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Abstract

Background: Understanding cellular structure and organization, which plays an important role in biological systems
ranging from mechanosensation to neural organization, is a complicated multifactorial problem depending on
genetics, environmental factors, and stochastic processes. Isolating these factors necessitates the measurement and
sensitive quantification of many samples in a reliable, high-throughput, unbiased manner. In this manuscript we
present a pipelined approach using a fully automated framework based on Synchrotron-based X-ray Tomographic
Microscopy (SRXTM) for performing a full 3D characterization of millions of substructures.

Results: We demonstrate the framework on a genetic study on the femur bones of in-bred mice. We measured 1300
femurs from a F2 cross experiment in mice without the growth hormone (which can confound many of the smaller
structural differences between strains) and characterized more than 50 million osteocyte lacunae (cell-sized hollows in
the bone). The results were then correlated with genetic markers in a process called quantitative trait localization (QTL).
Our findings provide a mapping between regions of the genome (all 19 autosomes) and observable phenotypes
which could explain between 8–40% of the variance using between 2–10 loci for each trait. This map shows 4 areas of
overlap with previous studies looking at bone strength and 3 areas not previously associated with bone.

Conclusions: The mapping of microstructural phenotypes provides a starting point for both structure-function and
genetic studies on murine bone structure and the specific loci can be investigated in more detail to identify single
gene candidates which can then be translated to human investigations. The flexible infrastructure offers a full
spectrum of shape, distribution, and connectivity metrics for cellular networks and can be adapted to a wide variety
of materials ranging from plant roots to lung tissue in studies requiring high sample counts and sensitive metrics such
as the drug-gene interactions and high-throughput screening.

Keywords: Phenotyping, Automated 3D imaging, 3D morphology, Quantitative trait loci, Osteocyte lacunae; 3D
morphology, Cortical bone; cell shape, Cell distribution; cell alignment

Background
In recent years, sequencing genomes has been acceler-
ated manyfold [1, 2]. With a wide availability of reliable
genomic information, understanding of complex biologi-
cal systems is now limited by the ability to develop new
and measure subtle changes in phenotypes in an equally
rapid rate [3]. In some areas, phenotyping has kept pace
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through advances in techniques like high-throughput flu-
orescent [4] and optical computed tomography screening
[5]. Both of which allow for hundreds of individuals and
phenotypes to be screened in rapid succession and/or in
parallel. Particularly in the field of plant genetics, automa-
tion in phenotyping has greatly increased the throughput
and reliability of genetic studies [6]. However, for high-
resolution analyses such as SEM, confocal microscopy,
and Synchrotron-based X-ray Tomographic Microscopy
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(SRXTM), dealing with large numbers of samples (>10)
is difficult to impossible for a number of reasons. The
first factor is preparation time, since many of these tech-
niques require careful, individual, often human-intensive
sample preparation which takes time and scales linearly
with the sample count. The second factor is the acquisi-
tion time, which on many systems extends above several
hours. Consequently entire studies require thousands of
hours of pure acquisition, which is tedious and often long
enough that imaging characteristics of the involved com-
ponents can change significantly. Finally once all of the
data are collected, the task of extracting meaningful met-
rics from the images can be even more difficult and time
consuming than the initial two tasks. In particular for
hierarchical systems with thousands of substructures few
standards exist for meaningfully characterizing either the
ensemble behavior or the complex relationships between
levels in the hierarchy.
Complicating the huge time requirements are the impor-

tance of reproducibility, which is impossible when too
many human elements are involved. Finally management
of all the samples, data, and results, which easily exceed
the capacities of analysis tools like Excel (Microsoft,
Redmond, USA), R [7], andMATLAB (Mathworks, Natick,
USA), make data analysis difficult and time consuming
and make data exploration all but impossible.

