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Abstract

Background: A commonplace analysis in high-throughput DNA methylation studies is the comparison of methylation
extent between different functional regions, computed by averaging methylation states within region types and then
comparing averages between regions. For example, it has been reported that methylation is more prevalent in coding
regions as compared to their neighboring introns or UTRs, leading to hypotheses about novel forms of epigenetic
regulation.

Results: We have identified and characterized a bias present in these seemingly straightforward comparisons that
results in the false detection of differences in methylation intensities across region types. This bias arises due to
differences in conservation rates, rather than methylation rates, and is broadly present in the published literature. When
controlling for conservation at coding start sites the differences in DNA methylation rates disappear. Moreover, a re-
evaluation of methylation rates at intronexon junctions reveals that the magnitude of previously reported differences is
greatly exaggerated. We introduce two correction methods to address this bias, an inferencebased matrix completion
algorithm and an averaging approach, tailored to address different underlying biological questions. We evaluate how
analysis using these corrections affects the detection of differences in DNA methylation across functional boundaries.

Conclusions: We report here on a bias in DNA methylation comparative studies that originates in conservation rate
differences and manifests itself in the false discovery of differences in DNA methylation intensities and their extents. We
have characterized this bias and its broad implications, and show how to control for it so as to enable the study of a
variety of biological questions.

Keywords: Averaging, Conservation, Comparative analysis, Missing data, DNA methylation, Junctions, Intron, Exon,
Coding
Background
High-throughput molecular biology is enabling the mo-
lecular characterization of functional regions by ag-
gregation of genome-wide data. Examples include the
assignment of DNA methylation intensities to functional
regions (e.g. exons) by averaging over the DNA methyla-
tion state of many single instances, or the assignment of
conservation scores to genomic locations by aggregation
of the information in multiple sequence alignments. The
latter analysis was first performed in the mouse genome
paper (Fig. 25a, [1]) and has recently been highlighted as
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being of historic significance [2]. The averaging of signal
across multiple regions of the same functional type facil-
itates the reduction of genome-wide results to summary
statistics, but is complicated by the presence of missing
data, e.g. missing CpGs in the case of methylation or
indels in the case of alignment.
In the case of DNA methylation, many studies use the

aggregation of methylation states at multiple CpG (CG)
sites across many regions to compensate for the sparsity
of signal at any specific location relative to a boundary.
Such analyses, where the percentage of methylated cyto-
sines (%mCG) is computed at each location relative to a
boundary (Fig. 1), are currently considered standard
when characterizing the methylomes of new species [3–
18], and are frequently used to compare methylation in-
tensities at functional boundaries such as intron-exon
and UTR-coding junctions [19–29].
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Fig. 1 Bias introduced by the Yule-Simpson effect. A comparative analysis of DNA methylation across a functional boundary. A pair of matrices is
associated to a functional boundary (one for each side of the boundary). The methylation states are represented by numeric values at all relevant
genomic locations (here 0 and 1 are used for simplicity, but any values may be used). For example, row five may represent a genomic locus:
CGAGTCAG||CGCGCGCG (|| marking the functional boundary location) where all CG sites are fully methylated. The mean of the row averages (R) is
0.67 for both matrices: in eight of the 12 regions all CGs are completely methylated, and in the remaining four regions all CGs are completely
unmethylated. The mean of the column averages (C) is 0.33 for the left matrix and 0.67 for the right matrix. Although there is no difference in the
regional methylation average across the matrices, a difference in the column averages is observed due to a different data distribution: regions
that are methylated are represented with fewer CGs in the left matrix than they are in the right matrix, but this is not the case for unmethylated
regions. Importantly, it is not the lower frequency of sites in the left matrix that causes the discrepancy between C and R but the lower frequency
of sites in the methylated regions
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In this paper we address the validity of such compari-
sons. We show that the %mCG rates at the different
relative locations cannot be directly used to deduce the
methylation states of regions, or to determine whether
different functional regions exhibit significant differential
methylation (Fig. 1). We explain that this is a byproduct
of selection, which leads to an association between the
number of CGs in a specific region and the extent to
which the region is methylated. Specifically, deamination
of methylated cytosines results in depletion over time of
CGs in constitutively methylated regions of vertebrate
genomes [30]. Varying evolutionary constraints affect
the pattern of CGs, thereby limiting the availability of
methylation data in some regions. The non-uniform
distribution of “missing data” (absence of CG sites),
associated with varying selection rates, results in the
Yule-Simpson effect (or Simpson’s paradox) [31–36]
confounding the naïve analyses (Fig. 1 and Additional file
1: Fig. S1). As explained in more detail in the next sec-
tions, the Yule-Simpson effect concerns the possibility that
average-based comparison studies over aggregations of in-
stances may lead to different conclusions than compari-
sons conducted without aggregation, due to an underlying
trend of varying data distributions. Additionally, we show
that this bias is present also when relative changes are
considered, e.g., when comparing the relative change in
DNA methylation under several different experimental
conditions. We have found that numerous DNA methyla-
tion studies may be vulnerable to these issues, and show
this to be the case for human methylome analysis.
The biases prevalent in current studies must be ad-

