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Abstract

Background: Replication study is a commonly used verification method to filter out false positives in genome-wide
association studies (GWAS). If an association can be confirmed in a replication study, it will have a high confidence to
be true positive. To design a replication study, traditional approaches calculate power by treating replication study as
another independent primary study. These approaches do not use the information given by primary study. Besides,
they need to specify a minimum detectable effect size, which may be subjective. One may think to replace the
minimum effect size with the observed effect sizes in the power calculation. However, this approach will make the
designed replication study underpowered since we are only interested in the positive associations from the primary
study and the problem of the “winner’s curse” will occur.

Results: An Empirical Bayes (EB) based method is proposed to estimate the power of replication study for each
association. The corresponding credible interval is estimated in the proposed approach. Simulation experiments show
that our method is better than other plug-in based estimators in terms of overcoming the winner’s curse and
providing higher estimation accuracy. The coverage probability of given credible interval is well-calibrated in the
simulation experiments. Weighted average method is used to estimate the average power of all underlying true
associations. This is used to determine the sample size of replication study. Sample sizes are estimated on 6 diseases
from Wellcome Trust Case Control Consortium (WTCCC) using our method. They are higher than sample sizes
estimated by plugging observed effect sizes in power calculation.

Conclusions: Our new method can objectively determine replication study’s sample size by using information
extracted from primary study. Also the winner’s curse is alleviated. Thus, it is a better choice when designing
replication studies of GWAS. The R-package is available at: http://bioinformatics.ust.hk/RPower.html.
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Background
Genome-wide association studies (GWAS) are widely
used to identify susceptibility variants of common
diseases. Commonly, single nucleotide polymorphisms
(SNPs) are genotyped across the whole genome in dif-
ferent individuals, and statistical methods are used to
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detect the associations between SNPs and disease sta-
tus. According to the summary of GWAS catalog ([1],
accessed [2015.05.28]), about 2000 GWAS reports related
to 756 diseases/traits have been published so far, from
which 14,609 associations show genome-wide significance
(p-value ≤ 5 × 10−8). More and more associations will be
discovered from GWAS.
The basic statistical method used in GWAS analysis

is hypothesis testing [2]. The possibilities of false pos-
itives cannot be completely removed in the analysis.
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Hence, all findings from GWAS need to be verified.
Replication study is a commonly used approach to
verifying positive findings [3, 4]. If an association
between one specific SNP and a certain disease has been
identified in the primary study and confirmed in the
replication study, we usually treat this association as
true positive with a high confidence. If an association
identified in the primary study cannot be confirmed in the
replication study, we often suspect that it is a false positive.
The power of replication study is crucial in this vali-

dation process. If the replication study is underpowered,
then the positive findings will have a low chance to be
replicated. It’s essential to design a replication study with
enough statistical power.
How to estimate the power of a replication study in the

design phase?
Traditionally, a replication study is regarded as another

independent primary study. Thus, the same power cal-
culation in the original primary study is used. For the
associations identified in the primary study, a minimum
effect size needs to be specified. Then, the underlying
alternative distribution of test statistics is assumed to have
specified effect size. The major limitation of this tradi-
tional power calculation method is that the specification
of the effect size is subjective and may cause bias. Besides,
no information from primary study has really been
used.
One may think to plug the observed effect sizes

from the primary study in the power calculation of the
replication study. This power estimation approach doesn’t
need to specify any parameters. Since only significant
associations are considered in the replication study, the
observed effect sizes for those associations will tend to
be overestimated [5]. This phenomenon is known as the
“winner’s curse” [6], which makes the estimated powers
tend to have higher values.
A lot of methods have been proposed to overcome the

winner’s curse in effect size estimation. An incomplete
list includes conditional maximum likelihood estimation
(CMLE, [7–9]), bootstrap [10], full Bayesian method [11]
and Empirical Bayes method (EB, [12]). Since power func-
tion is usually not a linear function of effect size, the esti-
mators obtained by simply plugging those bias-corrected
effect sizes in power calculation may not achieve the best
performance.
Moreover, there are two other challenges in designing

replication study:

1. Due to the nonlinear nature and restricted range
(limited to [0, 1]) of power function, the distribution
of power is usually non-normal when effect size is
normally distributed (illustrated in Fig. 1). The
interval estimation of the power should consider the
non-normality.

2. Since the power values of different associations in the
primary study are different, a summary value is
needed to determine the sample size of replication
study.

This paper aims at addressing the above challenges. Our
contributions are listed in the following:

1. For each association identified from the primary
study, an EB based method is proposed to estimate
its power in the replication study.

2. Due to the non-normality of the estimated power and
the inaccuracy of the hyperparameters estimation, a
novel interval estimation method combining Monte
Carlo sampling and Bootstrap is proposed to
estimate the corresponding credible interval of each
association’s power in the replication study.

3. The average power of the discovered true associations
is used for determining the sample size of replication
study. An weighted average method is proposed to
estimate the average power. Our proposed interval
estimation method can also be used to construct the
credible interval of the average power.

4. Only the summary statistics of the primary study are
needed when using our proposed method to design a
replication study. This feature is helpful since
summary statistics are more accessible than
individual-level genotype data due to the privacy
issue and other constraints.

