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Abstract

Recent studies of eukaryotes including human and Neandertal, mice, and butterflies have highlighted the major role
that interspecific introgression has played in adaptive trait evolution. A common question arises in each case: what is
the genomic architecture of the introgressed traits? One common approach that can be used to address this question
is association mapping, which looks for genotypic markers that have significant statistical association with a trait. It is
well understood that sample relatedness can be a confounding factor in association mapping studies if not properly
accounted for. Introgression and other evolutionary processes (e.g., incomplete lineage sorting) typically introduce
variation among local genealogies, which can also differ from global sample structure measured across all genomic
loci. In contrast, state-of-the-art association mapping methods assume fixed sample relatedness across the genome,
which can lead to spurious inference. We therefore propose a new association mapping method called Coal-Map,
which uses coalescent-based models to capture local genealogical variation alongside global sample structure. Using
simulated and empirical data reflecting a range of evolutionary scenarios, we compare the performance of Coal-Map
against EIGENSTRAT, a leading association mapping method in terms of its popularity, power, and type I error control.
Our empirical data makes use of hundreds of mouse genomes for which adaptive interspecific introgression has
recently been described. We found that Coal-Map’s performance is comparable or better than EIGENSTRAT in terms of
statistical power and false positive rate. Coal-Map’s performance advantage was greatest on model conditions that
most closely resembled empirically observed scenarios of adaptive introgression. These conditions had: (1) causal
SNPs contained in one or a few introgressed genomic loci and (2) varying rates of gene flow – from high rates to very
low rates where incomplete lineage sorting dominated as a primary cause of local genealogical variation.
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Background
Adaptive interspecific introgression has played a key role
in the evolution of novel traits in many eukaryotic organ-
isms. Examples include hemoglobin concentration in
Tibetans as an adaptation to high-altitude environments
[1, 2], mimetic butterfly wing patterns [3], and pesticide
resistance in house mice [4, 5]. Figure 1 illustrates the
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effects of adaptive introgression at the genomic sequence
level. The phylogeny of three present-day species A, B,
and H is shown in Fig. 2. Species A and B diverged from
a most recent common ancestor at time t1. At time t2,
a new hybrid population was formed by hybridization
between species A and B. We assume that ploidy is pre-
served across the phylogeny. In a first generation hybrid
offspring, half of the alleles in its genome are expected
to come from a parent individual in species A and the
other half from a parent individual in species B. A locus
in a first-generation hybrid genome has ancestry either
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Fig. 1 Local genealogical variation: a sequence level view. The illustration shows an example outcome of evolution under the species phylogeny
depicted in Fig. 2, where individual a is sampled from population A, individual b is sampled from population B, and individual h is sampled from
population H. a A haploid genome sequence is shown for each of the three individuals. Different genealogies are observed for different genomic
loci, depending on the specific coalescent history of each locus. Each locus is colored green or blue based on the topology of the genealogy at that
locus. The ancestral and derived alleles are represented as 0 and 1, respectively. In our example, the locus marked with a dashed red box contains a
causal SNP that contributes to the observed phenotype shown in (b). c Sample structure (or the evolutionary relationships between samples) in
green loci differs from sample structure in blue loci. d In our example, global sample structure (i.e., sample structure measured across all sites) takes
the form of a star tree. Notice that global sample structure differs from local sample structure in any single locus

from species A or from species B, depending upon the
outcome of genetic recombination. We refer to a con-
tiguous genomic subsequence with ancestry from a single
parental species as a tract. The evolutionary history of a
tract in a first-generation hybrid is represented by either
the blue or the green genealogy shown in Fig. 1. Over sub-
sequent generations, back-crossing, recombination, and
incomplete lineage sorting of unlinked loci cause frag-
mentation of genomic tracts present in the first generation
of hybrids. The net result is introgression, where genetic
material from one of the parental species is incorporated
into species H. Natural selection and resulting genetic
hitchhiking effects further influence the outcome of intro-
gression. Negative selection fragments and removes intro-
gressed tracts containing maladaptive alleles; on the other
hand, positive selection can maintain introgressed tracts
containing adaptive alleles over time. Adaptive introgres-
sion therefore has two major effects on evolutionary
relatedness: (1) local genealogies can vary substantially
across different genomic loci, and (2) local genealogical
variation resembles a mosaic where tracts in present-day

genomes depend upon the outcome of all of these evo-
lutionary processes acting in combination. Longer tracts
reflect either more recent hybridization events or adaptive
introgression. New computational methodologies have
been proposed to perform phylogenomic inference under
models that explicitly incorporate the complex interplay
of these different evolutionary processes [6–11]. Of par-
ticular relevance is PhyloNet-HMM [11], a method that
we collaboratively developed. PhyloNet-HMM is the first
method capable of scalable phylogenomic inference on
three or more genomes under a model that includes these
evolutionary processes.
Recently in collaboration with others, we used

PhyloNet-HMM to uncover genome-wide signatures
of introgression between natural populations of Mus
musculus and its sister speciesMus spretus [5]. Dozens of
introgressed genomic tracts were more than a megabase
in length and inferred to be recent in origin due to the
introduction of rodenticide use in and outside of the
regions of sympatry between the two species. The longest
of these genomic tracts – around 10 Mb in length –
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Fig. 2 Local genealogical variation: a species phylogeny view. The
illustration shows two different pairs of incongruent local genealogies
evolving within a species phylogeny: one pair involving incomplete
lineage sorting, and the other involving hybrid origin from two
different parental populations. The species phylogeny involves three
populations A, B, and H. Populations A and B diverged at time t1. At
time t2, a hybridization event between the ancestral populations of A
and B occurred, giving rise to a hybrid population H. a The genealogies
of two different loci (green and blue) are shown. A lineage in H
originated from the ancestral population of B with probability γ (blue
locus) or the ancestral population of A with probability 1 − γ (green
locus). b The genealogies of two different loci (green and red) are
shown. The H alleles at both loci originated from the ancestral
population of A. For the green locus, the H lineage and A lineage
coalesce between time t2 and t1. For the red locus, tracing backwards
in time we find that no coalescence events occur until after time t1,
resulting in ancestral polymorphism and incomplete lineage sorting.
Note that local genealogical variation can involve both topological
differences (as shown here) and branch length differences

harbored mutations in the Vkorc1 gene which are known
to contribute to resistance and susceptibility to warfarin
[4, 12], a widely used anticoagulant rodenticide (Fig. 3).