dressed by modifying the statistical analyses conducted.
We introduce two methods for this task that are suitable
for many genome-wide studies where signal is aggre-
gated by functional region. The first method involves re-
gional averaging on a reduced dataset. While it is robust
and involves minimal statistical inference, this method
requires ignoring a significant portion of the collected
data, and cannot determine quantitative and site-specific
methylation tendencies. The second method we propose
applies a model-based matrix completion algorithm to
circumvent the missing data problem. It is inspired by
machine learning techniques for matrix completion ap-
plied in other settings [37], and in our case we are able to
take advantage of specific patterns linking conservation
pressure to a predicted observed state. The method
learns the relevant set of parameters separately for each
dataset, and generates site-specific inferences of the
measure of interest, along with comparative statistics
and error estimates.
Using our approaches, we find that previous studies

exaggerate the difference in methylation between functional



Table 1 Statistics for averaging-based analysis of the human
methylome

C R M r

Promoters 0.19 0.28 0.18 −0.50

Introns 0.69 0.73 0.69 −0.14

Exons 0.79 0.78 0.79 0.04

Enhancers 0.33 0.36 0.33 −0.14

p53 binding sites 0.07 0.13 0.1 −0.18

The means of column averages (C), row averages (R) and all matrix values (M) are
shown for different region types (Methods). Also listed are the Pearson correlations
(r) between the number of sites in each row and its mean methylation.
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regions, and our analysis of previously published data
leads to different conclusions about the functional role of
DNA methylation. Finally, we discuss additional settings
in which this bias can be present and introduce a method
to test for its presence in arbitrary datasets.

Results
Averaging-based comparisons of DNA methylation
intensities are biased by uneven distribution of data
The bin- or site-specific approach to DNA methylation
comparisons across region types can be formalized as
follows (Fig. 1): The methylation states on each side of a
functional boundary are represented by matrices. Each
genomic region of interest is split at the junction, with
each side contributing a row to the relevant matrix. Each
column represents a distance from the boundary (this
can be site-specific or relative if using binning). The ij-th
entry of a matrix indicates the extent to which region i
was methylated at distance j from the boundary. In the case
that the base at location j in region i cannot be methylated
(for example, it is not a cytosine or part of a CG site), the
matrix contains “missing data” (grey boxes in Fig. 1).
To illustrate the difficulties in comparing methylation

across boundaries, we show in Fig. 1 a simplified hypo-
thetical example in which regions across a functional
boundary have the same methylation tendency. In this
case the CG sites on both sides of a junction are either
all methylated or all unmethylated. However a naïve
comparison of the column averages suggests a signifi-
cant increase in the average mCG/CG rate when cross-
ing the functional boundary. This apparent “paradox”,
can be understood by noting that the increase observed
in the column averages is a result of the missing data be-
ing differently distributed across the functional bound-
ary: regions upstream of the boundary have less data
points at methylated regions than the coupled down-
stream regions, but there is no such trend for unmethy-
lated regions. The “step” in column averages observed in
the example is due to the different tendencies for miss-
ing data across the boundary. We emphasize that it is
not the difference in the number of data points that re-
sults in an observed difference in the mCG/CG measure,
but the difference in the number of data points specific-
ally at the methylated regions. If all rows on the left
hand side of the junction had one CG, a significant dif-
ference would not be observed. In the case of Fig. 1,
comparison of the row averages would reveal that there
is no difference in methylation tendency across the func-
tional boundary. However, as we will show in the next
section, row averages may also be inadequate for com-
parison of methylation, particularly in the common case
that some rows do not have any CGs.
We hypothesized that the effects highlighted in Fig. 1

arise in genome-wide methylation analyses due to the
process of deamination, which results in the loss of CG
sites at regions that are constitutively methylated (or
methylated in the germline). While the process of deamin-
ation leads to the loss of CG sites in methylated regions
under weak selection, regions under strong selection
maintain more CG sites, regardless of their methylation
state. This suggests the presence of several different
biases in current comparative studies. Importantly, it
implies that “column-based” methylation comparisons
are confounded by the extent to which regions vary in
selection. We begin by describing the extent of bias that
can be introduced by averaging, and follow that with a
demonstration of the extent of the problem using whole
genome methylation data.

Site specific averaging is not equivalent to regional
averaging
We define an nxm aggregation matrix W as follows:
each row of W represents one of a set of genomic re-
gions of equal length. At each row, locations of the cor-
responding region that do not have CG sites1 correspond
to empty elements in the matrix, and are referred to as
“missing entries” or “missing data”. Sites that can be
methylated are represented with the assigned methylated
values; in the case of bisulfite sequencing, values be-
tween 0 and 1 (Fig. 1). Given an aggregation matrix W,
we define MW to be the mean over all elements of the
matrix, RW to be the mean of the row averages and CW

to be the mean of the column averages. For example, if
we set W to be the matrix on the left in Fig. 1, we have
MW = 1/3, RW = 2/3 and CW = 1/3. For the case in which
W has no missing values, it is easy to see that MW =
RW = CW. However, the following proposition estab-
lishes that matrices with missing values can have (arbi-
trarily) different MW, RW and CW values (see proof in
Additional file 2: Supplementary text).