Even more scalable tools like SQLite are unable to
deliver results quickly. Thus, up until now, most large-
scale analysis of phenotype on micro- and nanoscale sys-
tems has been a gigantic undertaking [8–10]. While much
of the work done has provided fascinating insights into the
genetic regulation of specific phenotypes, it has lacked a
consistent high-throughput reproducible framework that
would enable future studies to be easily conducted with
minimal time investment.
We have developed an optimized, reproducible, auto-

mated pathway from sample to final results (Fig. 1). We
combine hardware automation involving a robot sample
exchange system (Fig. 1a) and software automation for
aligning, reconstructing, and analyzing to radically reduce
the time investment for performing such a study [11].
Once the images are collected, the analysis is done using
an in house post-processing pipeline (Fig. 1b,c) to seg-
ment, label, and quantitatively characterize the structures.
With new detector technology already enabling scan times
below a second and continual improvements in the effi-
ciency and performance of the entire pipeline, the mea-
surements done 2 years ago for this study which took
15 minutes could soon be done in seconds. In light of
this streamlining, we propose a new approach to measur-
ing phenotypes and genetic linkage studies which brings
the time-scale of these experiments from many years to

Acquisition Post-Processing

Sample 
Preparation

Statistical Analysis 

Exchange,
Alignment,
Region of 
Interest

Scanning Reconstruction Segmentation

Shape, 
Distribution, 
Alignment 
Analysis

Genotype 
Information

Selection of 
Phenotypes, 

QTL

a)
b) c) d)

Robot

Camera

Sample Stage

Sample

Beam Path

Fig. 1 The diagram shows the flow of samples and information from the measurement to the statistical analysis. The automatic exchange system is
shown as (a). The reconstruction of the x-ray absorption values are shown as (b). The segmentation into the different phases is shown as (c). Several
of the final phenotypes extracted are shown for the cortical bone, canals, and osteocytes in (d)
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Fig. 2 The distribution and heritability for the selected microstructural metrics for QTL analysis: cortical thickness variation, canal density, lacuna
density, lacuna volume, lacuna stretch, lacuna distribution oblateness. The values are shown as histograms (x-axis is metric value and y-axis is
relative animal count) with female colored in pink and male colored in blue. The distributions for the respective parental strains are shown as the
black curves with different line styles indicating the parental strain

weeks. We also show how this approach is compatible
with many of the new initiatives of open and reproducible
science. Using these methods, we identify loci responsible
for regulation of cellular-level structure and organization.
We demonstrate the effectiveness of our framework by

addressing one of the major challenges of bone biology,
understanding bone quality at a cellular scale. Fractures
in the femur neck are one of the most debilitating and
when surgically treated in the elderly have a mortality
rate of 1 in 4 within a year, and require for nearly 1
in 2 cases, additional surgery within 2 years [12]. This
bone-strength is multi-factorial, and while bone loss must
play an important role, the standard clinical measure of
bone mineral density (BMD) only correlates weakly to
mechanical properties. Bone quality as defined through
structure and organization of bone properties plays a
more important role for these cases [13]. Existing stud-
ies have examined inheritance in bone microstructure
[14–21], but do not use sufficient resolution to character-
ize the cellular structures inside cortical bone nor manage

to disentangle growth hormone during the mapping of
specific regions of the genome. To link the microstruc-
ture phenotypes to specific gene loci, we performed a large
scale study ofmorphology and cortical micro-structure on
a population of mice raised in a controlled environment
with known genetic lineage, an intercross-experiment.
The mice were 2nd generation offspring from two differ-
ent commonly used strains of mice with high (C3H/HeJ)
and low (C57BL/6J) bone mass with both strains homozy-
gous for a mutation in the growth hormone releasing
hormone receptor. We then measured and statistically
analyzed these results with the tools of quantitative trait
localization to establish explanatory models for pheno-
type variation and produce a map enabling the targeted
search for specific genes involved in bone quality. This
will lead to the elucidation of potential mechanisms of
regulation and maintenance of bone strength. Since the
homology between murine and human genomes is over
75% [22, 23], we hope to make inroads towards the tar-
geted identification of high-risk patients based on genetic
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screening, and a personal medicine-based approach to
treatment.

Results
We found that the heritability criteria (>40%) were
met for the following metrics: Cortical Thickness Varia-
tion (Ct.Th.R.sd), Canal Density (Ca.Dn), Lacuna Density
(Lc.Dn), Mean Lacuna Volume, Lacuna Stretch (Lc.St),
and Lacuna Distribution Oblateness (Lc.Dt.Ob) described
in [24] (Fig. 2). The distribution of additional pheno-
types in the F2 group is shown in the Additional file 1.
We then determined the threshold or penalty criteria
(shown in Additional file 1: Table S1) for significance and
interaction for each of the phenotypes through the permu-
tation approach discussed in the methods. These values
were used to fit QTL models for the selected pheno-
types plus Bone Mineral Density and Cortical Thickness
for comparison. The QTL models were found for every
phenotype except for Distribution Oblateness. The mod-
els that were found were able to explain 8–40% of the

F2 population variance using between 2 and 10 loci. The
models and LOD curves for several particularly loci-rich
chromosomes are shown in Fig. 3. From these models,
we found the markers within the 95% confidence interval
as calculated using the LOD curves, which had previ-
ously been linked to other phenotypes. We then selected
several metrics potentially specific for the microstruc-
tural parameters we investigated (Fig. 4). The loci and
respective markers are shown in Additional file 1: Table
S5.

