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Abstract

Background: Transcriptomics analyses of bacteria (and other organisms) provide global as well as detailed
information on gene expression levels and, consequently, on other processes in the cell. RNA sequencing (RNA-seq)
has over the past few years become the most accurate method for global transcriptome measurements and for the
identification of novel RNAs. This development has been accompanied by advances in the bioinformatics methods,
tools and software packages that deal with the analysis of the large data sets resulting from RNA-seq efforts.

Results: Based on years of experience in analyzing transcriptome data, we developed a user-friendly webserver that
performs the statistical analysis on the gene expression values generated by RNA-seq. It also provides the user with a
whole range of data plots. We benchmarked our RNA-seq pipeline, T-REx, using a case study of CodY mutants of
Bacillus subtilis and show that it could easily and automatically reproduce the statistical analysis of the cognate
publication. Furthermore, by mining the correlation matrices, k-means clusters and heatmaps generated by T-REx we
observed interesting gene-behavior and identified sub-groups in the CodY regulon.

Conclusion: T-REx is a parameter-free statistical analysis pipeline for RNA-seq gene expression data that is dedicated
for use by biologists and bioinformaticians alike. The tables and figures produced by T-REx are in most cases sufficient
to accurately mine the statistical results. In addition to the stand-alone version, we offer a user-friendly webserver that
only needs basic input (http://genome2d.molgenrug.nl).

Background
Measuring mRNA levels in cells or tissues is being
performed ever since the introduction of Northern blot
hybridization. Implementation of DNA-microarray tech-
nology has allowed to measure gene expression at a
genome-wide scale. Although DNA-microarrays are still
being used, the technique is now almost fully replaced
by next-generation (RNA) sequencing (RNA-seq). This
relatively new method can be used to determine absolute
gene expression levels and is far more accurate than
DNA-microarraying, which commonly generates ratio-
based data. Analysis of RNA-seq data is in principle
divided into two stages. The first step involves the
quality control and mapping of the sequence reads to an
annotated reference genome. Command line tools such
as SAMtools [1] and BEDtools [2] are commonly used

but user friendly software packages such as RockHopper
[3] and NGS-Trex [4] have also been developed. This
generates gene (RNA) expression values such as Reads
Per Kilobase per Million reads (RPKM), Fragments Per
Kilobase per Million (FPKMs), Counts Per Million
(CPM) or other gene expression units. The second step
entails statistical and biological analyses of the transcrip-
tome data using tools such as EdgeR [5], DEseq [6] and
others [7]. These investigations could involve the
analysis of differential gene expression between two
samples, but they can also be more complex such as in
the analysis of data obtained from times series experi-
ments or of multiple experiments from multiple time
points. To blend the various approaches into one
common analysis method, factorial design is the most
favorable procedure used for the analysis of DNA-
microarray data (LimmeR, [8]) as well as for RNA-seq
data analysis (EdgeR and DEseq). Factorial design offers
flexibility in controlling how to perform the statistical
analyses. Once the factorial design has been made, six
analysis steps are generally executed; i) normalization
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and scaling of the gene expression values, ii) global ana-
lysis of the experiments using e.g., Principal Component
Analysis (PCA), iii) differential expression of genes
between experiments, iv) clustering of genes expression
levels and/or ratios between experiments, v) studying
the behavior of groups of genes of interest (classes), vi)
functional analysis or gene-set enrichment. A variety of
software packages can be used to perform the steps
mentioned above but, due to issues regarding user-
friendliness, these are usually practical mainly for
bioinformaticians. The main topics in examining the
huge amount of transcriptomics data obtained by RNA-
seq are the choice of proper data analysis methods, the
setting of suitable parameters and the conversion and
combining of data generated in the different stages of
analysis. The development of the RNA-seq analysis
pipeline T-Rex and the choices we made with respect to
the methods and parameters employed were based on
an iterative process between bioinformaticians and biol-
ogists. In this article we introduce and describe this
pipeline, T-REx, a user-friendly webserver to analyse
RNA-seq-derived gene expression data that has been
optimized for prokaryotes. In addition we offer the R-
script, which gives the user full control over the parame-
ters used in the statistical analyses.