Proposition 1. The difference between column averages
and row averages can be arbitrarily large; for any three ra-
tional values r, c and m (0 < r,c,m < 1), there exists an ag-
gregation matrix W such that RW = r, CW = c and MW =m.
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We tested the extent to which these measures differ
for different types of regions in the human methylome
(Table 1). Establishing the extent to which these mea-
sures differ in analyzed datasets is important because in
previous work CW [3–29, 38–41], RW [6, 7, 14, 16, 26,
42, 43] or MW [19, 20, 43–47] were used in comparisons
of methylation across region types, with CW being the
prevalent choice. Table 1 shows that the difference be-
tween CW, RW and MW is large in some cases, and that
the magnitude of this difference varies between regions
of different types. For example, in promoter regions
there is a difference of 0.1 between R and M, whereas in
intronic regions there is a difference of 0.04 between C
and R, approximately half of the reported difference in
methylation between introns and exons at junctions [19,
24]. We observed that in general the extent of discrep-
ancy between the measures is inversely associated with
the extent of selection. Specifically, exons show the
smallest differences.
We hypothesized that the differences between mea-

surements are due to a negative correlation between the
extent to which a region is methylated and the number
of CG sites. We reasoned that such a process would
affect C, R and M, but that C and M would be affected
to a stronger extent than R. Indeed, we observed such
negative correlations for all but the exon regions
(Table 1). At coding exons, such associations are not ob-
served, probably due to strong selection preventing the
loss of CG sites in methylated regions.

Average-based comparisons across region types can lead to
exaggerated difference estimates and false findings
Having established that different average-based measures
are not equivalent to each other, and that they do not
necessarily capture the actual methylation tendency, we
proceeded to investigate how the use of column, row or
matrix averages affects comparative methylation studies.
We found that a direct implication of possible differ-

ences between average-based measures is that a com-
parison of the DNA methylation between two types of
regions (e.g., intronic and exonic regions at intron-exon
boundaries) is not the same as a comparison of the site-
averages of methylation states. This is known as the
“Yule-Simpson effect” (YS) [31–35], and it follows from
the following corollary to Proposition 1: two matrices,
W1 and W2, can have the property that C1–C2 is differ-
ent from R1–R2. The direct relationship between our set-
ting and a classic example of the YS effect is detailed in
Additional file 1: Fig. S1.
Usually the term “Simpson’s paradox” refers specifically

to a reversal of effect when using averages. In our termin-
ology this is equivalent to the statement that for matrices
W1,W2, we have that RW1 > RW2 while MW1 <MW2. The
following proposition connects this discord directly to the
classic Simpson’s paradox (see proof in Additional file 2:
Supplementary text, and an example of occurrence at an
intron-exon subset in Additional file 1: Fig. S2).

Proposition 2. The sign of column-average and row-
average comparisons across regions may be inconsistent.
Let W1 and W2 be two aggregation matrices. RW1–RW2

can have opposite sign to CW1–CW2, and if it does then
an instance of Simpson’s paradox has occurred.

To test the extent to which comparative studies of the
human methylome are confounded by the YS effect, we
conducted simulations in which the methylation tenden-
cies were set to be equal for the regions compared, while
the matrix data structure, i.e., locations of CG sites, was
kept the same (Methods). We found that although, as
expected, there was no true difference in the tendency of
CGs to be methylated, a “step” was observed when com-
paring the column averages (Figs. 2 and 3 leftmost
panel). The presence and size of the step in these simu-
lations indicate the need to correct for the YS effect to
attain accurate comparisons of methylation tendencies
across regions, that are not confounded by a difference
in selection rates. An additional example of the need to
correct for confounding selection effects is apparent
when considering a subset of intron-exon junctions for
which the intronic regions have higher methylation
average rates than the downstream exonic regions
(Additional file 1: Fig. S2). In this case CIntron is signifi-
cantly smaller than CExon (CIntron = 0.75, CExon = 0.78,
p < 2.2e-16), but RIntron is significantly larger than RExon
(RIntron = 0.82, RExon = 0.78, p < 2.2e-16).
Investigating further, we found that in some cases re-

ported differences in methylation seem to be due to the
YS effect, rather than a difference in the methylation
tendency of the regions at hand. 5′UTR-Coding junc-
tions have been reported to display a significant differ-
ence in methylation rate based on a difference in the
mCG/CG value distribution (which corresponds to com-
paring C values across the matrices) [9, 26, 28]. We ob-
served such a significant difference (0.05, p < 2.2e-16) in
a replicated analysis using whole-genome bisulfite data
(Fig. 3, upper panel). However, when considering regional
averages in a coupled corrected manner (Methods and next
section) the difference drops to 0.02, and is non-significant
(p = 0.08, Mann–Whitney-Wilcoxon test). Additionally, in
a simulation shuffling methylation values such that there is
no difference in methylation tendency across the junctions,
a significant difference remains when conducting C-based
analysis (Fig. 3, top-left plot). The difference observed in
simulation is due only to the presence of the YS effect as
described. We therefore conclude that there is no signifi-
cant difference in methylation tendency and extent at 5′
UTR-Coding junctions in the human methylome.



