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Abstract

Background: microRNAs (miRNAs) play an essential role in the post-transcriptional gene regulation in plants and

animals. They regulate a wide range of biological processes by targeting messenger RNAs (mRNAs). Evidence

suggests that miRNAs and mRNAs interact collectively in gene regulatory networks. The collective relationships

between groups of miRNAs and groups of mRNAs may be more readily interpreted than those between individual

miRNAs and mRNAs, and thus are useful for gaining insight into gene regulation and cell functions. Several

computational approaches have been developed to discover miRNA-mRNA regulatory modules (MMRMs) with a

common aim to elucidate miRNA-mRNA regulatory relationships. However, most existing methods do not consider

the collective relationships between a group of miRNAs and the group of targeted mRNAs in the process of

discovering MMRMs. Our aim is to develop a framework to discover MMRMs and reveal miRNA-mRNA regulatory

relationships from the heterogeneous expression data based on the collective relationships.

Results: We propose DIscovering COllective group RElationships (DICORE), an effective computational framework for

revealing miRNA-mRNA regulatory relationships. We utilize the notation of collective group relationships to build the

computational framework. The method computes the collaboration scores of the miRNAs and mRNAs on the basis of

their interactions with mRNAs and miRNAs, respectively. Then it determines the groups of miRNAs and groups of

mRNAs separately based on their respective collaboration scores. Next, it calculates the strength of the collective

relationship between each pair of miRNA group and mRNA group using canonical correlation analysis, and the group

pairs with significant canonical correlations are considered as the MMRMs. We applied this method to three gene

expression datasets, and validated the computational discoveries.

Conclusions: Analysis of the results demonstrates that a large portion of the regulatory relationships discovered by

DICORE is consistent with the experimentally confirmed databases. Furthermore, it is observed that the top mRNAs

that are regulated by the miRNAs in the identified MMRMs are highly relevant to the biological conditions of the given

datasets. It is also shown that the MMRMs identified by DICORE are more biologically significant and functionally

enriched.
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Background
microRNAs (miRNAs) are a family of small (i.e. with typi-

cal length of 19–25 nucleotides) non-protein-coding RNA

molecules that can play important regulatory roles in ani-

mals and plants [1, 2]. They base-pair with messenger

RNAs (mRNAs) of protein-coding genes to induce mRNA

degradation or translational repression [3]. The mature

human miRNAs potentially target majority of the human

mRNAs [4]. It has been demonstrated that miRNAs reg-

ulate a wide range of biological or cellular processes such

as proliferation [5, 6], metabolism [7], differentiation [8],

development [9], apoptosis [10], cellular signaling [11],

and cancer development and progression [12–15].

There is a growing body of literature showing that mul-

tiple miRNAs are coordinated by forming cohesive groups

to collectively regulate one or more pathways [16, 17].

The collective relationships yielded between a group of

miRNAs and a group of mRNAs due to the tendency

of the group formation act as a vital force in cater-

ing similar functioning miRNAs and mRNAs together.

Therefore, the collective relationships between cohesive

groups of miRNAs and their targeted mRNAs may pro-

vide better understandings on robust and potent regula-

tory relationships of miRNA-mRNA regulatory modules

(MMRMs).

Several algorithms have been proposed to identify

MMRMs from expression data using different approaches

including Bayesian network learning [18], rule induc-

tion [19], association rule mining [20], population-based

probabilistic learning [21], probabilistic graphical model

[22–24], matrix factorization [25], and graph mining

[17, 26]. Most of these existing methods do not consider

the collective relationships between a group of miRNAs

and the group of targeted mRNAs in the process of iden-

tifying MMRMs. In addition, many of them are either

stochastic, or require prior knowledge such as number of

modules to be identified, confirmed interactions, target

site information [27].