Overlapping markers The table and graphs shown in
Table 1 and Figs. 3 and 4 demonstrate the overlap between
the results of this study and a wide variety of published
loci. Since our initial intent was to better understand bone
quality in the context of mechanical properties, we will
focus most intently on the overlap with mechanically-
relevant markers, which are shown in Table 2. The
most interesting results are the loci on Chromosome
(Chr)10 and Chr11 since they are independent of BMD (as
indicated by the shading). The corresponding phenotypes

Fig. 3 The fitted QTL model for every phenotype where a model could be found according to the procedure and thresholds as described in the
methods section (no model was found for Lacuna Distribution Oblateness). The top graph shows the 19 autosomes (the sex chromosomes are not
examined in this study) along the X-axis and the position on the chromosome in centimorgans on the Y-axis. The markers tagged are shown as
white boxes with black borders. Every phenotype is shown in a different color and each loci is shown by a symbol indicating the LOD score of the
corresponding QTL. The size of the symbol indicates how much of the population variance is explained by that QTL. The colored line represents the
95% confidence region for the location of the loci. For selected chromosomes with high degrees of overlap (1,5,6,9,18) the LOD scores from the
0.1cM refinement are shown in the bottom figures to show the similarities between the LOD-score and thus providing indications of pleiotropy at
these loci
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Fig. 4 The graphs show the QTL calculated in this study (solid line) against the QTL calculated in previous studies (dotted lines). The x-axis indicates
the chromosome and the y-axis shows the position on the chromosome in centimorgans. Different colored lines and points designate the different
phenotypes. The shape and size of the point shows the LOD score and contributed variance (%) respectively. The length of the line indicates the
95% confidence interval as determined from the LOD curves. The top graph shows all overlapping QTL related to bone and growth while the
bottom shows just the ones relevant for mechanical properties

from this study are lacuna number density (Lc.Dn) and
lacuna stretch (Lc.St). The other relevant traits at these
loci are different from ours, and the first is related to
femoral bone, while the second to vertebral bone and body
growth.
The second focus was to understand properties which

are independent of BMD, since BMD has been so well
characterized in mice and human populations and is eas-
ily measurable. These results are summarized in Table 3.

Curiously one of the BMD loci we found has not previ-
ously been identified and thus might be of interest for
further investigation to determine the validity of this QTL.

Comparison with previous work The two QTL of high-
est interest, as mentioned in previous section, are the loci
on Chr10 at 10cM and Chr11 at 6cM. The mechanically
relevant genes were in both cases from the same work
done by Volkmann et al. [25]. In their work, the mice were
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Table 1 QTL Models (phenotypes and explained variance). The table shows the positions for the identified loci (rows) for each phenotype (columns). For each loci the additive
component is shown as being either C3H>B6 or C3H<B6 indicating in which genotype the phenotype value is higher. Dominance, if present, is shown by a (D) next to the
appropriate parental strain. Finally the variance explained and LOD score (in parentheses) are shown as determined by removing that term from the analysis. Although several of the
models involved interactions they are not indicated in this table

Chr Pos (cM) BMD Cortical thickness Cortical thickness variance Canal density Lacuna density Mean lacuna volume Mean lacuna stretch