The rest of this paper is organized as follows. In
section ‘Methods’, we will introduce the Bayesian frame-
work to estimate the power of replication studies. We
will prove that Bayesian predictive power is immune to
the winner’s curse. Then we will present how to esti-
mate the power with two-component mixture prior under
the Bayesian framework. We will also give the details
about estimation of hyperparameters, interval estima-
tion and the estimation of average power. In section
‘Results and discussion’, we will first use simulation results
to demonstrate that our EB based method is better than
other plug-in based estimators in terms of overcoming the
winner’s curse and providing higher estimation accuracy.
We will also demonstrate that the coverage probability
of given credible interval is well-calibrated. Then we will
show the sample sizes determined to replicate findings
of 6 diseases from Wellcome Trust Case Control Con-
sortium (WTCCC) [13], which are much higher than the
sample sizes estimated by plugging observed effect sizes
in the power calculation formula. The increased sample
sizes are reasonable due to the winner’s curse. In the same
section, we will discuss limitations of current modeling
and estimation approach. Section ‘Conclusions’ concludes
the paper.
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μ̂~N(0.15,0.052), σ(2)=0.05

Estimated replication power
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Fig. 1When log-odds ratio is normally distributed, the power of replication study possesses non-normality. Assume the effect size follows normal
distribution N(0.15, 0.052). The standard error of log-odds ratio is σ (2) = 0.05 in the replication study. The significance level of the replication study is
α(2) = 5 × 10−3. The histogram of the power in the replication study possesses non-normality

Methods
We use parenthesized superscript “(j)” to denote primary
study (j = 1) and replication study (j = 2). For example,
we denote the sample size in the primary study as n(1).
The sample size in the control group and case group are
n(1)
0 and n(1)

1 , respectively. The total number of SNPs geno-
typed in the primary study is m. Among those genotyped
SNPs, the proportion of the SNPs having no association
with the disease (null SNPs) is π0(0 ≤ π0 ≤ 1).
In both the primary study and the replication study, a

contingency table can be created as in Table 1 for each
genotyped SNP.With the contingency table, the logarithm
of the observed odds ratio reads:

μ̂(j) = log n(j)
00 − log n(j)

01 − log n(j)
10 + log n(j)

11. (1)

Table 1 Allele based contingency table of one SNP in
primary/replication study. Please see the main text for
explanation of the notations

Non-effect allele Effect allele Total

Control n(j)
00 n(j)

01 2n(j)
0

Case n(j)
10 n(j)

11 2n(j)
1

Total n(j)
00 + n(j)

10 n(j)
01 + n(j)

11 2n(j)

The true value of the log odds ratio μ is usually
unknown. The asymptotic standard error of μ̂(j) can be
approximated using Woolf ’s method [14],

σ (j) ≈
√

1
n(j)
00

+ 1
n(j)
01

+ 1
n(j)
10

+ 1
n(j)
11
. (2)

To test whether there is an association between the SNP
and the disease, two hypotheses are set up:

H0 : μ = 0, vs.H1 : μ �= 0. (3)

Wald test can be used to examine whether the null
hypothesis should be rejected. The test statistic is z(j) =
μ̂(j)/σ (j). The significance levels in the primary study and
the replication study are fixed to α1 and α2, respectively.
Two-sided test is used in primary study. The rejec-

tion region is |Z(1)| > zα1/2 (We use uppercase letter
to indicate a random variable), where zu(0 ≤ u ≤ 0.5)
is the upper u quantile of the standard normal distribu-
tionN(0, 1). For a replicated association, the test statistics
in two studies should be consistent with the same sign.
Hence, the test can be regarded as one-sided test in repli-
cation study. The rejection region is sgn

(
z(1)

)
Z(2) > zα2 ,

where the sign function is

sgn(x) =
⎧⎨⎩
1 if x > 0
0 if x = 0
−1 if x < 0

. (4)
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Bayesian predictive power
For an association identified in primary study, the power
function in replication study is defined as

β(2)(μ) = P
(
sgn

(
z(1)

)
Z(2) > zα2

∣∣μ, z(1),H1
)
,

where |z(1)| > zα1/2.
(5)

A traditional power calculation method needs to spec-
ify a minimum detectable effect size μmin first. Then, the
power of replication study is β(2)(μmin). Consequently,
the power can be used to determine the sample size.
To incorporate information from primary study, the

post-hoc method estimates the power of each associa-
tion by plugging the observed effect size in Eq. (5), i.e.
β(2) (μ̂(1)). This approach is widely criticized for the rea-
son of the winner’s curse. The estimated power is biased
upward since only significant associations are selected
in the replication study. To address this problem, a lot
of methods have been proposed to overcome the win-
ner’s curse in effect size estimation [7–12]. Conditional
maximum likelihood estimation (CMLE) is the most com-
monly used type [7–9]. In CMLE, the effect size is
estimated by maximizing the likelihood conditioning on
rejected region, i.e.

μ̂
(1)
CMLE = argmax

μ
P
(
z(1)

∣∣μ, |Z(1)| > zα1/2,H1
)
. (6)

Please notice that, although the selection bias can be
reduced using estimator which can adjust estimated effect
size, no unbiased estimator exists [11]. With estimated
effect size, the power of replication study can be obtained
by using β(2)

(
μ̂

(1)
CMLE

)
. The plug-in based power esti-

mator is not optimized in terms of minimizing Bayes
risk.
The Bayes risk averages the loss function over both sam-

ple space and parameter space. In terms of overcoming the
winner’s curse, the Bayes risk R(θ̂) should be defined con-
ditioning on rejected region and alternative hypothesis,

R(θ̂) = Eμ,Z(1)

((
θ̂ − β(2)(μ)

)2 ∣∣|Z(1)| > zα1/2,H1

)
,

(7)

where θ̂ is the power estimator of replication study.
Inspired by the proof in [12], we can show that Bayesian
predictive power η(2) [15] is the estimator minimizing
R(θ̂) (please see Appendix for detail). The Bayesian pre-
dictive power reads

η(2) = P
(
sgn

(
z(1)

)
Z(2) > zα2

∣∣z(1),H1
)

= Eμ

(
β(2)(μ)

∣∣z(1),H1
)
,

(8)

which takes the average of all power function values
among all possible μ values given observed z(1). We

will provide a detailed formula of the Bayesian predic-
tive power under one specific prior in the following
subsection.