Other introgressed tracts are suspected to harbor other
adaptive alleles. The study also uncovered introgressed
tracts that were putatively more ancient in origin and
which had unknown functional roles. Several major
open questions follow from this work: (1) What other
introgressed alleles played a causative role in the evolu-
tion of the rodenticide resistance trait? (2) What other
traits were involved in introgression between the mouse
species, and which introgressed alleles contributed to the
evolution of these traits?
Genome-wide association (GWA) mapping methods

can be used to obtain important clues concerning these
questions. GWA methods are widely used throughout
the life sciences to investigate the genetic architecture
of complex traits, particularly in natural human popu-
lations and laboratory strains of model organisms [13].
The goal of GWA mapping is to detect significant statis-
tical associations between genomic markers and a trait of
interest. An important consideration is that relatedness
between sampled individuals, or sample structure, can
induce spurious associations between genotypic and phe-
notypic characters when not properly accounted for [14].
Intuitively, genotypic and phenotypic characters evolved
down a common phylogeny (or evolutionary history),
introducing covariance that is distinct from covariance
due to a causal relationship between a genotypic marker
and trait. Depending on study design, sample structure
can encompass multiple levels of relatedness. In the case
of GWA studies in humans, sample structure can be due
to more distant relationships from population subdivision
[15], as well as less distant relationships (e.g., family rela-
tionships) [16]. In the case of GWA studies of laboratory
organisms such as inbred mouse strains, sample struc-
ture can include cryptic relatedness due to their artificial
origins, which typically involve a complicated breeding
history [17].
The statistical methodologies used in GWA studies can

also be used to investigate the genomic architecture of
traits involved in adaptive introgression between differ-
ent species. However, the sample structure is typically
more complex than in human populations and artificial
laboratory organisms such as classical and wild-derived
mouse strains. Two contributing factors are: (1) greater
evolutionary divergence involving heterogeneous evo-
lutionary processes such as gene flow, recombination,
lineage sorting, and natural selection, and (2) genealog-
ical histories of different loci within genomes can vary
significantly not only in terms of branch lengths but also
topologies. The latter can cause sample relatedness in one
locus to differ from other loci as well as the genome as a
whole.
Exactly how to account for sample relatedness remains

a subject of major debate. The most widely used GWA
methods adopt a range of approaches, broadly categorized
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Fig. 3 Genomic tracts inMusmusculus samples that were inferred to originate via introgression withM. spretus. PhyloNet-HMM [11] was used to infer
genomic signatures of interspecific introgression using the procedure described by Liu et al. [5]. Only western European and north African samples
are shown. Samples are labeled by country, city/region (if multiple samples originated from the same country), and identifier (if multiple samples
originated from the same city/region). The haploid chromosomes are shown for each sample in a separate track and colored a non-white color to
denote introgressive origin or white otherwise; each sample is assigned a different color for visibility. The chart shows a subset of the introgressed
genomic regions that were inferred to originate due to the recent selective sweep associated with anticoagulant pesticide use. The location of the
Vkorc1 gene is highlighted, which is known to contribute to anticoagulant resistance in both mice and humans [4, 12]. Panel adapted from [5]

in terms of their complexity. On one end of the spectrum,
a genomic control approach involves computing an infla-
tion factor based on the degree of sample relatedness,
which is then used to correct association statistics [18].
On the other end of the spectrum are more highly
parameterized fixed-effect models and mixed models
where population structure is modeled using either fixed
effects or random effects, respectively (reviewed in [19]).
Methods based on fixed-effect models and mixed mod-
els represent the current state of the art in terms of
computational efficiency and accuracy [20, 21]. Among
the most accurate and efficient of these methods are
EIGENSTRAT [22], EMMA [17] and its successormethod
EMMAX [21], and GEMMA [23]. Notably, these meth-
ods were at the center of a recent debate on exactly how
to model sample structure [19, 24, 25]. Only a few exist-
ing methods explicitly adopt an evolutionary model in
the form of a phylogeny. These include EMMA when
used with a kinship matrix based on a Brownian motion
model of phenotypic evolution on a phylogenetic tree
[17] and PHYLOSTRAT [20], which uses a regression-
based approach with a model that includes the bipar-
titions of a phylogenetic tree computed from genotypic

data. Significantly, none of these methods utilize mod-
els that model variation in sample relatedness across
genomes nor explicitly capture non-tree-like evolution, as
in the case of species whose evolution involved adaptive
introgression.
More recently, GWA studies have begun to examine

admixed human populations (reviewed by [26]), introduc-
ing sample structure with greater complexity due to the
non-tree-like evolutionary histories resulting from admix-
ture. Shriner et al. [27] and Pasaniuc et al. [28] introduced
BMIX and MIXSCORE, respectively, which are tests to
simultaneously detect local signatures of admixture and
genotypic/phenotypic association. Of the two, BMIX was
shown to offer more statistical power and type I error
control [27]. Shriner et al. utilized BMIX to perform asso-
ciation mapping on African-American populations and
found several new markers that were significantly associ-
ated with fasting plasma glucose, coronary heart disease,
type 2 diabetes, and breast cancer. Two aspects of the
methodological design of BMIX are most relevant to our
work. First, a key step in BMIX is local ancestry infer-
ence using LAMPANC [29], where each allele at a locus
in an admixed genome is inferred to originate from one
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of two parental populations (CEU and YRI populations
in the HapMap study [30]). Importantly, the inference
makes use of the assumption that the parental popula-
tions are unrelated. A simulation study was performed to
evaluate statistical power, which similarly used a model
with unrelated parental populations. Second, an interme-
diate stage of the BMIX algorithm consists of stratified
regression of a genotypic character corresponding to a
test marker with a phenotypic character. The stratified
regression technique adjusts for both local sample struc-
ture at the locus as well as global sample structure (i.e.,
sample structure measured across the entire genomic
sequence). Our study proposes an alternative method for
association mapping in the context of local variation in
sample structure. We note that any such method can be
used in place of their stratified regression technique (steps
3 through 5 in the algorithm shown in [27]). Other asso-
ciation mapping methods have been shown to be more
accurate than stratified regression. These include the fixed
effects model methods and mixed model methods that we
consider in our study.
As suggested by [17], the true genealogical histories