1 89.9 C3H (D)>B6, 5.73 (12.77)
1 22.3 C3H>B6, 4.07 (8.53)
1 97.1 C3H>B6, 3.42 (7.20)
1 59.0 C3H>B6, 1.71 (3.13)
1 81.5 C3H>B6, 2.28 (6.16)
3 39.2 C3H<B6, 1.81 (3.32)
4 52.1 C3H>B6, 4.82 (10.81)
5 53.8 C3H>B6, 1.68 (4.55)
5 68.0 C3H>B6 (D), 6.97 (18.11)
5 68.2 C3H>B6 (D), 3.45 (6.52)
6 20.8 C3H<B6, 3.33 (7.55)
6 61.7 C3H (D)>B6, 2.10 (4.80)
6 63.4 C3H>B6, 1.08 (2.31) C3H>B6, 2.35 (4.29)
6 4.1 C3H (D)<B6, 0.53 (1.00)
6 18.9 C3H<B6 (D), 2.77 (5.25)
7 2.2 C3H>B6, 1.91 (4.38)
7 60.6 C3H>B6, 4.24 (8.89)
7 43.3 C3H>B6, 2.60 (7.00)
7 1.7 C3H (D)<B6, 1.46 (2.80)
8 18.2 C3H (D)<B6, 1.85 (5.02)
9 12.0 C3H<B6, 3.32 (7.51)
9 13.2 C3H (D)<B6, 4.15 (7.25)
9 40.1 C3H<B6, 5.59 (10.26)
9 32.2 C3H<B6, 4.86 (12.85)
10 17.8 C3H>B6, 3.88 (7.19)
11 45.6 C3H>B6, 4.53 (9.47)
11 54.1 C3H>B6 (D), 1.27 (2.34)
11 8.8 C3H>B6, 2.38 (4.52)
12 16.2 C3H (D)<B6, 1.79 (3.81)
12 3.0 C3H<B6, 2.19 (4.09)
12 3.6 C3H<B6, 3.44 (9.20)
13 10.3 C3H>B6 (D), 5.81 (12.05)
13 46.2 C3H>B6, 2.25 (4.28)
14 22.1 C3H>B6, 2.17 (4.96)
15 21.5 C3H (D)>B6, 2.92 (6.63)
15 27.7 C3H>B6, 2.36 (6.35)
17 4.9 C3H<B6, 4.44 (9.99)
17 7.9 C3H>B6 (D), 2.65 (4.83)
17 45.3 C3H<B6, 1.74 (4.72)
18 44.5 C3H>B6, 2.80 (6.36)
18 15.4 C3H (D)<B6, 1.64 (3.00)
18 23.5 C3H>B6, 3.84 (6.72)
18 14.6 C3H>B6, 3.16 (8.46)
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Table 2 A list of QTL from this study which have overlap with previously determined mechanical QTL. The first five columns show the
chromsome, peak position, and starting and ending positions of the 95% confidence interval for each QTL as determined in this study.
The fifth column shows the overlapping QTL from the QTLArchive. The shaded rows indicate QTL which do not overlap at all with BMD
and are of particular interest for further investigation

Chr. Pos.(cM) Start End Phen. Overlapping QTL (MGI Accession ID)

10 10 4 32 Lc.Dn bonemechanical trait (MGI:3511309), femoral bone trait QTL (MGI:3701623)

11 6 2 20 Lc.St bone mechanical trait (MGI:3511310), vertebral trabecular bone trait
(MGI:3045053), body growth late QTL (MGI:108503)

13 46 12 58 Lc.St bone mechanical trait (MGI:3511311), bone mineral density (MGI:2389099), bone
length and organs (MGI:3639971), femoral bone trait QTL (MGI:3701625), tibia bone
quality traits (MGI:3721636), vertebral trabecular bone trait (MGI:3045057), body
growth late QTL (MGI:108493)

17 44 34 52 Lc.V bone mechanical trait (MGI:3511312), bone mineral density (MGI:3694913)

not the same as in our study and were instead a cross
between C3H/HeJ and DBA/2J, with no known mutation
in Ghrhr. The tag located closest to the Volkmann QTL,
D10Mit40 (24.87cM), was located on Chr10 at position
29cM. It was associated with both Ultimate and Post Yield
displacement of the femur independent of femur geometry
and body weight. The second QTL reported by Volkmann
overlapped with the tags D11Mit2 and D11Mit16 located
on Chr11 at position 7.3 and 2.94cM respectively.
These tags, while not independent of femur geome-

try, were associated with predicted modulus, yield load,
and stiffness. The QTL located in this study on Chr5 are
also of significant interest because they have high LOD
scores and do not overlap with previously identified phe-
notypes possibly indicating a new gene involved only in
the microstructure of bone. It is important to reiterate
that these QTL are the ones, which have been published
in the QTL Archive run by the Churchill Group at the

Jackson Laboratory (http://www.qtlarchive.org/) and are
thus not inherently exhaustive.