Two-component mixture prior
In each study, the observed log odds ratio μ̂(j) asymp-
totically follows normal distribution N

(
μ,
(
σ (j))2). The

underlying true value of the effect size μ is often
unknown. It is widely suspected that a large proportion
of SNPs with small effect sizes are associated with com-
plex diseases [16, 17]. We use Gaussian prior to depict this
pattern of the associated SNPs. For all SNPs, we use the
following two-component mixture prior to describe their
effect sizes:

μ ∼ π0δ0 + (1 − π0)N
(
0, σ 2

0
)
, (9)

where δ0 is the distribution with point mass on zero and
σ 2
0 is the variance of the effect sizes in associated SNPs.
With this prior, the posterior distribution of effect size

μ underH1 is(
μ|z(1),H1

)
∼ N

(
λμ̂(1), λ

(
σ (1)

)2)
,

where λ = 1
1 + (

σ (1)/σ0
)2 . (10)

The Bayesian predictive power of replication study is
(Detail in the Appendix):

η(2) = 


(
sgn

(
z(1)

)
z∗ − zα2

σ ∗

)
, (11)

where z∗ = λμ̂(1)/σ (2), σ ∗ =
√
1 + λ

(
σ (1)

σ (2)

)2
and 
(x) is

the cumulative density function (cdf) ofN(0, 1). By substi-
tuting observed allele frequencies from the primary study
into Woolf ’s method, σ (2) can be approximated as

σ (2) ≈
√√√√n(1)

0

n(2)
0

(
1

n(1)
00

+ 1
n(1)
01

)
+ n(1)

1

n(2)
1

(
1

n(1)
10

+ 1
n(1)
11

)
.

(12)

There is an unknown hyperparameter σ 2
0 in the calcu-

lation of Bayesian predictive power. In the following sub-
section, we will present how to estimate σ 2

0 with Empirical
Bayes approach.

Hyperparameter σ 2
0

In Empirical Bayes’ thinking, we can estimate σ 2
0 by taking

advantage of the shared structure of the effect size’s dis-
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tribution among all SNPs, which can be seen from Eq. (9).
The estimator of σ 2

0 is (see Appendix for detail):

σ̂ 2
0 =max

⎛⎜⎝0,
⎛⎜⎝
∑m

i=1

(
z(1)i

)2−mπ0

(1−π0)
−m

⎞⎟⎠/

m∑
i=1

(
1/σ (1)

i

)2⎞⎟⎠ .

(13)

There are two extreme cases in the above estimation:

1. If the null hypothesis is valid, then all SNPs follow a
standard normal distribution with variance equal to
one. When 1

m
∑m

i=1

(
z(1)i

)2 ≤ 1, i.e., the sample
variance is no bigger than one as in the null
hypothesis case, we will have σ̂ 2

0 = 0. In this case, the
result of our EB based power estimation method will
degenerate to type I error rate, which is the
probability that the identified association can be
replicated even when the association doesn’t exist.

2. When 1
m
∑m

i=1

(
z(1)i

)2
> 1 but π0 = 1, we will have

σ̂ 2
0 = +∞. In this case, the above shrinkage

coefficient will degenerate to λ = 1. The shrinkage
effect in our EB based method will disappear.

Noticed that there is another unknown hyperparame-
ter π0 in calculating σ̂ 2

0 . The estimation of the proportion
of true null hypotheses π0 has been extensively studied
[18–20]. Here we just choose Storey’s method [18] for the
simplicity of implementation. Let’s denote the number of
SNPs with p-value> γ as m+(γ ) in the primary study.
Then π0 can be estimated by using

π̂0 = m+(γ )

m(1 − γ )
. (14)

There is a bias-variance tradeoff in tuning γ . An auto-
matic procedure is proposed in [18] without tuning γ :
A natural cubic spline will fit to evaluated values with
different γ , then π̂0 is the spline’s value at γ = 1.

σ̂ 2
0 can be calculated by plugging π̂0 in Eq. (13). By plug-

ging σ̂ 2
0 into Eq. (11), an EB based estimator of the repli-

cation study’s power can be obtained, which is denoted
as η̂

(2)
EB . The corresponding credible interval can be con-

structed, which is presented in the following subsection.

Credible interval
From Eq. (10), the posterior distribution of log odds
ratio μ under alternative hypothesis H1 is a normal dis-
tribution. Figure 1 shows the histogram of power val-
ues when μ is normally distributed. The shape of the
histogram indicates the non-normality of the calculated
power. Hence, the asymptotic approach based on normal
distribution theory is not appropriate in the interval esti-

mation of the replication study’s power. The construction
of the credible interval should consider the non-normality.
We propose to use Monte Carlo sampling to construct
the credible interval of β(2)(μ). The credible interval is
constructed with known hyperparameters σ 2

0 . Since esti-
mation error will occur in estimating σ 2

0 , the constructed
credible interval will have smaller coverage probability
than nominal level. To incorporate the variance of the esti-
mator σ̂ 2

0 , a method combiningMonte Carlo sampling and
Bootstrap is proposed. The test statistics from the primary
study z(1) will be resampled N1 times with replacement.
For each run, σ 2

0 is re-estimated. Monte Carlo sampling is
used to generate N2 power values with each re-estimated
σ 2
0 . The credible interval is constructed among all N1N2

sampled power values.

Average power
Usually, multiple associations are identified in primary
study. To design a replication study, a summarized value
reflecting the average power of all associated SNPs is
needed. A direct thinking is to average power among the
identified SNPs with underlying true associations, which
reads

β̄(2)(μ) = 1
|S|

∑
i∈S

β(2)(μi), (15)

where S is the index set of the associated SNPs identi-
fied from primary study and |S| is the cardinality of S. The
subscript imeans that the quantity is evaluated for SNP i.
Since the index set S is unknown, we propose to use

weighted average of the estimated powers η̂
(2)
EB . The local

true discovery rate (ltdr) of each SNP is the posterior
probability of being associated SNP given observed statis-
tics, which is complementary to local false discovery rate
[21]. We use ltdr as weight in the estimation. The esti-
mated average power is

η̄
(2)
EB =

∑
i∈T ltdr(1)i η̂

(2)
EB,i∑

i∈T ltdr(1)i
, (16)

where T is the index set of the SNPs identified from the
primary study. The local true discovery rate of the primary
study can be calculated as (See Appendix for detail):

ltdr(1) =
π1φ

(
z(1)/

√
1 + (̂σ0/σ (1))2

)
π0φ

(
z(1)

)+ π1φ

(
z(1)/

√
1 + (

σ̂0/σ (1))2) ,

(17)

where φ(x) is the probability density function (pdf) of
N(0, 1).
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By setting the estimated average power larger than a
threshold, e.g. η̄(2)

EB > 80%, the sample size of replication
study can be determined.