of the genomic loci in a GWA study could theoretically
be used to construct a concise and interpretable model
of complex sample structure. The genealogical histories
would be especially useful where local genealogies exhibit
both topological and branch length variation as is often
the case in genomes with adaptively introgressed origins.
In practice, local genealogical histories must be inferred.
Admixture mapping methods such as LAMPANC address
the specific case of inferring local genealogical varia-
tion due to genetic admixture (reviewed by [26]). In the
context of interspecific introgression involving eukaryotic
genomes, additional evolutionary processes have first-
order effects on local genealogical variation, including
incomplete lineage sorting [31]. Newmethods based upon
the coalescent model [32] and its extensions enable effi-
cient and accurate inference of species phylogenies and
local genealogies under models that account for all of
the above evolutionary processes [6, 11]. Evolutionary
models provide an ideal means to understand the impact
of complex sample structure on state-of-the-art associa-
tion mapping methods. These evolutionary models can
be utilized to account for complex sample structure in an
association mapping study. We therefore introduce Coal-
Map, a new association mapping method. Coal-Map is
a computational pipeline which adopts an evolutionary
perspective by modeling local genealogical histories in a
mixed model association mapping framework. We study
the performance of Coal-Map using both synthetic data
and empirical data sampled from natural populations of
house mouse. Coal-Map improves upon the state-of-the-
art in terms of both statistical power and false positive
rate.

Results
Performance study using simulated genotypic and
phenotypic data
The simulation study included model conditions with
adaptive gene flow. A range of genetic architectures were
simulated, where one, two, or all loci contained causal
markers. Figure 4 compares the performance of Coal-Map
and EIGENSTRAT using receiver operating characteristic
(ROC) curves on model conditions with the highest level
of gene flow (γ = 0.5). Coal-Map offered better power
than EIGENSTRAT across the different model conditions.
The performance improvement was significant in terms
of area under ROC curve (AUROC) for all model condi-
tions (Delong et al. test [33], α = 0.05), with P values
of 2 ∗ 10−14, 5 ∗ 10−5, and .006 for the single-causal-
locus, two-causal-loci, and all-causal-loci model condi-
tions, respectively. As measured by AUROC, Coal-Map’s
performance advantage over EIGENSTRAT was largest
on the single-causal-locus model condition (0.947 versus
0.889, respectively) and smaller as more loci contributed
causal SNPs. This can also be seen based on eachmethod’s
power at typical false positive rates. At a false positive rate
(FPR) of 0.05, Coal-Map’s TPR improved upon EIGEN-
STRAT’s by 0.152 and 0.054 on the single-causal-locus
and two-causal-loci model conditions, respectively; on
the all-causal-loci model condition, the TPR difference
between the two methods was less than 0.039.
Coal-Map’s performance advantage over EIGENSTRAT

was similarly observed in model conditions that involved
a range of hybridization frequencies from γ = 0.01
to 0.5 and intra-locus linkage that emulated selective
sweep effects (but did not directly incorporate posi-
tive selection). The synthetic traits incorporated genetic
contributions from one, two, or all loci. In Fig. 5, the
performance of Coal-Map and EIGENSTRAT on model
conditions with the highest level of gene flow (γ = 0.5)
is shown using ROC curves. Across the different trait
architectures (i.e., causal SNPs drawn from one, two, or
all loci in the single-causal-locus, two-causal-loci, and
all-causal-loci model conditions, respectively), Coal-Map
offered comparable or better power than EIGENSTRAT
for a given false positive rate. The performance improve-
ment was significant in terms of area under ROC curve
(AUROC) for the single-causal-locus and two-causal-loci
model conditions but not for the all-causal-loci model
conditions (Delong et al. test [33], α = 0.05). Coal-Map’s
performance advantage over EIGENSTRAT was largest
on the single-causal-locus model condition: the methods
had AUROC values of 0.938 versus 0.870, respectively, and
Coal-Map’s TPR improved upon EIGENSTRAT by 0.111
at an FPR of 0.05. As more loci contributed causal SNPs,
Coal-Map’s performance advantage was smaller. Over-
all, Coal-Map reported smaller p-values at causal SNPs
compared to EIGENSTRAT (Fig. 6).
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Fig. 4 Compared to EIGENSTRAT, Coal-Map has comparable or better power and false positive rate on model conditions involving adaptive gene
flow (hybridization frequency γ = 0.5 and selection coefficient s = 0.56). True positive rate and false positive rate are shown for both methods
using receiver operating characteristic (ROC) curves. a Results are shown for the model condition where causal SNPs are drawn from a single locus.
Coal-Map and EIGENSTRAT have AUROC of 0.947 and 0.889, respectively. b Results are shown for the two-causal-loci model condition. Coal-Map has
an AUROC of 0.897 and EIGENSTRAT has an AUROC of 0.859. c Results are shown for the all-causal-loci model condition, where Coal-Map and
EIGENSTRAT have AUROC of 0.845 and 0.816, respectively

Fig. 5 Compared to EIGENSTRAT, Coal-Map has comparable or better power and false positive rate on model conditions involving neutral gene
flow (hybridization frequency γ = 0.5). True positive rate and false positive rate are shown for both methods using receiver operating characteristic
(ROC) curves. a Results are shown for the model condition where causal SNPs are drawn from a single locus. Coal-Map and EIGENSTRAT have
area-under-ROC-curve (AUROC) of 0.938 and 0.870, respectively. b Results are shown for the two-causal-loci model condition. Coal-Map has an
AUROC of 0.898 and EIGENSTRAT has an AUROC of 0.860. c Results are shown for the all-causal-loci model condition, where Coal-Map and
EIGENSTRAT have AUROC of 0.837 and 0.827, respectively
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Fig. 6 The cumulative histogram of p-values reported by Coal-Map and EIGENSTRAT at causal SNPs is shown on model conditions involving neutral
gene flow (hybridization frequency γ = 0.5). Results are shown for the a single-causal-locus, b two-causal-loci, and c all-causal-loci model conditions,
respectively. Cumulative frequency is reported over all replicates from a model condition

