unknown function with similarity to 

helicases; Contained within telomere TEL08R, TEL08R-YP

Mitochondrial (42.16) & Ribosomal Proteins (12.01.01)
YDR493W Null mutant displays decreased frequency of mitochondrial 

genome loss
YKL137W Mutation results in growth defect on a non-fermentable 

(respiratory) carbon source
YLR204W Mitochondrial inner membrane protein
YLR218C Growth defects on a non-fermentable carbon source
YML030W Localizes to mitochondria Null mutant is viable & displays decreased frequency of 

mitochondrial genome loss
YMR157C detected in purified mitochondria Displays increased frequency of mitochondrial genome loss

Predicted functional modules of unclassified ORFS. Genetic/Physical interaction and functional evidence supporting predicted functional modules. 
GO = Gene Ontology; RCA = Reviewed Computational Analysis.
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achieves improved results over multi-class implementa-
tions of majority kNN and the more competitive unani-
mous kNN. Unlike kNN, BALBOA caters for 'local'
correlations over feature subsets. This seems to allow for
markedly improved classification precision for certain
functional categories such as Transcription (11). This thus
demonstrates the necessity for classification approaches
in this domain to provide for the prospect of sub-space
similarities. kNN is still a powerful technique when fea-
tures are relevant and it may prove interesting in future
work to perform kNN with those features selected by
bicluster analysis. In the second part of the Results section,
we saw that BALBOA's ORF predictions were well sup-
ported by external functional evidence from the Saccharo-
myces Genome Database (SGD). Strong support, in
particular, was provided by the recent official MIPS anno-
tation of YCR072C. Although these annotations are puta-
tive they may still aid in the design of improved 'wet lab'
experiments that may in turn lead to official annotation.

In the last part of the Results section, we examined groups
of unclassified ORFs consistently predicted together

across two or more independent datasets with the aim of
modelling functional modules present within the set of
yeast unclassified ORFs. The most prominent signal was
the large correlated set of 19 ORFs labelled as rRNA
processing (11.04.01). Cross dataset analysis and addi-
tional supporting functional evidence supports this
grouping and predicted function and this may be a good
candidate set for further 'wet-lab' analysis.

It is common to combine data from individual expression
studies into one large dataset prior to analysis. However,
we have shown that maintaining multiple perspectives or
data 'views' allows dataset cross referencing and poten-
tially increases support for findings. Also, sample sets
from different sources may reveal different ORF functions.
Maintaining multiple perspectives may also prove useful
in standard bicluster and cluster analyses. Lastly, this work
demonstrates the benefit of applying newly developed
data mining techniques to re-examine expression data
after initial studies. In this paper we demonstrate the
potential new insights, in this case into unclassified ORF

Predicted functional module supported by biclusters enriched with Transcription: Ribosomal RNA processing (11.04.01)Figure 4
Predicted functional module supported by biclusters enriched with Transcription: Ribosomal RNA processing 
(11.04.01). This figure shows the largest group of unclassified ORFS that were consistently classified together by biclusters 
significantly enriched for Transcription: Ribosomal RNA processing (11.04.01) in three independent datasets. The 19 unclassified 
ORFs in this predicted functional module correlate tightly over a subset of 30 sample features in the (a) Eisen, (b) Gasch and (c) 
Hughes expression datasets.

Predicted functional module supported by biclusters enriched with DNA Topology (10.01.02)Figure 5
Predicted functional module supported by biclusters enriched with DNA Topology (10.01.02). This figure shows 
a group of unclassified ORFS that were consistently classified together by biclusters significantly enriched for the DNA Topology 
(10.01.02) in three independent datasets. The 4 unclassified ORFs in this predicted functional module correlate tightly over a 
subset of 30 sample features in the (a) Eisen, (b) Gasch and (c) Hughes expression datasets.
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function and functional modules, that this re-assessment
may provide.
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Predicted functional module supported by biclusters enriched with Mitochondrial (42.16) & Ribosomal Pro-
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