Credible interval of the average power
The proposed interval estimationmethod can also be used
to construct the credible interval of the average power.
We resample the test statistics from the primary study N1
times. In each run, a re-estimated variance of the effect
sizes in the non-null SNPs σ̂ 2

0 can be obtained. For a fixed
σ̂ 2
0 value, we first calculate the local true discovery rate of

the primary study ltdr(1) with Eq. (17) for each associa-
tion. Then Monte Carlo sampling is used to generate N2
sets of the power values, in each of which there are power
values of the replication study for all associations identi-
fied from the primary study. In each set, an average power
can be obtained by taking weighted average of those gen-
erated power values among all associations. Hence, N2
average power values can be generated in each run. The
credible interval of average power can be constructed
among all N1N2 sampled average power values.

Results and discussion
Simulation experiments
The following questions are examined using simulation
experiments:

1. Can EB based power estimator η̂
(2)
EB perform well in

terms of overcoming the winner’s curse?
2. Can η̂

(2)
EB estimate power accurately?

3. Is the corresponding credible interval well-calibrated?
4. Can weighted average estimator η̄

(2)
EB estimate

average power β̄(2)(μ) accurately?

In simulation experiments, sample sizes are n(1)
0 =

n(1)
1 = 1000 and n(2)

0 = n(2)
1 = 500 in primary study and

replication study, respectively. The number of simulated
SNPs is m = 1 × 104. For each SNP, its minor allele
frequency is uniformly distributed as U(0.05, 0.5). Their
effect sizes are generated from the following distribution:

μ ∼ 0.9δ0 + 0.1N(0, 0.04). (18)

For our hypothetical disease, its prevalence is 1%. To
test the marginal association between SNPs and the dis-
ease, log-odds ratio test is used. The significance levels are
α1 = 5 × 10−5 and α2 = 5 × 10−3 in primary study and
replication study, respectively.
Figure 2 shows the histogram of the differences between

observed effect sizes μ̂(1) and their underlying true values
μ for identified true associations. We plotted separatively
for the associations with positive effect (μ > 0) and
negative effects (μ < 0). For the associations with pos-
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Fig. 2 The winner’s curse exists in the estimation of effect size for
SNPs identified from the primary study. The histograms of the
estimation error μ̂(1) − μ for positive effect SNPs (SNPs with log-odds
ratio greater than 0) and negative effect SNPs (SNPs with log-odds
ratio smaller than 0) are plotted separately. The mean values of the
estimation error is drawn with vertical dashed lines. From the figure, it
can be concluded that the magnitude of the observed effect sizes
μ̂(1) tend to be larger than the magnitude of their true effect. The
observed effect sizes tend to be exaggerated

itive effect, the mean value of the estimated effect sizes
is larger than the mean value of true effect sizes. On the
contrary, the values of the estimated effect sizes tend to
be smaller than their true values for the associations with
negative effect. In both of these two cases, the magnitude
of the observed effect sizes tend to be exaggerated, which
indicates that the winner’s curse generally exists in the
associations identified from primary study.
In order to check whether our EB based power estimator

η̂
(2)
EB can overcome the winner’s curse, the histogram of the

differences between estimated values and true values is
shown. As a comparison, we will show the corresponding
histogram for power estimator by plugging in observed
effect size first. A lot of methods have been proposed to
overcome the winner’s curse in terms of effect size esti-
mation. CMLE and EB can be used directly in z-values
of log-odds ratio test. The individual-level genotype data
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are also simulated so that bootstrap based bias reduction
method BR2 [10] can also be used as a comparison (We
modified the implementation code of BR2 so that log-odds
ratio test can be used in the software). A direct thinking
is to plug these adjusted estimators in the power calcu-
lation formula. The corresponding histograms for these
three adjusted plug-in based estimators are shown as com-
parisons. In Fig. 3a, we use plug-in rule to estimate the
replication study’s power, where the observed effect size is
plugged in. The estimated power is β(2) (μ̂(1)).We plot the
histogram of the difference between β(2) (μ̂(1)) and the
true power values β(2)(μ) in the figure. The overestimated
effect size makes the estimated replication study’s power
overestimated as well. Figure 3b plots the histogram of the
difference between β(2)

(
μ̂

(1)
CMLE

)
and β(2)(μ). The win-

ner’s curse has disappeared, but there is a large downward
bias in the estimated results. Equation (10) also introduces
an Empirical Bayes estimator of the effect size, which
reads

μ̂
(1)
EB = 1

1 + (
σ (1)/σ̂0

)2 μ̂(1). (19)

Figure 3c, d plot the histogram of β(2)
(
μ̂

(1)
BR2

)
− β(2)(μ)

and β(2)
(
μ̂

(1)
EB

)
− β(2)(μ), respectively. Large upward

biases still exist in the histograms. In contrast, Fig. 3e plots
the histogram of η̂(2)

EB −β(2)(μ), where η̂
(2)
EB is our proposed

EB based power estimator. The bias almost disappeared,
indicating η̂

(2)
EB is better than other estimators of the repli-

cation study’s power in terms of overcoming the winner’s
curse. The experiment has run 5 times, and the same con-
clusion holds in each run. The empirical biases of these
five estimators can be seen in the Table 2.
Table 3 shows the root mean square error (RMSE) of

the five estimators β(2) (μ̂(1)), β(2)
(
μ̂

(1)
CMLE

)
, β(2)