As we examined single-causal-locus and two-causal-
loci model conditions with smaller levels of gene flow,
we observed that Coal-Map’s performance advantage over
EIGENSTRAT did not diminish and in fact remained
roughly the same. As shown in Table 1, the performance

improvement of Coal-Map over EIGENSTRAT remained
significant as we decreased the gene flow parameter γ

from 0.5 to 0.01 (Delong et al. test [33], α = 0.05). Thus,
on the model condition with negligible gene flow (i.e., γ =
0.01), virtually all local genealogical variation was due to

Table 1 The performance of Coal-Map and EIGENSTRAT based on area under receiver operating characteristic curve (AUROC) is
compared across model conditions involving neutral evolution with incomplete lineage sorting and a wide range of gene flow

Single-causal-locus

Hybridization Corrected

frequency γ Coal-Map EIGENSTRAT q value

0.5 0.938 0.870 < 10−5

0.25 0.935 0.882 < 10−5

0.1 0.928 0.890 < 10−5

0.01 0.917 0.845 < 10−5

Two-causal-loci

0.5 0.898 0.860 < 10−5

0.25 0.911 0.860 < 10−5

0.1 0.881 0.843 < 10−5

0.01 0.879 0.834 < 10−5

All-causal-loci

0.5 0.836 0.826 0.16

0.25 0.842 0.808 0.001

0.1 0.854 0.842 0.093

0.01 0.847 0.817 0.002

On single-causal-locus and two-causal-loci model conditions, Coal-Map has AUROC that is significantly better than EIGENSTRAT (Delong et al. test [33] with
Benjamini-Hochberg correction [65]; setwise α = 0.05; n = 20 for each test) across different hybridization frequencies ranging from a relatively large level of gene flow
(γ = 0.5) to negligible amounts of gene flow (γ = 0.01). On all-causal-loci model conditions, Coal-Map had a diminished performance advantage in terms of AUROC, and
the improvement was either weakly significant or not significant (under the same test)
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incomplete lineage sorting. At an FPR of 0.05, Coal-Map’s
TPR improved upon EIGENSTRAT by 0.211, 0.171, and
0.242 on single-causal-locus model conditions with γ set-
tings of 0.25, 0.1, and 0.01, respectively; on two-causal-loci
model conditions, the corresponding TPR improvements
were 0.036, 0.032, and 0.094, respectively. The perfor-
mance of the two methods on the all-causal-loci model
conditions was similar regardless of the amount of gene
flow, as measured by either AUROC or TPR at a typical
FPR level.
We explored the sensitivity of Coal-Map to the num-

ber of covariates (five and twenty) used to represent the
sample structure. We found that Coal-Map’s performance
was robust to the number of covariates used to repre-
sent sample structure (Additional file 1: Figure S1 and
S2). We also explored a trait model with only a genotypic
component (i.e., lacking a random effect due to environ-
ment). We found that Coal-Map’s performance advantage
over EIGENSTRAT was greater than on the model con-
ditions that included both genotypic and environmental
effects (Additional file 1: Figure S4). Finally, we observed
that modeling local sample structure alone resulted in a
marked decrease in performance (Additional file 1: Figure
S3). The resulting power and false positive rates were
worse than EIGENSTRAT.

Performance study using empirical mouse genomes and
simulated phenotypic data
Results from the performance study using empirical
mouse genomes were consistent with the simulation
study. Coal-Map’s AUROC was significantly better than
EIGENSTRAT on chromosomes 7 and 17 (Table 2).
(Delong et al. test [33], α = 0.05). At an FPR of 0.05,
Coal-Map’s TPR improvement over EIGENSTRAT was
0.076 and 0.166 for single-causal-locus traits, respectively,
and 0.030 and 0.057 for two-causal-loci traits, respectively
(Figs. 7 and 8). At causal SNPs in chromosomes 7 and 17,
Coal-Map reported smaller p-values overall compared to
EIGENSTRAT (Figs. 9 and 10, respectively). Compared
to the performance study using synthetic genomes, the

cumulative histograms were shifted down for both meth-
ods (i.e., fewer causal SNPs were inferred at each cut-
off ). We note that chromosomes 7 and 17 exhibited the
greatest amount of introgression in our study (Additional
file 1: Table S2). In contrast, chromosome 15 had the
fewest number of introgressed sites in our study, with
total length that was 68% and 23% smaller than those in
chromosome 7 and 17, respectively; on this chromosome,
the AUROC improvement of Coal-Map over EIGEN-
STRAT was weakly significant when mapping single-
causal-locus traits and not significant for two-causal-loci
traits (Table 2; Additional file 1: Figures S6 and S7).

Discussion
Our performance study utilized empirical and simulated
data reflecting a wide range of evolutionary scenarios. The
simulation conditions were based upon empirical stud-
ies of adaptive interspecific introgression. We consistently
observed that Coal-Map had comparable or improved
performance compared to EIGENSTRAT, a leading asso-
ciation mapping method in terms of its popularity, power,
and type I error control.
One key factor that impacts Coal-Map’s performance

is the genetic architecture of the trait under study.
Coal-Map’s relative performance improvement is greatest
on datasets with one or a few loci that contribute causal
SNPs – which we refer to as causal loci – and is
less on datasets with many causal loci. We hypothe-
size that the amount of local genealogical incongru-
ence between causal loci is the main determining factor,
not necessarily the number of causal loci. As incon-
gruence becomes greater, the sample covariance con-
tributed by any individual causal locus’s local sample
structure will be diminished, and global sample struc-
ture (as measured across all sites in a dataset) will
predominate. We note that, in prior genomic stud-
ies of adaptive introgression [3, 5], introgressed loci
were observed to have similar sample structure (i.e.,
similar distributions of local genealogies). Introgression
of alleles that were causal for an adaptive trait and

Table 2 The performance of Coal-Map and EIGENSTRAT based on area under receiver operating characteristic curve (AUROC) is
compared using empirical mouse chromosomes and simulated traits