Discussion
The experiments and analysis we have done show the utility
and wide-spread potential of automated synchrotron-
based tomographic microscopy and the associated post-
processing pipeline for phenotyping large, complicated
morphological phenotypes. In bone particularly, the
microstructure can be well resolved and quantitatively
characterized in cell shape, distribution, and alignment
over millions of structures. The ability to link these phe-
notypes with genetic background and consequently other
macroscopic, mechanical, and endocrine phenotypes pro-
vides a more complete picture of how the microstructure
is correlated to existing, well-understood characteristics.
The genetic linkage results confirm loci found by ear-

lier experiments. The mechanically relevant loci found

Table 3 A list of QTL from this study which have no overlap with previously determined BMD QTL. The first five columns show the
chromsome, peak position, and starting and ending positions of the 95% confidence interval for each QTL as determined in this study.
The fifth column shows the overlapping QTL from the QTLArchive. The shaded rows indicate QTL which are also mechanically relevant

Chr. Pos.(cM) Start End Phen. Overlapping QTL (MGI Accession ID)

4 59 47 71 BMD femoral bone trait QTL (MGI:3701621), femoral bone morphometry (MGI:2154763),
body growth early QTL (MGI:108558)

7 2 2 12 BMD long bones (MGI:3639954), modifier of mammary tumor growth (MGI:1890552)

7 66 60 72 Ct.Th.R femoral bone morphometry (MGI:2154761), vertebral trabecular bone trait
(MGI:3045046)

9 13 9 21 Ca.Dn vertebral trabecular bone trait (MGI:3045048)

9 23 9 31 BMD vertebral trabecular bone trait (MGI:3045048), vertebral trabecular bone trait
(MGI:3045049)

9 35 25 39 Lc.V vertebral trabecular bone trait (MGI:3045049), neonatal growth QTL (MGI:3640530)

10 10 4 32 Lc.Dn bonemechanical trait (MGI:3511309), femoral bone trait QTL (MGI:3701623)

11 6 2 20 Lc.St bone mechanical trait (MGI:3511310), vertebral trabecular bone trait
(MGI:3045053), body growth late QTL (MGI:108503)

12 15 5 21 Ct.Th.R tibia bone quality traits (MGI:3721634)

14 29 21 39 BMD body growth early QTL (MGI:108480), body growth late QTL (MGI:1932377)

http://www.qtlarchive.org/
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provide the first hints at what microstructural proper-
ties might explain the variations in deformation under
mechanical load. The results also shed light on several
new loci, which might regulate bone structure using pre-
viously unidentified mechanisms. Since much is still not
known about the modeling and remodeling of bone at
the cellular level, these genes might make some of these
easier to understand. If we assume the approximate den-
sity of genes in the mouse genome is 16 per cM [26],
an interval of 0.0625 should be used in order to obtain
single gene resolution. Due to the sparsity of the identi-
fied markers no significant improvement was seen when
intervals of less than 0.1cM were used for scanning the
genome. Thus the current dataset is not sufficient for
identifying single genes and future studies will need to be
done before specific genes can be analyzed. While it is too
early to identify specific genetic homologues, a compari-
son of the identified QTL and human-mouse homologous
genes shows many matches and trends where large por-
tions of the mouse genome are consistently mapped to
the same chromosome of the human genome indicating
a high degree of conservation between the two strains
(see Additional file 1). This conservation indicates great
promise for finding relevant human genes in future stud-
ies. The work done in the study lays groundwork for both
deeper investigation of murine biomechanics and future
possibilities in high-throughput genome-scale imaging.
Both of these tasks require fast, predictable, quantitative
tools to investigate structure and function. The results
primarily serve as the first map of the microstructural
genome space in mice without GH. While the resolution
we obtained is far from the single gene level, it allows past
and future studies to compare the results with these quan-
tities, which are traditionally difficult to measure. Addi-
tionally our results provide support to conduct further
congenic and eventually knock-out studies to investigate
and better localize the genes involved in these metrics.
In particular the D10Mit40, D11Mit2, D11Mit16 mark-
ers should be carefully examined. In combination with
mechanical testing congenic strains of these mice could
reveal the connection between osteocyte lacunar density
and shape and the mechanical properties of bone. Fur-
ther investigations could also provide insight into how
morphometric metrics can be interpreted in standard
samples. The lack of GH in these mice removes a sig-
nificant confounding factor when identifying the unique
QTL for specific phenotypes. However, for applicability
in further studies, the effect of GH must be included. In
Mader et al. [24] a comparison was made between two
strains from the same parental lines as those in this study,
particularly looking at mice with and without Ghrhr.
The results showed many differences between mice with
and without GH. Particularly with metrics like Mean
Lacuna Volume (and correspondingly lacuna dimensions)