(
μ̂

(1)
BR2

)
,

β(2)
(
μ̂

(1)
EB

)
and η̂

(2)
EB in the 5 runs. We can see that

η̂
(2)
EB is better than other methods in terms of estimation

accuracy.
To investigate the performance of the interval estima-

tion, the coverage probability of 95% credible intervals for
all identified associated SNPs is shown in Table 4. The
coverage probabilities by using pure Monte-carlo sam-
pling are presented on the left side. In agreement with
our analysis in the last section, the coverage probabil-
ity is lower than the nominal value 95%. The coverage
probabilities by using modified method which combines
Monte-carlo sampling and bootstrap are shown on the
right side, which are closer to the nominal value. The
credible interval given by the combined method is well-
calibrated.
Figure 4 shows the average powers and their estimated

results in the 5 runs. The true value of the average power is

covered by 95% credible interval in all runs. For compar-
ison, we also show the estimated average power by using
plug-in rule, i.e. β̄(2) (μ̂(1)), β̄(2)

(
μ̂

(1)
CMLE

)
, β(2)

(
μ̂

(1)
BR2

)
and β̄(2)

(
μ̂

(1)
EB

)
, in each run. The estimated power for each

association is also weighted by its local true discovery rate
ltdr in each average power estimator. The figure shows
that the EB based average power estimator η̄

(2)
EB is much

closer to the true value β̄(2)(μ). These results indicate that
the estimated average power can be regarded as a proxy of
the average power, which can be used to design replication
study.
To check the performance of our method when the

effect sizes of the associated SNPs are do not follow nor-
mal distribution, we also simulated data with the following
distributed effect sizes:

μ ∼ 0.9δ0 + 0.1t5,0.2 (20)

and

μ ∼ 0.9δ0 + 0.07N(0, 0.04) + 0.03N(0, 0.16), (21)

where t5,0.02 is a scaled t distribution with degree of free-
dom 5 and scaling factor 0.2. The distribution of the
associated SNPs’ effect sizes follow the Gaussian mixture
model in the second case. The average empirical biases
and RMSE of all estimators in these two cases are shown
in Tables 5 and 6, respectively. From the tables, we can
see that our method is still better in terms of overcoming
winner’s curse and providing higher estimation accuracy.

WTCCC datasets
To give an application example of our proposed method,
we will determine the sample size of replication study used
for verifying the 6 human common diseases’ findings from
Wellcome Trust Case Control Consortium (WTCCC).
The 6 diseases include coronary artery disease, Crohn’s
disease, hypertension, rheumatoid arthritis, type 1 dia-
betes and type 2 diabetes. Each disease has 2000 cases in
the dataset of the primary study. There are 3000 shared
controls among all datasets. The following quality control
procedure is used in the primary study’s datasets:

1. Missing data control: Chiamo score is used as
genotype calling accuracy in the WTCCC data. The
genotypes with Chiamo score < 0.95 are regarded as
missing values. The SNPs with more than 10%
missing entries are removed.

2. Minor allele frequency control: Among all samples,
the SNPs with minor allele frequency < 0.05 are
removed.

3. Hardy-Weinberg equilibrium control: The SNPs
with p-values< 0.001 in the Hardy-Weinberg
equilibrium test are removed.
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Fig. 3 The histograms of the error in power estimation for all associated SNPs identified from primary study. a The replication study’s power is
estimated by plugging the observed effect size in power calculation formula, i.e. β(2)

(
μ̂(1)

)
. b The power is estimated by plugging the CMLE based

corrected effect size μ̂
(1)
CMLE in power calculation formula, i.e. β(2)

(
μ̂

(1)
CMLE

)
. c The power is estimated by plugging in the BR2 estimator, i.e. β(2)

(
μ̂

(1)
BR2

)
.

d The power is estimated by plugging the EB based corrected effect size μ̂
(1)
EB in power calculation, i.e. β(2)

(
μ̂

(1)
EB

)
. e The power is estimated by EB

based method, i.e. η̂(2)
EB . The mean value of the estimation error is drawn with vertical dashed line. From the figure, it can be seen that η̂(2)

EB has the
smallest bias in power estimation. The biases for these 5 estimators are 0.144, -0.068, 0.045, 0.047 and 0.021, respectively
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Table 2 Empirical biases of power estimators of the replication
study in the simulation experiments. The settings of the
experiments can be seen in the main text

β(2)
(
μ̂(1)

)
β(2)

(
μ̂

(1)
CMLE

)
β(2)

(
μ̂

(1)
BR2

)
β(2)

(
μ̂

(1)
EB

)
η̂

(2)
EB

Run 1 0.142 −0.113 0.038 0.058 0.032

Run 2 0.146 −0.109 0.045 0.021 0.001

Run 3 0.144 −0.068 0.045 0.047 0.021

Run 4 0.137 −0.090 0.042 0.052 0.026

Run 5 0.144 −0.126 0.026 0.038 0.016

Average 0.142 −0.101 0.039 0.043 0.019

β(2)
(
μ̂(1)

)
, β(2)

(
μ̂

(1)
CMLE

)
, β(2)

(
μ̂

(1)
BR2

)
and β(2)

(
μ̂

(1)
EB

)
are the plug-in based

estimators by using observed effect size, CMLE, BR2 and EB in the effect size
estimation. η̂(2)

EB is proposed EB-based estimator. Bold face indicates the estimator

achieving the smallest bias. In the experiments, η̂(2)
EB behaves better than others in

terms of bias reduction

The significance levels used in primary study and repli-
cation study are α1 = 5 × 10−8 and α2 = 5 × 10−6,
respectively. The Control-to-Case ratio of the replica-
tion study is set to 1. The inferred hyperparameters π0
and σ 2

0 can be seen in Table 7. With these parameters,
the relationships between the estimated average power
using EB based method η̄