Chromosome
Single-causal-locus Two-causal-loci

Corrected Corrected
Coal-Map EIGENSTRAT q value Coal-Map EIGENSTRAT q value

7 0.964 0.928 < 10−5 0.942 0.923 0.003

15 0.940 0.922 0.014 0.917 0.919 0.587

17 0.968 0.914 < 10−5 0.942 0.904 1.6 ∗ 10−5

On the two mouse chromosomes with the greatest number of introgressed sites in our study - chromosomes 7 and 17 - Coal-Map’s performance was significantly better
than EIGENSTRAT for both single-causal-locus and two-causal-loci traits (Delong et al. test [33] with Benjamini-Hochberg correction [65]; setwise α = 0.05; n = 20 for each
test). We observed a reduced performance improvement on chromosome 15, which had relatively fewer introgressed sites: the improvement was weakly significant for
single-causal-locus traits and not significant for two-causal-loci traits (using the same test)



Hejase and Liu BMCGenomics 2016, 17(Suppl 1):8 Page 49 of 192

Fig. 7 In the performance study utilizing genomic data from mouse chromosome 7, Coal-Map has similar or typically better power and type I error
control compared to EIGENSTRAT. Figure layout and description are otherwise identical to Fig. 4. For the single-causal-locus model condition,
Coal-Map and EIGENSTRAT have AUROC of 0.965 and 0.929, respectively; for the two-causal-loci model condition, Coal-Map and EIGENSTRAT have
AUROC of 0.942 and 0.923, respectively

Fig. 8 In the performance study utilizing genomic data from mouse chromosome 17, Coal-Map has similar or typically better power and type I error
control compared to EIGENSTRAT. Figure layout and description are otherwise identical to Fig. 7. For the single-causal-locus model condition,
Coal-Map and EIGENSTRAT have AUROC of 0.968 and 0.914, respectively; for the two-causal-loci model condition, Coal-Map and EIGENSTRAT have
AUROC of 0.943 and 0.904, respectively
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Fig. 9 The cumulative histogram of p-values reported by Coal-Map and EIGENSTRAT at causal SNPs is shown for the performance study utilizing
genomic data from mouse chromosome 7

genetic hitchhiking of neighboring loci were hypothe-
sized to enhance genealogical congruence between loci
with common introgressive origin. An empirical example
is shown in Fig. 3. We therefore anticipate that, rela-
tive to other model conditions, the single-causal-locus
and two-causal-loci model conditions in our study may

be most relevant to the empirical study of adaptive
introgression.
In our simulation study, we found that Coal-Map’s per-

formance advantage was retained across a wide range of
gene flow – even on model conditions which had virtually
no gene flow. In the latter case, we attribute Coal-Map’s

Fig. 10 The cumulative histogram of p-values reported by Coal-Map and EIGENSTRAT at causal SNPs is shown for the performance study utilizing
genomic data from mouse chromosome 17. Figure layout and description are otherwise identical to Fig. 9
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improvement to modeling the variation in local sample
structure contributed by incomplete lineage sorting. The
breakpoint inference stage of Coal-Map’s methodologi-
cal pipeline accounts for local genealogical variation due
to gene flow as well as incomplete lineage sorting and
other evolutionary processes. We note that the presence
of incomplete lineage sorting in our performance study
is unique compared to past performance studies of asso-
ciation mapping methods on admixed populations (e.g.,
the study of Shriner et al. [34], which assumed that the
parental populations contributing to an admixed popu-
lation were completely unrelated). Compared to the syn-
thetic genomes, the empirical genomes contained local
genealogical variation due to an even wider array of evolu-
tionary processes, including recombination. Crucially, the
breakpoint inference stage of Coal-Map’s pipeline made
use of PhyloNet-HMM, a probabilistic inference method
that uses the coalescent model, phylogenetic networks,
and hidden Markov models to account for all of these
evolutionary processes acting in combination. Consistent
with the simulation study, Coal-Map’s performance was
comparable or better than EIGENSTRAT.
The choice of the number of covariates used to rep-

resent sample structure in Coal-Map was based upon a
previous algorithmic design study examining the use of
fixed effects models for association mapping [22]. To fur-
ther explore the ramifications of this choice, we conducted
an algorithmic design experiment to explore the impact of
the number of covariates used in Coal-Map’s model upon
its performance. We found that Coal-Map’s performance
was robust to this design choice.
Coal-Map’s performance advantage over EIGENSTRAT

was retained across different levels of environmental con-
tribution to traits. A larger performance improvement was
seen on model conditions with only a genotypic contri-
bution to traits, which we ascribe to the lack of sample
structure inherent in the additive environmental noise.
We observed that a model that only accounts for local

sample structure resulted in reduced power and higher
false positive rate compared to Coal-Map, which accounts
for both local and global sample structure. Our finding
is consistent with the findings of Shriner et al. [34]. The
intuitive explanation is that local sample structure in the
current partition (i.e., the partition enclosing the test SNP)
should be modeled when the current partition contains
causal SNPs, but otherwise not.

Conclusions
Adaptive introgression involves the complex inter-
play of a variety of evolutionary processes including
gene flow, directional selection, recombination, lineage
sorting processes that may result in incomplete lin-
eage sorting, and sequence mutation. The need to dis-
tinguish between these differing evolutionary forces in

population genomic and comparative genomic stud-
ies was emphasized by two recent reviews [31, 35],
and phylogenomic inference methods are actively being
developed to study the interplay of these evolutionary
processes [6, 11]. One of the genomic signatures of
adaptive introgression is local genealogical variation fea-
turing introgressed genomic tracts as long as dozens
of megabases. These tracts contain introgressed loci
of two types: adaptive loci and nearby linked neutral
loci. Sample structure at these loci can differ greatly
from global sample structure (i.e., sample structure mea-
sured across all sites). Traditional approaches to asso-
ciation mapping account only for the latter, assuming
that sample structure is mostly invariant across the
genome.
We therefore introduced Coal-Map, a new associa-