Fig. 2 An observed difference in the mCG/CG rate across a functional boundary is due to a change in conservation rates. A simulation based on
the genetic structure of intron-exon junctions of the human genome (maintaining the location of CG sites). Top row: maintaining the original
genetic structure (location of CG sites), and simulating a difference of 3.2 % in methylation tendency (Methods). Middle row: maintaining the
original genetic structure (location of CG sites), and simulating no difference in methylation by shuffling the methylation values across each matrix
row (Methods). Bottom row: simulating no difference in selective pressure or methylation tendency by shuffling all values (both missing and CGs)
at each matrix row. Shown are the %mCG/CG site-specific values and histograms of all %mCG/CG values for the different region types
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The YS effect is not just a feature of analysis at site-
specific resolution. It can also lead to questionable conclu-
sions in bin-based studies. For instance, it has recently been
reported that there is a significant difference in 5-
hydroxymethylcytosine (5-hmC) across the exon-intron
boundary in the human brain [23], and that the change in
5-hmC was most evident at a 5 bps distance from the
boundary (p= 2.3 × 10− 6). However, a closer look reveals
that although 48,564 exon-intron junctions were present in
the dataset analyzed, only 22 and 501 have methylation
values at the 5 bp region from the boundary, at the intron
and exon side, respectively. Moreover, there is not a single
instance at which there were 5-hmC values on both sides of
the boundary. As we have reported, the difference in selec-
tion between introns and exons results in a different distri-
bution of missing data between these regions. We therefore
conclude that there is currently no evidence for a significant
difference in methylation or hmC rate across the exon-
intron junctions at 5 bps resolution. Testing for the possibil-
ity of such a difference at such fine resolution would require
adding statistical power, perhaps by integrating more chro-
mosomes and additional species into the analysis.

Correction methods allow for comparisons of DNA
methylation tendencies across regions of different
conservation rates
In this section we introduce two methods for unbiased
comparisons in settings in which the YS effect we report
on is present, and apply them to the comparison of DNA
methylation tendencies (Fig. 4). We describe the methods
in the context of DNA methylation comparisons, but note
that the techniques and software described can be ex-
tended to apply to different settings in which the YS effect
is present (see Discussion). We first describe each method
and then present results from their application to in-
stances of the human methylome.

Paired region averaging
In order to account for the YS effect, regional averages may
be leveraged to compare methylation tendencies across
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Fig. 3 Analysis of DNA methylation at functional boundaries. Matrices containing bisulfite-generated methylation estimates were constructed from the
relevant instances of the human genome (hg18), incorporating 4852 5′UTR-coding junctions, 20,784 mid-gene intron-exon junctions and 21,408 CG
island junctions. Each plot shows average methylation measurements at increasing distances relative to the junction (different columns of the matrix).
The means of the column-average values are shown as dashed lines. Simulation (leftmost column)- the methylation values for each pair of coupled
matrix rows were shuffled according to a random permutation (maintaining the locations of missing values), resulting in simulated data with equal
methylation tendency across the junction. Differences observed in the mCG/CG measures are due to differences in the matrix structure across the
boundary (as in Fig. 1). %mCG Analysis (middle)–naïve averaging of the values in the matrix columns. Corrected (rightmost columns)–column-averages
after inference with COMPARE and comparisons after correction with Paired Region Averaging
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functional boundaries. However, comparisons using re-
gional averages require adjustments to avoid biases. In the
correction we propose, the regional average (row average)
of methylation tendencies is computed separately for the
two sides of each boundary instance, discarding from sub-
sequent analysis boundary-instances at which one or both
sides of the boundary do not have any measured methyla-
tion values (Fig. 4). The methylation tendency at the differ-
ent sides of the boundary can then be compared using the
statistical test of choice (Fig. 3, rightmost column).
While allowing for comparisons of methylation tenden-

cies in an unbiased manner, the paired row-averaging
approach has several shortcomings. First, it requires dis-
carding data. While this is crucial to avoid the YS effect
(see Fig. 4 and Additional file 1: Fig. S3), due to the spars-
ity of CG sites at methylated regions a considerable
amount of information may need to be discarded. For ex-
ample, when considering intron-exon junctions at
200 bp resolution, 6253 of 20,784 intron-exon junctions
are discarded, and the number grows for shorter dis-
tances from the boundary. Second, while this method
enables an unbiased assessment of the relative methyla-
tion tendency across functional boundaries (determin-
ing if the methylation tendency on one side of the
boundary is larger than the other), it does not give a
quantitative measurement of the methylation tenden-
cies (Additional file 1: Fig. S3). This follows from the
fact that instances of missing data are biased to origin-
ate from more highly methylated regions. Third, the re-
gional averages of methylation tendencies do not allow
for site-specific assessment and therefore cannot deter-
mine if changes in methylation tendencies occur at a
gradual or step-wise manner.
Nevertheless, paired row averaging is a sound method

for the comparison of DNA methylation tendencies across
region types, and does not require statistical inference.
Figure 3 presents our findings using paired row averaging
at several functional boundaries of the human methylome.