(2)
EB and sample size of replica-

tion study n(2) can be seen in Fig. 5. In conclusion, to
achieve 80% average power of the replication study, we
will need 6885 individuals for coronary artery disease,
8092 individuals for Crohn’s disease, 10,014 individuals for
hypertension, 5291 individuals for rheumatoid arthritis,
4094 individuals for type 1 diabetes and 6988 individu-
als for type 2 diabetes. The detail about the sample sizes
needed for different values of average power can be seen in
Table 8.
As a comparison, we also plot relationships between

β̄(2) (μ̂(1)) and n(2) in Fig. 5, where β̄(2) (μ̂(1)) is the
estimated average power by plugging in observed effect

Table 3 Root mean square error (RMSE) of power estimators of
the replication study in the simulation experiments. The settings
of the experiments can be seen in the main text

β(2)
(
μ̂(1)

)
β(2)

(
μ̂

(1)
CMLE

)
β(2)

(
μ̂

(1)
BR2

)
β(2)

(
μ̂

(1)
EB

)
η̂

(2)
EB

Run 1 0.246 0.334 0.201 0.202 0.195

Run 2 0.243 0.312 0.196 0.191 0.188

Run 3 0.247 0.303 0.203 0.198 0.192

Run 4 0.236 0.307 0.186 0.192 0.186

Run 5 0.249 0.317 0.198 0.196 0.194

Average 0.244 0.315 0.197 0.196 0.191

β(2)
(
μ̂(1)

)
, β(2)

(
μ̂

(1)
CMLE

)
, β(2)

(
μ̂

(1)
BR2

)
and β(2)

(
μ̂

(1)
EB

)
are the plug-in based

estimators by using observed effect size, CMLE, BR2 and EB in the effect size
estimation. η̂(2)

EB is proposed EB-based estimator. Bold face indicates the estimator

achieving the smallest RMSE. In the experiments, η̂(2)
EB behaves better than others in

terms of higher estimation accuracy

Table 4 Coverage probability of the 95% credible intervals in
simulation experiments. The simulation settings can be seen in
the main text

Without Bootstrap With Bootstrap

Run 1 0.932 0.960

Run 2 0.947 0.960

Run 3 0.918 0.943

Run 4 0.914 0.949

Run 5 0.878 0.925

Average 0.918 0.947

Column “No bootstrap” is the coverage probability of the 95% credible intervals
created by using pure Monte Carlo method. Column “Bootstrap” is the coverage
probability of the 95% credible intervals created by using the combined method of
Monte Carlo sampling and bootstrap. From the experiments’ results, the coverage
probability of combined method is closer to the nominal value

sizes. For a given sample size n(2), the estimated average
power value using EB based method is much smaller than
β̄(2) (μ̂(1)). This is reasonable because β̄(2) (μ̂(1)) is over-
estimated due to the winner’s curse, which is alleviated
in the EB based method. To achieve 80% average power

Fig. 4 The true value of average power is covered by the credible
interval in simulation experiments. The EB based average power
estimator η̄(2)

EB estimates more accurately than other plug-in based

average power estimators β̄(2)
(
μ̂(1)

)
, β̄(2)

(
μ̂

(1)
CMLE

)
, β̄(2)

(
μ̂

(1)
BR2

)
and

β̄(2)
(
μ̂

(1)
EB

)
. Average power β̄(2)(μ) is defined in the main text. A

method combining Monte Carlo method and bootstrap is proposed
to create the credible intervals of the replication study’s average
power. In the 5 runs of the simulation experiments, the underlying
true values of the average power is covered by created intervals.
Compared to other plug-in based average power estimators, η̄(2)

EB is
the closest to β̄(2)(μ)



Jiang and Yu BMCGenomics 2016, 17(Suppl 1):3 Page 28 of 192

Table 5 When effect sizes follow the distribution of Eq. (20), the
average empirical bias and root mean square error (RMSE) of
power estimators of the replication study in the simulation
experiments

Average β(2)
(
μ̂(1)

)
β(2)

(
μ̂

(1)
CMLE

)
β(2)

(
μ̂

(1)
BR2

)
β(2)

(
μ̂

(1)
EB

)
η̂

(2)
EB

Empirical Bias 0.085 −0.079 0.023 0.028 0.003

RMSE 0.189 0.279 0.167 0.168 0.163

Bold face indicates the estimator achieving the smallest value in terms of bias or
RMSE. In the experiments, η̂(2)

EB behaves better than others in terms of bias reduction
and providing high estimation accuracy

of the replication study, the sample size needed is 3023
for coronary artery disease, 3369 for Crohn’s disease, 3788
for hypertension, 2748 for rheumatoid arthritis, 2706 for
type 1 diabetes and 3095 for type 2 diabetes when using
β̄(2) (μ̂(1)) as the estimator of average power. The sample
sizes needed for other values of average power are listed in
Table 9. These determined sample sizes are much smaller
than the sample sizes determined by EB based method,
indicating an underpowered study will be designed if we
estimate power with observed effect sizes.
For coronary artery disease and type 2 diabetes, we

obtained the publicly available summary statistics of the
meta-analysis from two consortiums: CARDIoGRAM-
plusC4D Consortium [22] and DIAGRAM Consortium
[23], respectively. CARDIoGRAM GWAS is a meta-
analysis of 22 GWAS studies of European descent involv-
ing 22,233 cases and 64,762 controls. The odds ratio
calculated from high power CARDIoGRAM GWAS will
be used as underlying true odds ratio to calculate the aver-
age power of the replication study for coronary artery
disease in WTCCC. The average power obtained in this
manner is denoted as β̄(2) (μ̂meta

)
. Figure 5a plots the

relationship between β̄(2) (μ̂meta
)
and n(2), which is the

sample size needed in the replication study. The figure
shows that our EB based power estimator η̄

(2)
EB is very

close to the power calculated using the results of CARDIo-
GRAM GWAS. Also it can be shown that β̄(2) (μ̂meta