tion mapping method which explicitly models both local
sample structure, such as arises in a genomic region
containing tracts of common introgressive origin, and
global sample structure. Coal-Map is a methodological
pipeline that incorporates recent theoretical innovations
that bridge population-level evolution under the coales-
cent with traditional phylogenetic models of biomolecular
sequence evolution [36, 37].
We validated the performance of Coal-Map using syn-

thetic and empirical data. The data sets in our study fea-
tured local genealogical variation due to gene flow as well
as incomplete lineage sorting, sequence mutation, and (in
the case of the empirical mouse genomes) recombination.
We compared the performance of Coal-Map to EIGEN-
STRAT, a leading association mapping method. We con-
sistently observed the same outcome across all of the
datasets in our study: Coal-Map’s performance in terms
of power and false positive rate was comparable or better
than EIGENSTRAT in all cases. Thus, Coal-Map can be
generally used in place of EIGENSTRAT and related asso-
ciation mapping approaches that do not explicitly model
local variation in evolutionary relatedness. We found that
the conditions under which Coal-Map’s performance was
strictly better than EIGENSTRAT were those that most
closely resembled empirical cases of adaptive interspe-
cific introgression, involving: (1) traits with causal SNPs
drawn from one or a few genomic loci with common
introgressive origin, and (2) a range of gene flow lev-
els. Perhaps surprisingly, Coal-Map strictly outperformed
EIGENSTRAT even onmodel conditions where gene flow
was nearly absent but incomplete lineage sorting was still
a factor. We hypothesize that modeling the fine varia-
tion in sample structure due to incomplete lineage sorting
may be useful to association mapping approaches outside
of the multi-species evolutionary context considered in
this study. These alternative contexts include traditional
genome-wide association studies of human populations or
inbred mouse strains.
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The pipeline-based design of Coal-Map is flexible. As
noted above, richer coalescent-basedmodeling of the evo-
lutionary origins of local genealogical variation may per-
mit more accurate breakpoint inference in the first stage
of Coal-Map.
We explored the use of forward selection for our model

selection approach, which was used to determine if local
sample structure containing the test SNP was incorpo-
rated into the model or not. However, we found that
forward selection is conservatively biased towards mod-
els with fewer parameters. As an alternative, we utilized
an approach involving two nested models – one incorpo-
rating local sample structure and the other not – which
uses a likelihood ratio test of each model against a null
model (positing that the test SNP has no effect), and
then selects the model with the smallest test statistic. We
note that, using this approach, the resulting association
score is at least as significant as a likelihood ratio test
using one of the two nested models by itself. Thus, the
number of positives (and therefore the number of false
positives) reported using the approach can be no smaller
than the number reported using one of the two nested
models, and the number of false negatives can be no
larger. In practice, our results suggest that the approach
yields a comparable false positive rate and a substantially
improved true positive rate compared to forward selection
and other model selection techniques such as information
criteria [38–41].
Recently, Shriner et al. and Pasaniuc et al. proposed

BMIX and MIXSCORE, two methodologies for genome-
wide association studies of admixed populations [27, 28].
These methodologies combine admixture mapping –
which makes use of ancestry effects of admixed loci –
with traditional association mapping approaches – which
makes use of genotypic effects without taking admixed
ancestry into account – to yield improved mapping power
and type I error control. Our study is orthogonal to their
studies for the following reasons. First, both approaches
assume that admixed populations arise due to admix-
ture between two completely unrelated parental popula-
tions. In general, admixture mapping approaches make
use of this assumption [42, 43]. This simplifies local ances-
try inference since coalescence between lineages in the
“pure” parental populations is not considered and there-
fore incomplete sorting of these lineages is not an issue,
which could otherwise confound ancestry inference [31].
In reality, any two samples share a most recent com-
mon ancestor. Not accounting for coalescence between
lineages can have first-order effects upon association
mapping accuracy, which we demonstrate in our perfor-
mance study. Notably, our study involves evolutionary
divergence greater than those seen within a single species.
In a traditional association mapping study of human pop-
ulations or artificial lab strains of model organisms, the

population split times are smaller than the divergence
times in our study and thus incomplete lineage sorting
should be more likely and have an even greater effect
(assuming that effective population sizes are comparable
or larger). Coal-Map relaxes the simplifying assumption
of pure isolation using a coalescent-based approach. A
recent review has highlighted the multispecies coales-
cent model as an ideal means to account for evolution-
ary relatedness at multiple scales in functional genomic
studies [44]. Second, both approaches represent local
sample structure differently from Coal-Map. Both BMIX
and MIXSCORE assume that population strata are dis-
crete due to pure isolation between parental populations.
In contrast, we utilize continuous phylogenetic covari-
ates to more flexibly represent evolutionary relatedness
between samples. Third, BMIX utilizes stratified regres-
sion to perform association mapping (and recall that
BMIX has been shown to yield more power and com-
parable false positive rate compared to MIXSCORE). In
contrast, mixed model approaches to association map-
ping have been shown to out-perform stratified regression
[17]. Coal-Map makes use of the latter approaches for this
reason. Fourth, a primary contribution of the two stud-
ies is the insight that combining admixture mapping with
association mapping out-performs association mapping
by itself. The same insight can be applied to Coal-Map,
yielding a combined approach that tests for introgressed
ancestry effects (without regard to specific allele effects)
in combination with genotypic effects. We hypothesize
that a combined approach will yield further performance
improvements compared to Coal-Map, similar to BMIX
and stratified regression. Fifth, the problem domains dif-
fer greatly due to the disparate evolutionary divergences
involved in the studies. Compared to intraspecific admix-
ture, adaptive interspecific introgression involves a differ-
ent set of evolutionary processes with first-order effects.
While the study of adaptive traits of interspecific intro-
gressive origin and their genomic architecture is of inde-
pendent interest, the two settings may be complementary
for studying certain biological questions. For example,
some of the introgressed loci that contribute to warfarin
resistance in mice have orthologs in human populations
with related cardiovascular roles. Compared to human
populations, natural mouse populations have undergone
much stronger recent positive selection due to the intro-
duction of rodenticide, which can be advantageous for
association mapping purposes (e.g., stronger hitchhik-
ing effects resulting in megabases-long introgressed tract
lengths).
We conclude with discussion of future research direc-