and spatial distribution, GH plays a significant role and
makes inferring the specific differences caused by non-
growth-hormone genetic background difficult. This study
serves as a proof of concept for the capabilities of high-
throughput tomographic X-ray microscopy in combi-
nation with a streamlined post-processing and analysis
pipeline.While this study only investigatedmorphological
and structural phenotypes of bones, given the high sen-
sitivity of phase contrast to biological materials and the
availability of contrast agents, studies investigating more
complicated biologically relevant phenotypes are conceiv-
able in the immediate future. In particular studying the
interactions between environmental stimulus and differ-
ent genetic backgrounds could be of high interest and such
studies necessitate very large sample sizes.

Conclusions
Beyond biological applications, the framework is applica-
ble to a wide range of high-throughput applications where
large sample counts are required to achieve statistical sig-
nificance. In material science, large numbers of samples
measured consistently with detailed quantitative infor-
mation are required to establish a link between process,
structure, and mechanical behavior. Based on our expe-
rience with the hundreds of imaging users at the Swiss
Light Source, we have noticed a trend in the distribution
of time spent preparing experiments and analyzing the
results. Much as the genetics community has experienced
several years ago, computed tomography measurements
and experiments have become manyfold faster and easier.
This has shifted much more of the burden on the analysis,
with the distribution of work, in many cases being thou-
sands of times longer for the analysis than the experiments
themselves.
The developments we have made can drastically rebal-

ance the time distribution of scientists examining the
structures of complex materials, away from monotonous,
repetitive, operator-biased modalities of image processing
towards interpretation of vast, rich quantitative results.
We think the quality and agility of research can be dras-
tically improved. A faster post-processing pipeline means
that study groups and targets can be screened much more
easily and a feedback loop can be established so that stud-
ies can be tuned in nearly real-time for promising and
poor results.

Methods
To ascertain the genetic contribution to murine femur
cortical microstructure we performed a standard inter-
cross experiment. The two background strains used,
C3H/HeJ (C3H) and C57BL/6J (B6), were selected
because of their previously shown [27] strong variations
in cortical structure. Both of the parental strains - C3.B6-
Ghrhrlit/J and C57BL/6J-Ghrhrlit/J - were homozygous for
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a spontaneous mutation in the growth hormone releasing
hormone receptor (Ghrhr) causing undetectably low cir-
culating growth hormone (GH) levels [16]. The mice were
raised and sacrificed at the Jackson Laboratory. Animal
studies were approved by the Institutional Animal
Care and Use Committee of The Jackson Laboratory
(Bar Harbor, ME, USA) and performed according to Swiss
law. We examined 12 of the F1 and 1132 of the F2 popula-
tion comprised of both male and female mice with a 47%
male and 53% female split. The F1 population size was
established by the number of samples available, and, due
to their identical genetic background, their primary func-
tion is in assessing the environmental variance. The F2
population size was determined by examining the micro
scale phenotypes measured in [16] and determining the
number of samples required such that the baseline for
variation, as determined through the permutation test,
left multiple loci for the traits which were statistically
determined to have multiple loci.

Measurements
The femurs were extracted from four month-old mice
and were measured locally in the mid-diaphysis at high-
resolution (1.4 μm voxel size) using synchrotron-based
tomographic microscopy at TOMCAT using automatic
sample exchange, alignment, and region of interest iden-
tification [11] with a field of view 1.5 mm x 1.5 mm x 1.5
mm. Standard procedures were used to reconstruct, seg-
ment, and morphologically analyze the data [11, 16, 24, 27].