Model-based matrix completion
To enable the unbiased estimation of methylation tenden-
cies across region types, while maintaining site-specific



Fig. 4 The COMPARE and Paired-Region Averaging methods for correcting biases introduced by differences in conservation rates. Top: COMPARE
learns a different set of parameters for every column, and the methylation tendency of site i,j is inferred from the features of row i and the parameters
set for column j. The complete inferred matrix can then be used in subsequent average-based tests. Bottom: Paired-Region Averaging computes for
each instance (e.g. a specific intron-exon junction) the average methylation rate at each side of the functional boundary and excludes instances at
which either of the boundary sides is lacking any values (and hence no average-based DNA methylation rate can be assigned). Tests to compare the
relative methylation tendencies of the different boundary sides can be applied, but a quantitative analysis of the DNA methylation rates cannot be
conducted when using this method due to the region-exclusion step
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resolution, we developed COMPARE (COMparison of
Phenotypes Averaged by REgion). COMPARE is a sparse-
matrix completion technique that determines for each
entry of an aggregation matrix a “methylation tendency”
that reflects the extent to which the site corresponding to
that entry would be methylated, if the DNA at the site
could undergo methylation. COMPARE uses logistic-
regression to perform inference of site-specific methyla-
tion tendencies and incorporates the regional observed
methylation values and extent of missing data. The in-
ferred methylation tendency is computed for each location
(i,j) of an aggregation matrix as

Mi;j ¼ 1

1þ e− bjBi;jþxjXi;jþyjY i;jþzjð Þ

where Xi,j is the average methylation rate of row i ex-
cluding site (i,j), Yi,j is the proportion of sites in row i
with missing data (excluding site (i,j)), Bi,j is a binary vari-
able for the presence of any methylatable sites in row i
(excluding site (i,j)), and bj, xj,yj and zj are column-specific
parameters learned from the non-missing matrix values
(see Methods for further details). When analyzing large
genomic segments or segments that are likely to span
different conservation patterns Xi,j, Yi,j and Bi,j are de-
termined from a user-defined restricted region around
each relative location (e.g. 100 bp) rather than the
entire region span (Additional file 1: Fig. S4). COM-
PARE’s inference procedure results in a complete
matrix, allowing average-based statistics such as C, R
and M to be used (Fig. 4). Importantly, COMPARE’s in-
ference approach assigns a different set of parameters
for every column, enabling characterization and com-
parison of DNA methylation tendencies at base pair
resolution (Fig. 3, CpG island panel).
We tested COMPARE’s predictive ability by perform-

ing 10-fold cross validation on exon, intron, 5′-UTR and
coding regions. COMPARE’s estimates were highly cor-
related with the bisulfite-measured methylation states at
observed sites, in all four types of regions (Additional
file 1: Fig. S5). As expected, the majority of sites in 5′
UTR and coding regions are unmethylated, due to a high
overlap of CG islands with such regions, while the ma-
jority of sites at mid-gene intron-exon junctions are
methylated. In each run, COMPARE conducts a cross-
validation analysis (using the non-missing matrix values)
and reports the correlation between known and inferred
values, assigning a precision measure to the specific
dataset being analyzed.

Re-analysis of methylation tendencies across functional
boundaries
Using COMPARE and paired-region averaging we could
obtain an accurate view of the (average) extent of
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methylation across functional boundaries in the human
methylome (Fig. 3). A reanalysis of 5′UTR-coding
boundaries with COMPARE revealed that in contrast to
previous reports, there is no significant difference in
methylation tendency across the boundaries (p = 0.20),
with a difference in methylation tendency of 0.01 (agree-
ing with the paired-row analysis that shows a difference
of 0.02 and p-value of 0.09). An uncorrected %mCG ana-
lysis of the same data shows a false-positive seemingly sig-
nificant (p = 4e-08) difference of 0.05 (Fig. 3). Additionally,
methylation tendencies at both sides of the boundary were
inferred by COMPARE to be higher than those measured
by %mCG (Fig. 3). It is expected that the %mCG measures
are lower than the true methylation tendencies because of
the lower representation of CG sites at methylated
regions.
An analysis of the intron-exon junctions of the human

methylome with both COMPARE and paired-region
averaging revealed a difference in methylation tendency
of 0.05 (Fig. 3), approximately half of the difference ob-
served with no correction (0.09). Interestingly, in Arabi-
dopsis we observe an average difference of 0.03 at
intron-exon junctions when no correction is applied to
the whole-genome bisulfite data generated in [47], and a
correction with COMPARE reveals an average difference
of 0.04 (Additional file 1: Fig. S6) (in Arabidopsis the YS
effect is not as pronounced as in human because the
majority of the genome is unmethylated). We conclude
that differences in methylation tendencies are similar in
human and Arabidopsis at intron-exon junctions.