tions. To our knowledge, our study is the first to
explore association mapping performance using many
hundreds of genomes with adaptive interspecific intro-
gressive origins. Compared to human genome sequence
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data in public databases, a relative paucity of genomic
sequence data is available to explore this question.
Genomic sequence data is available for less than a thou-
sand samples from natural populations of house mice
[45–47], and even less phenotypic data is available for
introgressed mouse populations. The situation is similar
in studies of other organisms. For example, in the studies
of Counterman et al. [48] and Baxter et al. [49], approxi-
mately a hundred samples were used to examine adaptive
introgression between butterfly species and its role in
wing pattern mimicry. We anticipate that recent biotech-
nological advances will remove this limitation in the near
term, especially as researchers continue to investigate
adaptive interspecific introgression in eukaryotes.We also
plan on exploring several aspects of Coal-Map’s algorith-
mic design in future work. First, other model selection
strategies can be used in a Coal-Map analysis (as noted
above). In particular, cross-validation has been shown to
perform well for model selection problems in phyloge-
nomics [50]. This approach requires a relatively greater
amount of data compared to the strategies explored in this
study. Second, following MultiBLUP and Adaptive Multi-
BLUP’s approaches to a different computational problem
[44], search techniques can be used to find multiple causal
loci. We anticipate two main challenges with the use of
more complex models as part of a search-based approach:
(1) model selection strategies will be necessary to dis-
tinguish between models that differ in the number of
parameters needed to capture genetic effects from multi-
ple causal loci, and (2) efficient techniques will be needed
to learn a potentially large number of model parameters.
Third, global and local sample structure could be modeled
using random effects instead of fixed effects. Software
libraries for generalized linear models with multiple ran-
dom effects are available for this purpose [24, 44]. Fourth,
a combined approach that simultaneously performs intro-
gression breakpoint inference, local ancestry mapping,
and association mapping that accounts for local sam-
ple structure may offer additional performance improve-
ments beyond those observed in our study. Finally,
Zuk et al. [51] note that one important research direction
is relaxing the assumption of additive genotypic contri-
bution to complex traits. We share their opinion that
the future of association mapping will involve improved
modeling of epistasis and complex traits with polygenic
architectures. A promising future direction is to model
multiple effects at multiple scales of systems biology [52],
such as examining dependence between genotypic char-
acters, interactomic graphs, and phenotypic characters.

Methods
Coal-Map
The input to Coal-Map consists of: (1) an n by k multi-
ple sequence alignment X containing genotypic data for

n aligned sequences and k sites, (2) local partition break-
points b in ascending order (including trivial breakpoints
corresponding to sites 1 and k), and (3) a phenotypic vec-
tor y with n observations. The ith row in alignment X and
the ith entry in the phenotypic vector y correspond to the
genomic sequence and phenotypic value of taxon si for
1 ≤ i ≤ n. A local partition X� is the alignment consisting
of all sites in alignment X contained in the closed interval
with endpoints equal to the breakpoints b� and b�+1. Each
local partition X� represents a contiguous genomic region
where introgressed tracts in the region had a common
introgressive origin (i.e., originated from lineages that
evolved within the same network edges in the species phy-
logeny N ), as inferred by either Phylonet-HMM [11] in
the general case or a simpler parsimony-based alternative
when certain assumptions were satisfied (see below). The
output of Coal-Map consists of a score pj that measures
the statistical association between the genotypic character
xj (i.e., the jth column in X) and phenotypic vector y for
1 ≤ j ≤ k.
The association score pj for a SNP xj is calculated under

the following linear mixed model (following the notation
of [23]):

y = Wjα + xjβ + ε

ε ∼ MVNn(0, τ−1In)

The test SNP xj has effect size β . The fixed effects Wj
includes covariates that account for global sample struc-
ture (i.e., sample structure measured across all sites in
alignment X). Additional covariates that account for local
sample structure (i.e., sample structure inferred within
the local partition X� containing the test SNP xj) may
be added using a model selection approach (described
below). The covariates have coefficients α. The error term
ε follows an n-dimensional multivariate normal distribu-
tion with mean 0 and variance τ−1In. We obtained MLE
estimates α̂, β̂ , and τ̂ using the optimization procedure
described in Supplementary Note 3.1.1 from [23]. The
association test score pj is computed using a likelihood-
ratio test of the fitted model against a null model of no
SNP effect.
We chose to model sample structure using fixed effects

instead of random effects due to the popularity of fixed-
effect association mapping approaches and their accuracy
[19, 20, 22, 34, 53]. Global sample structure is represented
using covariates Wglobal, obtained as follows. Following
the approach of [22], a principal components analysis is
performed on the full alignmentX excluding the local par-
tition X� and the top five principal components are used
as the covariates w1,w2, . . . ,w5. Local sample structure
in a local partition X� containing the test SNP xj is rep-
resented similarly, resulting in five additional covariates
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w5,w6, . . . ,w10. We chose to use at most ten covari-
ates to represent sample structure based on the empirical
findings of [22]. We also evaluated the sensitivity of Coal-
Map to the number of covariates using five and twenty
covariates.
The basic idea behind our use of fixed covariates to

capture sample relatedness is as follows. Causal loci out-
side of the local partition X� (containing the test SNP) are
modeled as a polygenic effect based on covariates com-
puted from global sample structure since it aggregates
over all partitions. Covariates computed from local sam-
ple structure contribute to the linear mixed model when
the local partition X� contributes to the phenotypic vector
y (i.e., contains causal SNPs), but otherwise not. Coal-
Map selects between the two resulting models: one using
the covariates W global

j = (w1,w2, . . . ,w5) and the other
using the covariates W glocal

j = (w1,w2, . . . ,w10). In this
study we explore the use of two approaches for this task.
Since the two models are nested, we use a forward selec-
tion approach (significance threshold of P < 0.05). We
also evaluated an alternative approach which performs the
likelihood-ratio test of each alternative model against a
null model of no SNP effects and then chooses the model
with smaller P value. Since the forward selection approach
can be conservative, we focus on the latter approach.