Implementation
The first steps in the statistical analysis of gene expression
data are data normalization and determination of the genes
that are differentially expressed between samples. To do
this, the factorial design statistical method of the RNA-seq
analysis R-package EdgeR [5] was chosen. Routines for
clustering and plotting of graphics were derived from the
open source software repository Bioconductor [9].
The pipeline (Additional file 1 and 2) requires raw

RNA expression level data as an input for RNA-seq data
analysis. RPKM, FPKM, TPM [10] or any other count
values can be combined in one table and used as an in-
put for T-REx. Also, DNA-microarray data containing
gene (RNA) expression levels can be used. For the calcu-
lation of the p-values for differential expression the dis-
persion model of EdgeR is employed, which is optimized
for the use of CPM values. Comparison of the differen-
tially expressed genes using either CPM or RPKM values
showed only differences in the TopHits genes close to
cutoff values (p-value 0.05 and fold-change of 2). The
second input file defines the factors that are used to de-
scribe the experiments and the replicates (Table 1A). A
third file is used to define which comparisons (contrasts)
should be made between the various experimental condi-
tions (Table 1B). The researcher is offered an easy and flex-
ible way to produce the results by simply adjusting the
contrast file. Although these three files are enough to per-
form a complete statistical analysis of the dataset under

study, the added value of T-REx is a fourth file, which al-
lows focusing the analysis on one group or multiple groups
of genes or RNAs (e.g., the regulons of CodY and CcpA in
the example given below). To do this, the researcher pre-
defines a Class file of groups of genes of interest (Table 1C.
More details, examples and tutorials for creating the 4 files
can be obtained from the T-REx webserver.
Once T-REx is fed with the four input files, normalization

and global analysis of the data will be performed and visual-
ized in several graphs. These graphs include library sizes,
box plots of normalized signals, a correlation matrix of
experiments and a two-dimensional Multidimensional
Scaling (MDS) plot of the samples to be studied. Although
various normalization methods have been developed, we
found the trimmed-median mean method (TMM) of
EdgeR to be the most accurate for RNA-seq data derived
from prokaryotes. Subsequently, statistical analysis of differ-
ential expression of genes of all contrasts (derived from
Table 1B) is performed and the outcome is visualized in
MA and volcano plots. In the MA plots traditionally used
in DNA-microarray analysis gene expression is plotted
against ratio values while volcano plots compute gene
expression ratios against their p-values. In both of these
dot-plots (in which dots represent genes) each dot gets a
color as defined by the user in the Class file (Table 1C)
while non-defined dots are colored black, allowing to easily
identify the behavior of Class-defined genes. Genes can
have an expression value of zero, e.g., when comparing two
bacterial species in which one of the genes is absent. To
prevent errors as a consequence of having to divide by zero,
zero values are scaled to noise level. Thus, these genes will
be flagged by a cross-sign in the MA and volcano plots.
K-means clustering [2, 11] is considered to be one of

the most powerful methods to analyze behavior of gene

Table 1 Input files for the RNA-seq analysis pipeline

A) Factors B) Contrasts C) Classes

Experiment Strain Time A_F71Y-WT BSU00490 green CodY

WT1 WT T1 B_R61K-WT BSU01650 green CodY

WT2 WT T1 C_R61H-WT BSU01660 green CodY

F71Y1 A_F71Y T1 Null-WT BSU01670 green CodY

F71Y2 A_F71Y T1 BSU01680 green CodY

R61K1 B_R61K T2 etc… … …

R61K2 B_R61K T2 BSU03981 red CcpA

R61H1 C_R61K T2 BSU03982 red CcpA

R61H2 C_R61K T2 BSU03990 red CcpA

null1 Null T2 BSU04160 red CcpA

null2 Null T2 BSU04470 red CcpA

etc… … …

A) File describing the experiments and containing information of experiment
replicates, B) File with the comparisons (contrasts) to be made, C) File with
groups of genes/RNAs of interest
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expressions between dependent experiments, such as
samples taken over a course of time from the same
culture. However, defining the number of clusters in
which the data can be divided is arbitrary. To tackle this
issue, the analysis pipeline will estimate the number of
clusters for a certain data set automatically. The number
of genes is furthermore limited to include only those that
have a fold change ≥ 2 and a p-value ≤ 0.05 (TopHits) in at
least one of the contrasts. Subsequently, two additional
groups of genes are defined, one group containing genes
that show highly differential expression in at least one of
the contrasts (HighFold: fold change ≥ 5 and p-value ≤ 0.01)
and a group from which non changed genes are removed
(no_background: fold change ≤ 1.4 and p-value ≥ 0.25).
K-means and hierarchical clustering are executed on
both the signal and the ratio data for all genes and clas-
ses. Plots of expression profiles and a correlation matrix
are made for each Class group, which will show the rela-
tion of the genes within each Class group. Finally, a
whole set of tab-delimited tables are produced for fur-
ther downstream analyses or for drawing graphs in
other programs, as required.