Discussion
We have discovered a problem with the standard ap-
proach to analyzing DNA methylation at functional re-
gions from genome-wide data and have shown that it
affects comparative studies, resulting in false and exag-
gerated annotation of methylation differences in the hu-
man methylome. We established that averaging over
CGs (or more generally sites that can undergo methyla-
tion) to account for data sparsity creates a bias due to
the different distributions of the frequency of sites that
can undergo methylation in both methylated and
unmethylated regions. We have examined three aver-
aging statistics that have been used previously and have
shown that they can be arbitrarily different from one an-
other, and that significant differences between them are
observed in the analysis of the human methylome.
Most importantly, we have shown that comparative

methylation studies are prone to biases due to a link be-
tween selection pressure and the extent of uneven distri-
bution of CGs across regions due to different methylation
rates. The link between the uneven distribution of data
and the resulting bias is explained by the Yule-Simpson
effect. Interestingly, even though the bias as we’ve
characterized it is a special case of a known phenomenon,
it occurs due to a different type of false intuition than is
usually the case with Simpson’s paradox. Notably, the YS
effect we report on can also arbitrarily bias comparative
studies of the relative change in DNA methylation across
different conditions (Fig. 5 and Additional file 2: Supple-
mentary text, proposition 3). For example, it has been
shown that in cancer cells the human genome becomes
hypomethylated, but many CpG islands gain DNA methy-
lation [48], a scenario similar to that illustrated in Fig. 5.
To account for this underlying bias and enable the

sound comparison of regions of different types we sug-
gest using one of two procedures. Paired-region aver-
aging allows unbiased regional comparisons, while
compromising site-specific resolution. An additional
limitation of paired-region averaging is that it is strictly
pairwise-comparative, and cannot asses the quantitative
methylation tendency of a region type. The second method
we propose makes use of a model-based matrix completion
technique. Our developed method, COMPARE, is an infer-
ence procedure that uses structured logistic regression for
sparse-matrix completion. We have shown that COM-
PARE achieves high accuracy for instances of the human
methylome. Analyses with these two methods provide
novel conclusions, such as that the difference in methyla-
tion at 5′UTR-Coding junctions is small and insignificant,
and that the difference in methylation at intron-exon junc-
tions is of similar magnitude in human and Arabidopsis.
Additionally, COMPARE’s inference approach maintains
site-specific inference, allowing the detection of gradually
changing methylation rates, or local methylation tendency.

Testing for the presence of the YS effect in other
genomic settings
In this work we have focused on biases in methylation
studies that are present in the human genome. Other or-
ganisms have been shown to have different genome-
wide DNA methylation patterns than human [8, 13] and
it will be interesting to test the extent to which the YS
effect is present in comparison studies of methylomes
across other organisms.
It will be interesting to characterize the extent of the

YS effect we report on in analyses applied to 5-
hydroxymethylcytosine (5hmC) data. We have shown here
that the sparsity and uneven distribution of CG sites due to
deamination biases averaging-based studies of 5hmC that
have attempted to determine 5hmC rates in close proximity
to exon-intron junctions. An annotation of the dependen-
cies between 5hmC rates and CG site frequency and ex-
ploration of the applicability of COMPARE to such settings
will be an interesting avenue for further investigation.
The YS effect is present in DNA methylation studies

due to the process of deamination eliminating data in a
manner that is associated with the extent of methylation.



Fig. 5 The YS effect can bias comparative studies of DNA methylation across different conditions and cell types. The matrices above represent a
hypothetical setting of a functional boundary and the methylation rates measured at the different genomic locations, as specified in Fig. 1 (each row
corresponds to a hypothetical instance, e.g. a specific intron-exon junction, and each column to a relative location in relation to the boundary analyzed,
e.g. +1 from the intron-exon boundary). This example shows that, due to the YS effect, regional changes in DNA methylation intensity that are not
associated with a functional boundary can be misleading when analyzed with the %mCG statistic
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The association of the probability of observing data with
functional type is present in other types of settings and
can confound other genome-wide analyses. For example,
in conservation analysis, gaps in alignment are fre-
quently treated as missing data when computing conser-
vation scores [49], but misalignments are less likely to
occur at regions of high conservation [50] (Additional
file 1: Fig. S9). Therefore, missing data is unevenly dis-
tributed across multiple sequence alignments, and ignor-
ing it is likely to lead to biased conservation scores, in
which the scores computed at a region with misalign-
ments are an over-estimate of the true conservation ten-
dency. In other settings the appearance of the YS effect
may be more subtle and harder to characterize, but may
bias comparative studies nonetheless.
To detect instances in which the Yule-Simpson effect