Simulation study
Our performance evaluation of Coal-Map utilized simu-
lated genotypic sequences and traits where local genealog-
ical variation was due to gene flow and incomplete
lineage sorting, two evolutionary processes with first-
order effects in prior studies of introgressed eukaryotic
genomes [1–3, 5, 31, 54]. The genotypic sequence data
was simulated under the basic coalescent model [32] with
instantaneous admixture [10] and a bi-allelic sequence
mutation model. Simulations were run using either msms
[55] to perform forward-time simulation that explic-
itly modeled positive selection or ms [56] to perform
backward-time simulation with intra-locus linkage to
emulate the genomic patterns of positive selection. Based
on the the analytical and empirical findings of Neuhauser
and Krone [57], both simulation approaches are expected
to generate similar patterns of local genealogical variation.
Furthermore, our performance study obtained consistent
results for both approaches. The ms-based simulation
utilized an infinite sites model of sequence mutation;
the msms-based simulation utilized a sequence mutation
model that allowed recurrent mutations between two alle-
les. Our forward-time coalescent simulation used a selec-
tion coefficient s = 0.56 which was based upon previously
reported estimates from natural mouse populations that
were involved in adaptive introgression [4]. These popu-
lations are represented by empirical samples used in our

study (see below). The model phylogeny used for simula-
tion is shown in Fig. 2. Two present-day populations A and
B diverged from a most recent common ancestral popu-
lation at time t1. At time t2, the ancestral populations of
A and B hybridized to form the ancestral population of
H. We based the divergence time t1 = 3.0 (in coalescent
units) on prior population genetic estimates in two Mus
species (see Table 1 in [11]), corresponding to a divergence
time of 1.5 Mya bp, generation time of 2 generations per
year, and an effective population size of Ne = 2.5 ∗ 105.
We explored hybridization frequency values consisting
of γ ∈ {0.5, 0.25, 0.1, 0.01} in the backward-time coales-
cent simulations, γ = 0.5 in the forward-time coalescent
simulations, mutation rate μ = 1.0 in the forward-time
coalescent simulations, and time t2 = 2.0. Each dataset
consisted of 10 loci sampled from the above model with
free recombination between loci and complete linkage of
sites within each locus. We used a sequence length of
250 bp/locus, resulting in 2.5 kb per simulated multiple
sequence alignment. Based on the simplifying assump-
tions of our simulation study (infinite sites model, free
recombination between loci, and complete linkage within
each locus), the local partition breakpoints required as
input to Coal-Map were inferred using the Four-Gamete
Test [58, 59].
For each multiple sequence alignment, a quantitative

trait was simulated under an extended version of the addi-
tive model used by [60] and [61], which incorporated
polygenic contributions from multiple loci as follows:

yi = π
∑

j∈�

Qi,j

|�| + (1 − π)N(0, 0.01),

where yi is the trait value for the ith individual, π is
the proportion of trait variation contributed by geno-
typic effects, Qi,j is 1 if the ith individual carries the
derived allele at site j or 0 otherwise, the environmental
contribution is a random effect with normal distribu-
tion N(0, 0.01), and � is the set of causal SNPs. Twenty
causal SNPs were selected uniformly at random from
either one, two, or all loci, where loci were chosen uni-
formly at random in the case of a single or two loci
contributing causal SNPs. We refer to the resulting model
conditions as single-causal-locus, two-causal-loci, and all-
causal-loci model conditions, respectively. Additionally,
causal SNPs were selected to have minor allele frequency
ranging between 0.1 and 0.3 (following the cutoffs used
in [17]). In the forward-time coalescent simulations, loci
containing causal markers were under positive selection
and all other loci evolved in a neutral manner. For each
model condition, simulation was repeated twenty times,
resulting in twenty replicate datasets per model condition.
Each replicate dataset was analyzed using Coal-Map and
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EIGENSTRAT. EIGENSTRAT was run with default set-
tings, where the covariates include the top ten principal
components computed from the alignment X.

Performance study using empirical mouse genomes
To better understand the performance of Coal-Map in the
context of adaptive interspecific introgression, our perfor-
mance study utilized genomic sequence data from a past
study of genetic variation in natural Mus musculus and
Mus spretus populations [5]. Detailed sample information
for the 744 haploidmouse genomes is shown in Additional
file 1: Table S1. The sequencing procedures were des-
cribed in [5], which we briefly review here. Genomic
sequence data came from two sources: (1) wild and wild-
derived samples from prior studies [4, 5, 47, 62, 63]
that were genotyped using theMouse Diversity Array (fol-
lowing the procedure of [63]) and phased into haploid
sequences, and (2) wild-derived samples with published
whole-genome sequences [45]. The sequences were com-
bined and then filtered to focus on 414,376 SNPs that
were genotyped in all samples. We analyzed the genomic
sequences using PhyloNet-HMM to infer genomic tracts
with interspecific introgressive origin, following the pro-
cedure of [5]. Figure 3 shows the genomic tracts in the
vicinity of the Vkorc1 gene that PhyloNet-HMM inferred
as introgressed in origin. Crucially, PhyloNet-HMM per-
forms probabilistic inference to ascribe local genealogical
variation to one of several evolutionary processes: inter-
specific introgression, incomplete lineage sorting, recom-
bination, back mutation, and any combination thereof.
Thus, local sample structure will often vary within intro-
gressed tracts that are shared across a common subset of
samples (cf. Fig. 10 in [11]).
Two main factors affecting association mapping power

are effect size and minor allele frequency of causal SNPs
[64] – both of which are unknown a priori. We therefore
conducted a performance study using synthetic quanti-
tative traits where these factors were specified as model
parameters. We used the above trait model with genetic
contribution from introgressed genomic tracts associated
with the introduction of warfarin pesticide in Europe
[4, 5]. Local partition breakpoints were based upon
the union of the PhyloNet-HMM-inferred introgressed
tracts and causal SNPs were selected from local parti-
tions where only the genomes of rodenticide-resistant
mice had introgressed tracts and contained at least 100
sites. We focused on mouse chromosomes with at least
two such partitions, which consisted of chromosomes
7, 15, and 17. For each chromosome, single-causal-locus
trait simulation was repeated to yield twenty replicate
datasets, and similarly for two-causal-loci traits. The
empirical genomic sequence data, synthetic trait data, and
local partition breakpoints were provided to Coal-Map
as inputs.
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