Gene network
Venn diagrams are traditionally used to show the overlap
between experiments, but this way of presenting limits the
number of experiments that can be included. T-REx
circumvents this problem and shows overlap between an
unlimited number of experiments in a gene network using

the Reingold-Tilford layout [12]. Furthermore, this gene
network is exported as a table of nodes and edges that can
be examined in a gene network analysis program such as
Cytoscape [13].

Gene set enrichment analysis
The results of the RNA-seq statistical pipeline describe and
analyze the transcriptional behavior of genes/RNAs
independently of the organism under study. To add
organism-specific information to the analyzed data, a Gene
Set Enrichment Analysis (GSEA) [14] is commonly used to
unravel the bigger biological picture. The main issue in
such an analysis is the availability of classification data for
the specific organism such as Gene Ontology (GO) and
metabolic pathways (KEGG). To allow for easy GSEA we
(re-)annotated all proteins of all publically available bacter-
ial complete genomes for GO, InterPro, KEGG, MetaCyc,
PFAM domains, Superfamily and Gene3D. We imple-
mented a webserver allowing to use this classification data
for GSEA (http://genome2d.molgenrug.nl/index.php/func-
tional-analysis-go-ipr).
The workflow of T-REx is presented in Fig. 1. The

analysis pipeline has been written in R [15] and is freely
available on request. For reasons of user-friendliness, we
offer a web server for uploading of the data files. The
results of the analyses can be mined on a web-browser
or downloaded as a zip-file (containing all html files, im-
ages and data files) for later use. Depending on server
demand, a full analysis takes around 1 min.

Figure 1 Flow chart of the RNA-seq analysis pipeline. User input consists of the four data files defined in Table 1 and a project name. Parameters
such as thresholds, p-value cutoffs and k-means settings are predefined or will be estimated by the analysis pipeline
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Results and discussion
The performance of the RNA-seq data analysis pipeline
was assessed using the RNA-seq expression dataset
(DatasetS1) of Brinsmade and coworkers [16]. These
authors performed RNA-seq to study the effect of three
separate single amino acid changes in the global transcrip-
tion factor for nitrogen metabolism CodY of Bacillus
subtilis 168. The format of DatasetS1 could be directly
used as an input for our RNA-seq analysis pipeline. A
Factors file was created to define strains and replicates, as
explained in Table 1a. To find differential gene expression,
all three CodY mutants were compared to the wild-type,
as defined by the Contrasts file (Table 1B). Apart from the
Data table, a Factors file and a Contrasts file, a Class file
was made containing information on the CodY regulon

and two other interesting regulons: those of CcpA [17, 18]
and ArgR [19] (Table 1C). The four files were used as
inputs for the webserver and over 40 html pages were
retrieved that refer to 104 graphs, 45 tables and one html
overview table (see Additional file 3).

Global analysis
The results of the global analysis (Fig. 2) showed that the
library sizes and signal distributions were comparable for
all samples. The biological replicates of the CodY mutant
F71Y showed a higher correlation than those of the other
2 mutants, R61K and R61H, but all samples were well
distributed upon examination of the Multi-Dimensional
Scaling (MDS) plot (Fig. 2).

Figure 2 An illustration of images obtained by T-REx after analysis of the CodY dataset of Brinsmade et al.. a) Library sizes, b) Box plots of signals
in each sample, c) MDS plot, d) Bar graph of up- and down-regulated genes, e) One of the k-means clusters, f) One of the Volcano plots,
g) Network of genes and experiments, h) Correlation matrix of experiments, i) Heatmaps of Class genes to experiments, j) Correlation matrix of
Class genes to Class genes. For the same images in high-resolution, see Additional file 4: Figure S2A – S2J. A tutorial for interpretation of T-REx
results is given on the T-REx webserver
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Contrasts analysis
Similar to what was observed by Brinsmade et al., more
genes were up- than down-regulated in the CodY
knock-out (Null mutant) versus wild-type comparison at
a p-value <0.05 and a fold-change >3. The absolute
number of differentially expressed genes was higher in
our analysis as we used a Fold Change cutoff of 2 instead
of 3 (Table 2D, p-value < 0.05 and fold-change >2).
Genes of the known CodY regulon were colored green
(see the Class file of the example data) allowing to easily
spot them in the MA- and volcano plots. Thus, it is
immediately clear that more genes than only those of
the CodY regulon are differentially expressed, as was
also pinpointed by Brinsmade et al.. The blue dots in the
upper-right quadrant of the volcano plots indicate that
several genes of the CodY regulon are also part of the
CcpA regulon, an observation that was also reported in
Brinsmade et al.. The heatmap (Additional file 4: Figure
S2I) of differentially expressed genes in all CodY
mutants showed interesting groupings of genes, which
might be of importance for biological interpretation and
further analysis.