)
is

in the credible interval we estimated. DIAGRAM GWAS
is a meta-analysis consisting of 12,171 type 2 diabetes
cases and 56,862 controls across 12 GWAS from Euro-
pean descent populations. Similar to CARDIoGRAM

Table 6 When effect sizes follow the distribution of Eq. (21), the
average empirical bias and root mean square error (RMSE) of
power estimators of the replication study in the simulation
experiments

Average β(2)
(
μ̂(1)

)
β(2)

(
μ̂

(1)
CMLE

)
β(2)

(
μ̂

(1)
BR2

)
β(2)

(
μ̂

(1)
EB

)
η̂

(2)
EB

Empirical Bias 0.071 −0.081 0.015 0.033 0.007

RMSE 0.173 0.263 0.153 0.154 0.150

Bold face indicates the estimator achieving the smallest value in terms of bias or
RMSE. η̂(2)

EB behaves better than others in terms of bias reduction and providing high
estimation accuracy in the experiments

Table 7 The estimated hyperparameters π0 and σ 2
0 for 6

diseases of WTCCC dataset

π̂0 σ̂ 2
0

Coronary artery disease 0.949 0.004

Crohn’s disease 0.840 0.006

Hypertension 0.966 0.007

Rheumatoid arthritis 0.947 0.008

Type 1 diabetes 0.967 0.014

Type 2 diabetes 0.940 0.005

π0 is the proportion of true null hypotheses among all SNPs. σ 2
0 is the variance of

the effect sizes among all associated SNPs

GWAS, the allele based odds ratio calculated from DIA-
GRAM GWAS is used for calculating the average power
of the replication study for type 2 diabetes in WTCCC.
Figure 5f plots the relationship between β̄(2) (μ̂meta

)
and

n(2). It can be shown that the result estimated by our EB
based method η̄

(2)
EB is close to the power calculated using

the results of DIAGRAM GWAS.
If the values of the local true discovery rates ltdr(1) have

nearly the same level for all identified associations in the
primary study, the variance of the average power will be
inversely proportional to the number of the associations.
When the identified number is small in the primary study,
the credible interval for the average power is rather wide.
This can be illustrated in the study of hypertension, where
there is only 1 association showing genome-wide signifi-
cance. From Fig. 5c, we can see that the credible interval
is rather wide. If we want to consider the credible inter-
val for this situation, then the sample size can drastically
increased.

Discussion
We propose to design replication study under the case-
control setting where log-odds ratio test is used. The
method can also be generalized to other tests within z-test
scheme, such as regression slope test used for quantitative
trait.
As described in [7], the winner’s curse depends strongly

on the power of primary study. For a high power primary
study, most non-null SNPs will result in significant asso-
ciations after random draws from the population. Hence,
the bias will be small in this case. There are more and
more high power studies conducted for common diseases
by using pooling strategy ormeta-analysis strategy, but the
high power studies for rare diseases are limited. Hence, it
is still helpful and necessary to propose a designing pro-
cedure for the replication study with the consideration of
winner’s curse.
With the development of the cost-effective sequencing

technique, the targets of association studies extend from
common variations to rare variants. A commonly used
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a b

c d

e f

Fig. 5 The relationship between estimated average power η̄(2)
EB and the sample size of the replication study n(2) for 6 diseases of the WTCCC dataset:

a coronary artery disease, b Crohn’s disease, c hypertension, d rheumatoid arthritis, e type 1 diabetes, f type 2 diabetes. The Control-to-Case ratio of
the replication study is set to 1. The significance levels used in the primary study and the replication study are α1 = 5 × 10−8 and α2 = 5 × 10−6,
respectively. As a comparison, the relationship between β̄(2)

(
μ̂(1)

)
and n(2) are also shown in the figure. For a fixed n(2) , β̄(2)

(
μ̂(1)

)
is much larger

than η̄
(2)
EB . In (a) and (f), β̄(2)

(
μ̂meta

)
is the average power estimator by plugging the log-odds ratio obtained from high power meta-analysis study:

CARDIoGRAM GWAS [22] and DIAGRAM GWAS [23], respectively. It can be shown that η̄(2)
EB is close to β̄(2)

(
μ̂meta

)
strategy to discover associations with rare variants is the
collapsing method [24], in which several rare variants in a
certain group are pooled together to enrich the signal. For

each group, a “super variant” is constructed. If log-odds
ratio test is adopted in testing the association between
“super variant” and the disease, our method can be used
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Table 8 Sample size of the replication study needed for 6
diseases of WTCCC dataset when average power is estimated by
EB based method. The Control-to-Case ratio of the replication
study is set to 1. The significance levels used in the primary study
and the replication study are α1 = 5 × 10−8 and α2 = 5 × 10−6,
respectively

50% 60% 70% 80% 90%

Coronary artery disease 4095 4784 5652 6885 9121

Crohn’s disease 4405 5252 6376 8092 11,552

Hypertension 5993 6992 8244 10,014 13,215

Rheumatoid arthritis 2666 3329 4147 5291 7357

Type 1 diabetes 2146 2640 3249 4094 5588

Type 2 diabetes 4027 4726 5633 6988 9721

directly for designing the replication study.
Some limitations of our approach need to bementioned.

1. The assumption of our approach is that all SNPs’
effect sizes are drawn independently from a
two-component mixture distribution. Linkage
disequilibrium widely exists in SNPs. Correlated
genotype patterns can also introduce correlation
between their effect sizes. The power estimation can
be further improved by using correlation information
in the prior set-up.

2. Our proposed method assumes the effect sizes of
associated SNPs are normally distributed. This thin
tail distribution may not be realistic. How to design
of replication study with other heavy-tail prior needs
to be discussed.