Morphometric analysis
We introduce two additional possible phenotypes for
this investigation for the purpose of better characteriz-
ing cortical bone distribution: radial cortical thickness
(Ct.Th.R) and radial cortical thickness standard deviation
(Ct.Th.R.sd). The radial cortical thickness is calculated
using the standard procedure [28], but where the aver-
age (first metric) and standard deviation (second metric)
are not taken as a volume average but rather as the aver-
age thickness when examining the shell in polar coordi-
nates with the center of the bone aligned with the Z-axis.
Since both of these methods are weighted by angle rather
than volume, the result is less biased by thicker regions,
which naturally have high volumes. We developed the ini-
tial experiment to study all micro structural metrics [24]
applied to the cortical shell, osteocyte lacunae, and canal
structures independent of heritability. The entire list of
metrics and the single scans are included in the Additional
file 1.
While a full description for calculating these metrics

from a 3D dataset is available in [24], we provide in
this manuscript basic explanations of the most critical
metrics. The number density metrics (Ca.Dn, Lc.Dn) are

calculated by determining the number of these distinct
objects (canals and lacunae respectively) which can be
found in 1 mm3 of calcified bone tissue. Mean Lacuna
Volume (Lc.V) is model-free and is calculated by count-
ing the total number of empty voxels inside the given
lacuna object. Finally Lacuna Stretch (Lc.St) indicates
the anisotropy of the lacuna with a number between 0
(completely spherical) to 1 (completely rod or plate-like).
Finally Lacuna Distribution Oblateness indicates the type
of anisotropy present in the spatial distribution in the spa-
tial distribution: prolate (indicating that the lacunae are
spaced closely in two orthogonal directions and further
apart in the remaining or oblate where the lacunae are
spared far apart in two orthogonal directions and close in
only one.

QTLMapping
From these metrics, we selected a subset to pursue fur-
ther with QTL analysis based on a broad-sense heritability
criterion of 40%. The heritability was estimated by com-
paring the variation between the F1 and F2 generations.
The environmental variance was estimated using the met-
ric variance measured in the F1 population, which being
genetically identical show only the variation due to envi-
ronmental factors, genetic drift, and measurement error,
which together provide an estimate for the uncertainty
in the examined systems. The genetic lineage of the F2
mice was identified by using polymerase chain reaction
(PCR) markers of the at 98 locations distributed among
the 19 autosomes. The markers used were MIT, a type
of microsatellite marker, that consists of a short sequence
with multiple tandem repeats enabling them to be utilized
well on these closely related strains. The parental strain for
each given allele can be determined by comparing them to
genomic DNA. Genotype information was only available
for 755 of the 1132 mice; thus for the rest of the study only
these 755 will be considered.
The genotype probabilities were estimated at intervals

of 2cM and 128 draws were taken to better estimate
the actual probabilities at these inter-marker locations.
The first activity level for various regions of the genome
was estimated by performing a standard single-locus
genome scan [29] for each phenotype. We used the
extended Haley-Knott method for performing the single-
locus scans because of its robustness and utilization of
genotype information [30]. We accounted for gender dis-
crepancies between the strains by including gender as
covariant to the model. The covariant is introduced as
a so-called interactive covariant where it can have both
an additive effect and interact with the genotype [29].
Genome-wide thresholds for significance and interaction
were selected by performing a 2 loci scan again over 1000
permutations of the phenotype over the genotypes (and
are shown in the Additional file 1). As standard in QTL



Mader et al. BMC Genomics  (2015) 16:493 Page 10 of 11

studies, the test used for statistical significance is the
logarithm of the odds (LOD) score, a logarithmic score
indicating the probability over the null hypothesis (no
QTL). A LOD score of 3 refers to 1:1000 [31]. The full QTL
models for each phenotype were created following the
automated forward/backward method described in [30].
The thresholds and penalties for main effect, heavy and
light interaction were determined genome-wide for each
phenotype by performing 1000 permutations of the two
loci scan and using a 5% significance level. The contribu-
tion of each loci to the final variance was computed by
comparing models with and without the given term. The
LOD plots for each model were created during this refine-
ment stage with 0.1cM step size to best show the positions
and shape of the loci (Fig. 3).

Statistical analysis and implementation
The analysis was performed using R (3.0.1) [7] using
R/QTL [32] to run the analysis. To generate the visu-
alizations, we used ggplot2 in combination with plyr
[33, 34]. The data for comparing to older studies was
acquired from QTLArchive.org and processed using an
R script. This along with the tools to generate all of
the plots are available at: http://dx.doi.org/10.6084/m9.
figshare.726136.

Additional file

Additional file 1: Supplemental materials.
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