is underlying observed differences across regions we
propose conducting randomization tests in which the
values of observed data-points are randomized but not
the locations at which there is observed or missing
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data (see Methods). Observing an uneven distribution
of the statistic studied across regions following such
randomizations is an indication that the YS effect is
present in the analyses conducted (Fig. 3, leftmost col-
umn). We have implemented such a randomization
feature within the COMPARE package that can be
used for arbitrary datasets. The generalization of
COMPARE and Paired-region averaging to additional
instances within the genomics field will be an interest-
ing direction to explore.
Conclusions
Seemingly straightforward averaging approaches may be
heavily biased by an underlying non-uniformity in the
distribution of the data. This phenomenon has been
identified in the field of statistics as the Yule-Simpson ef-
fect, and we report here on its presence in genome-wide
analyses, focusing on DNA methylation studies. We
present two methods (a parametric and non-parametric
approach) for bias correction and show that a corrected
analysis eliminates previously reported differences in
DNA methylation across functional boundaries. We con-
clude that genomic studies in which missing data is
naïvely ignored during averaging should be carefully
assessed for non-uniformity of the missing data, and we
have presented a method for doing so. Additionally, the
methods we have introduced for correction of the YS ef-
fect should be applicable not only to DNA methylation
studies but to any genome-wide anlayses where aver-
aging is performed.
Methods
Human DNA methylation data
We downloaded the publicly available bisulfite sequen-
cing dataset for IMR90 cells from [14] and computed a
methylation rate for each CG site overlapped by at least
three reads. The rate was estimated according to the
proportion of overlapping reads that were methylated.
We used the Ref-Seq gene annotation for hg18 down-
loaded from the UCSC browser [51] for the determin-
ation of types of functional regions.
The intron-exon junctions analyzed here were defined

to be intron-exon junctions at intragenic exons of the
Ref-Seq gene annotation such that the exon is not the
first or last exon of any transcript of the Ref-Seq annota-
tion, the intron and exon are at least 200 bps long, the
intronic region analyzed (200 bps from the junction)
does not overlap a Ref-Seq annotated exon, and the exon
region considered does not overlap with any Ref-Seq
intron-exon junction.
The 5′UTR-Coding junctions analyzed were taken to

be 5′UTR-coding junctions in the Ref-Seq annotation
(hg18), such that the coding start site is determined as
complete (cmpl), and the 100 bps around the junction
are on an annotated exon.
The CpG island junctions analyzed were taken to be

regions 300 bp upstream and 300 bp downstream from
the upstream boundary of each CpG island (annotation
hg18, downloaded from the UCSC Genome Browser
website). Junctions considered were those for which the
associated CpG island was longer than 300 bps, and the
upstream preceding region did not overlap any anno-
tated CpG island.
In Table 1 the regions analyzed were the intron and exon

regions of the 200 bps intron-exon junctions described
above, and the promoter regions were taken as 500 bps re-
gions upstream from the Ref-Seq TSSs, which did not
overlap with any gene regions from that annotation.
The enhancer regions in Table 1 were taken to be the

7457 regions determined by ChromHMM [52] as being
in a “4 Strong Enhancer” state for Normal Human Lung
Fibroblasts (NHLF) downloaded using the UCSC Table
tool [51] (a ChromHMM track for IMR90 is currently
unavailable), and which were at least 500 bp long. A re-
gion of length 500 bp, centered around the center of the
enhancer, was taken from each enhancer region.
Genomic locations for the motif of the p53 transcrip-

tion factor (TF) were downloaded from the Motifmap
website (M00034) (http://motifmap.ics.uci.edu/) [53].
The motif region for p53 contains a CG site, is relatively
long (21 bp), and 553 occurrences of the motif were de-
tected across the human genome.
For the reanalysis of [23], datasets were downloaded

from the GEO database, and the six chromosomes for
which data was available were analyzed.
All statistical significance tests were conducted using

the R package.

Regional average correction for 5′UTR-coding junctions
For a fixed distance from the junction (100 bps) the
mean methylation rate of each individual 5′UTR and its
corresponding coding region was computed. Then, any
coupled instances that did not both have an assigned
value (due to the lack of CG sites) were discarded. This
last step was taken in order to correct for the Yule-
Simpson effect (see paired-region averaging correction
method in text). The resulting 2977 × 2 matrix had no
missing elements, and the methylation values were com-
pared using the Mann–Whitney-Wilcoxon rank test.

Simulating equal methylation tendency
To simulate datasets with equal methylation tendency
across a functional boundary (Fig. 2 middle row and
Fig. 3 left panel), we constructed a joint matrix by con-
catenating the two given matrices (one for each side of
the junction) while maintaining the coupling of the rows.
The new constructed matrix contained in each row a

http://motifmap.ics.uci.edu/


Singer and Pachter BMC Genomics  (2015) 16:420 Page 11 of 13
continuous genome fragment that crosses the boundary (as
illustrated in Fig. 1). We then randomly permuted the
values of the CG sites in each row of the union-matrix,
keeping the structure of the rows–the sites that contain
values and those that are empty–fixed. For example, a row
that was originally (XX1XX||XX0X0) would be perturbed
to either (XX0XX||XX1X0), (XX0XX||XX0X1), or
(XX1XX||XX0X0) with equal probability.