Conclusions
Replication study is commonly used to verify findings
discovered from GWAS. Power analysis is essential in
designing a replication study. Traditional approach will
not extract information from primary study. Also it

Table 9 Sample size of the replication study needed for 6
diseases of WTCCC dataset when average power is estimated by
plugging in observed effect sizes. The Control-to-Case ratio of
the replication study is set to 1. The significance levels used in the
primary study and the replication study are α1 = 5 × 10−8 and
α2 = 5 × 10−6, respectively

50% 60% 70% 80% 90%

Coronary artery disease 2019 2290 2608 3023 3675

Crohn’s disease 2270 2572 2922 3369 4058

Hypertension 2672 2988 3345 3788 4448

Rheumatoid arthritis 1553 1892 2273 2748 3465

Type 1 diabetes 1532 1856 2229 2706 3443

Type 2 diabetes 2085 2357 2676 3095 3775

will need users to specify a parameter μmin, which
is subjective. Power estimation approach may address
this problem, but there are several challenges in power
estimation: the winner’s curse, credible interval and
summarization.
In this paper, we propose an EB based power estimation

method to resolve these challenges. Simulation experi-
ments show our approach is better than other plug-in
based approaches in terms of overcoming the winner’s
curse and providing higher estimation accuracy. We also
use simulation experiments to demonstrate the well cali-
bration of the constructed credible interval. As an appli-
cation example, we use our approach to determine the
sample size needed in the WTCCC datasets of 6 diseases.
Our approach gives an objective way to design repli-
cation study using information extracted from primary
study.

Appendix
Appendix 1— η(2) is the minimizer of R(̂θ)

The Bayes risk R(θ̂) can be derived as follows:

R(θ̂) = Eμ,z(1)

((
θ̂ − β(2)(μ)

)2 ∣∣|Z(1)| > zα1/2,H1

)

=
∫ ∞

−∞

[∫
|z(1)|>zα1/2

(
θ̂ − β(2)(μ)

)2 p
(
z(1)|μ)

P
(|Z(1)| > zα1/2

∣∣μ)dz(1)
]

× p
(
μ
∣∣|Z(1)| > zα1/2,H1

)
dμ

= 1
P
(
Z(1) > zα1/2

∣∣H1
) ∫ ∞

−∞

[∫
|z(1)|>zα1/2

(
θ̂ − β(2)(μ)

)2

× p
(
z(1)

∣∣μ) dz(1)] p
(
μ
∣∣H1

)
dμ

= 1
P
(
Z(1) > zα1/2

∣∣H1
) ∫

|z(1)|>zα1/2

[∫ ∞

−∞

(
θ̂ − β(2)(μ)

)2
× p

(
μ
∣∣z(1),H1

)
dμ

]
p
(
z(1)

)
dz(1).

(22)

The last equality is hold by Fubini’s theorem.
From the last equality, it can be seen that the Bayesian

predictive power η(2) is the minimizer of the expression
in the brace for each value of z(1). Hence η(2) is also the
minimizer of R(θ̂).

Appendix 2—Derivation of η(2) under two-component
mixture prior
The following property of multivariate Gaussian distribu-
tion is proved in the Chapter 2 of [25], which can be used
to derive η(2).
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Property 1. If Z
∣∣μ ∼ Np (μ,
), and μ ∼ Np (μ0,
0),

then

Z ∼ Np (μ0,
 + 
0) and μ
∣∣z ∼ Np (Wμ0 + (I − W)z,

(I − W)
) (23)

whereW = 
 (
0 + 
)−1

Because z(1) ∼ N
(
μ/σ (1), 1

)
and

(
μ
∣∣H1

) ∼ N
(
0, σ 2

0
)
,

the following can be obtained by using Property 1:(
μ
∣∣z(1),H1

)
∼ N

(
λμ̂(1), λ

(
σ (1)

)2)
, (24)

where λ = 1
1+(σ (1)/σ0)

2 is a shrinkage effect factor. Under

H1, the posterior distribution of Z(2) is

(
Z(2)∣∣z(1),H1

)
∼N

⎛⎝z∗ =λ
μ̂(1)

σ (2) ,
(
σ ∗)2=1+λ

(
σ (1)

σ (2)

)2
⎞⎠ .

(25)

Then the Bayesian predictive power of the replication
study reads:

η(2) = 


(
sgn

(
z(1)

)
z∗ − zα2

σ ∗

)
, (26)

where 
(x) is the cumulative density function (cdf) of
N(0, 1).

Appendix 3—Derivation of the σ 2
0 estimator

By using Property 1, the marginal distribution of Z(1) is

Z(1) ∼ π0N(0, 1)+ (1−π0)N
(
0, 1 +

( σ0
σ (1)

)2)
, (27)

which is a two-component Gaussian mixture model.
Hence, the squared of Z(1) is distributed as(

Z(1)
)2 ∼ π0χ

2
1 + (1 − π0)

(
1 +

( σ0
σ (1)

)2)
χ2
1 , (28)

where χ2
1 is the 1 degree of freedom χ2 distribution. The

expectation reads

E
((

Z(1)
)2) = π0 + (1 − π0)

(
1 +

( σ0
σ (1)

)2)
. (29)

By summing over the test statistics of all SNPs, we can
obtain

E
( m∑

i=1

(
Z(1)
i

)2)=mπ0+(1 − π0)

(
m+σ 2

0

m∑
i=1

(
1/σ (1)

i

)2)
,

(30)

which introduce an estimator of σ 2
0

σ̂ 2
0 =

⎛⎜⎝
∑m

i=1

(
z(1)i

)2 − mπ0

(1 − π0)
− m

⎞⎟⎠ /

m∑
i=1

(
1/σ (1)

i

)2
.

(31)

Appendix 4—Derivation of ltdr(1) under a
two-component mixture prior
With Eq. (27), the local true discovery rate of the primary
study reads:

ltdr(1) =
π1φ

(
z(1)/

√
1 + (

σ̂0/σ (1))2)
π0φ(z(1)) + π1φ

(
z(1)/

√
1 + (

σ̂0/σ (1))2) ,

(32)

where φ(x) is the probability density function (pdf) of
N(0, 1).
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