Experiment analysis
When analyzing all CodY mutants (targets) to the wild
type (control), the number of up and down regulated
genes identified by T-REx was comparable to that
reported in Brinsmade et al. (Table 2). The ‘Correlation
Matrix of Experiments’ figure (Fig. 2 and Additional file 4:
Figure S2H) is in agreement with a gradual increase in the
number of differentially expressed genes in the mutants,
in the order F71Y, R61K, R61H and Null, as was also
concluded in Brinsmade et al.. Automated k-means
clustering of differentially expressed genes in the various
mutants (see Additional file 5: Figure S3) also shows a
gradient of gene expression, suggesting that not only the
number of differentially expressed genes differs between
the mutants, but also their gene expression levels. By a
gradual increase in expression of certain genes in the
various mutants, the ratios (mutant versus WT) pass a

preset threshold value, which might explain why the
number of differentially expressed genes increases.

Class analysis
The T-REx pipeline performs an in-depth analysis on
classes pre-defined by the user. Here we defined five
classes; the regulons CodY, CcpA, ArgR, MalR and a
Class of genes that are under control of both CodY and
CcpA. The heatmap (Class genes to experiments) and
the correlation matrix of Class genes showed that some
members of the known CodY regulon do not have a
good correlation over the experiments. Brinsmade et al.
excluded several genes from their analyses because of
their complex gene expression patterns. To study this
phenomenon we added these genes in a separate Class
‘Complex’ and colored them orange. The volcano plots
showed that a subset of 7 of these genes appears as
differentially regulated compared to the wild type strain
in three of the four contrasts. The probability of their
differential expression is close to the p-value threshold
(in this case 0.05) in the mutant R61K. The heatmap of
signals of Class ‘Complex’ (see Additional file 6: Figure
S4A) showed that these 7 genes have a gene expression
pattern that is different from the genes of the CodY
regulon (see Additional file 6: Figure S4B).

Conclusion
The parameter-free RNA-seq analysis pipeline T-REx is
a fast, easy to use and comprehensive way to perform
statistical analysis of gene expression data derived from
RNA-seq data. Typical graphics and tables are automat-
ically generated, which enables a direct overview of the
biological relevance of the data, obviating laborious
combining and complex filtering operations of data.
Furthermore, T-REx produces data tables for (optional)
downstream processing. The case study presented in this
article compared the analyses performed by Brinsmade
et al. and T-REx. The outcome shows that T-REx can
quickly and fully automatically perform statistical
analyses on gene expression data derived from RNA-seq.
It reproduced the results of the original study without
requiring additional statistical analyses. The T-REx
pipeline is continuously updated and expanded to fully
utilize the potential of RNA-seq gene expression data
sets.

Availability and requirements

� Project name: T-REx.
� Project home page: http://genome2d.molgenrug.nl.
� Operating system(s): Platform independent.
� Programming language: Perl, R.
� License: This website is free and open to all users

and there is no login requirement.

Table 2 Overview table of the analysis of differential gene
expression

Contrast Total number of genes Up-regulated Down-regulated

A_F71Y-WT 4176 72 9

B_R61K-WT 4176 126 15

C_R61H-WT 4176 219 25

Null-WT 4176 282 (196/212) 47 (27/29)

The numbers of up- and down-regulated genes were determined using default
cutoffs p-value≤ 0.05 and fold-change ≥ 2. Within brackets p-value≤ 0.05 and fold
change≥ 3 as was mentioned in Brinsmade et al. and our pipeline, respectively
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Additional files

Additional file 1: Archive file containing all T-REx output files. (R 38 kb)

Additional file 2: Figures S2A - S2J; high resolution images of
Figure 2. (R 13 kb)

Additional file 3: Figure S3; k-means clustering of differentially
expressed genes in the mutants. (ZIP 31925 kb)

Additional file 4: Figures S4A and S4B; signal heatmaps of Class
‘Complex’ and Class ‘CodY’, respectively. (ZIP 1103 kb)

Additional file 5: T-REx main R-script. (PNG 173 kb)

Additional file 6: T-REx R functions. (ZIP 179 kb)
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