Simulated methylation states across a functional
boundary
To generate a dataset with known differences in methyla-
tion and conservation rates across a functional boundary,
analyzed in Fig. 2, we used the intragenic intron-exon
junction set described previously as a basis, and generated
a dataset in which each junction region was set to have all
CG instances be 1 or 0, if the mean of the values at the
row was larger or equal to 0.5 or smaller than 0.5, respect-
ively. Then, 5 % of the methylated rows were randomly se-
lected to be differentially methylated, and at those rows
the intron-side CG instances were changed to 0. This re-
sulted in a simulated dataset in which 3.2 % of the regions
were differentially methylated. Finally, due to the very low
frequency of values close to the boundary at intron-exon
junctions, in this simulated dataset we substituted at each
side the three columns closest to the boundaries with their
adjacent three columns.

COMPARE design and implementation
In order to correct for the YS effect and enable the as-
sessment and comparison of DNA methylation tenden-
cies at site-specific resolution we have developed
COMPARE. Given an aggregation matrix, COMPARE
infers at each location a methylation tendency: the prob-
ability that it would be methylated if it were to have a
methylatable site (CG site).
COMPARE infers methylation tendencies using a lo-

gistic regression sparse-matrix completion approach.
Given an aggregation matrix W, COMPARE estimates a
set of parameters for each of W’s columns, and infers
site-specific methylation tendencies. Additionally, COM-
PARE conducts a 10-fold cross-validation using the ob-
served (non-missing) values of W and outputs accuracy
estimates.
Formally, let W i,(−j) be row i of matrix W, excluding

the element at column j (Wi,j). The following three fea-
tures are associated with each location (i,j):

(1)Bi,j - A binary variable indicating whether W i,(−j) has
no methylation values.

(2)Xi,j - The average methylation rate at W i,(−j), or 0 if
Bi,j = 1.

(3)Yi,j - The proportion of sites with missing data in W

i,(−j).
At each column j, parameters bj, xj,yj and zj are esti-
mated for a logistic regression model, using as a training
set all non-missing values in column j (together with
their features). Having all features and estimated param-
eters in place, the posterior methylation tendency of
each site (i,j) is inferred using the logistic function:

Mi;j ¼ 1

1þ e− bjBi;jþxjXi;jþyjY i;jþzjð Þ

COMPARE can also generate features using a block-size
specified by the user, rather than the entire region (matrix
row), enabling meta-region analyses (e.g., Additional file 1:
Fig. S4). COMPARE requires a minimum of ten or more
observations at a given relative location (matrix column)
to make inferences for that location, is implemented in R
and is easily parallelizable. COMPARE’s running time de-
pends on the number of regions analyzed and the num-
ber of relative locations (the size of the input matrix);
running time for the 5′UTR regions (4852) at 100 bp
resolution is <1 min on a standard laptop.

Testing for presence of the YS effect
To test if the distribution of missing data across an ana-
lyzed dataset results in the YS effect, the following
randomization test is implemented in COMPARE: for a
given matrix in which all data is incorporated (rows be-
ing genomic instances and values being measured values
at the specific genomic locations), the values in each row
are randomly permuted while the locations with missing
values are kept in tact. For example, a row that is
(XX1XX||XX0X0) could be perturbed to either (XX0XX
||XX1X0), (XX0XX||XX0X1), or (XX1XX||XX0X0) with
equal probability. Following this randomization, column-
averages are computed and plotted. If column-averages
across the analyzed regions are significantly different from
each other in the randomized datasets (Fig. 2 middle row
and Fig. 3 left panel), these differences are due to the YS
effect (the unequal distribution of missing data).
COMPARE can be freely downloaded at: http://bio.

math.berkeley.edu/COMPARE/.

Cross-validation analysis
In each run of COMPARE a ten-fold cross-validation
was conducted to assess the overall accuracy. The ob-
served (non missing) variables of each column were ran-
domly split into ten sets. In each iteration one of the ten
sets was taken out of the training set, parameters were
estimated, and methylation tendencies were inferred for
the taken-out set. All inferences were then pooled to-
gether to obtain accuracy estimates.
After a cross-validation run, the observed estimates of

the methylation tendencies–the proportion of methylated
reads overlapping a location in the case of bisulfite–are

http://bio.math.berkeley.edu/COMPARE/
http://bio.math.berkeley.edu/COMPARE/
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compared to the inferred methylation tendencies (as shown
in Fig. 4). Since both estimates contain errors (due to model
inaccuracies and the relatively low coverage of the bisulfite
data), our regression line minimizes the sum-of-squares of
the distances from the points to their projection on the
line using the first principal component of the two-
dimensional data [54]. COMPARE reports the slope of
the regression line and the extent of variance in the
data explained by the regression as compared to a ran-
dom line.
Endnote
1Our analysis generalizes to different types of sites

(such as CHH and CHG, or simply C) but for the sake
of simplicity in this manuscript we restrict the discus-
sion to CGs.
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