Adapting a greedy overlapping neighborhood expansion

clustering method, ClusterONE, which was developed to

discover protein complexes from protein-protein inter-

actions networks, Li et al. [27] proposed a clustering

algorithm, Mirsynergy to detect synergistic miRNA reg-

ulatory modules. However, it requires and depends on

the prior knowledge of confirmed gene-gene interactions.

Recently Karim et al. [28] coined the notion of collective

group relationships, and developed a method by integrat-

ing unweighted graphing mining concept and canonical

correlation analysis to explore miRNA-mRNA regula-

tory relationships. However, it is noted that unweighted

graph mining techniques are associated with limitation

in representing the true interactions, and sometimes

fail to capture correct regulatory relationships. Whereas

weighted graph mining approaches can greatly improve

the detection of the module structures [29], and hence

regulatory relationships.

In this paper, we propose an effective computational

framework, DIscovering COllective group RElationships

(DICORE) to identify MMRMs and hence reveal miRNA-

mRNA regulatory relationships from heterogeneous data.

In order to extract MMRMs from the given gene expres-

sion datasets, we utilize the notion of collective group

relationships, which provide MMRMs with additional

quantitative strength information. The method finds a

deterministic solution to the problem of discovering

MMRMs from weighted bipartite graph representation of

the given datasets, and rank the collective group relation-

ships based on their strength of collective relationships.

We applyDICORE to a dataset for Epithelial toMesenchy-

mal Transition, a breast cancer dataset, and a multi-class

cancer dataset. Based on the knowledge from the liter-

ature, it is observed that the identified MMRMs exhibit

enriched functionality with biological significance.

Methods

Problem statement

Consider two sets of variables X = {X1, . . . ,Xp} and

Y = {Y1, . . . ,Yq} such that X ∩ Y = ∅, represent-

ing the attributes of two different types of objects. In

this paper, X and Y refer to the expression levels of a

set of miRNAs and a set of mRNAs, respectively. With

their given datasets, DX and DY, having n matching

miRNA and mRNA expression samples, our goal is to

identify any Cx ⊂ X and Cy ⊂ Y, such that Cx and

Cy are related, as a result of miRNAs in Cx collabora-

tively interacting with mRNAs in Cy and vice versa. We

call (Cx,Cy) a group pair, and the relationship between

Cx and Cy a COllective group RElationship (in short,

CORE). The COREs are characterized by both group pairs

and the collective relationships among the two cohesive

groups in group pairs. Then the group pair (Cx,Cy) is an

MMRM if the strength of the CORE between Cx and Cy is

significant.

In order to discover COREs, and thus to identify

MMRMs, we develop a two stages method, DIscov-

ering CORE (DICORE). Two measures, collaboration

score and canonical correlations, are employed in the

two stages respectively. In the following, we firstly

overview the workflow of DICORE, and then present

the details of DICORE, including the definition of the

collaboration score and the calculation of canonical

correlations.

Overview of DICORE

Figure 1 shows the workflow of DICORE. The overall

workflow comprises a data pre-processing step and two

main stages: (1) forming separate miRNA and mRNA

groups and (2) searching for COREs.
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Fig. 1 DICORE workflow. Given the inputs of miRNA and mRNA expression profiles, we first derive an expression-based interaction weights matrixW

using correlation test. We then compute two collaboration score matrices S and T fromW for miRNAs and mRNAs based on their functional

interaction similarities with common mRNAs (or miRNAs), respectively. Using these collaboration scores as input, we separately generate groups of

miRNAs and groups of mRNAs at Stage 1 by an overlapping neighborhood expansion clustering algorithm, in which miRNAs or mRNAs are greedily

added to (removed from) each cluster of miRNAs or mRNAs, respectively that maximize cohesiveness score of the cluster. Next in Stage 2, we apply

canonical correlation analysis on the groups of miRNAs and groups of mRNAs to obtain significant collective group relationships, which are

eventually the MMRMs with strength scores

In the data pre-processing step, DICORE first creates

a weighted bipartite graph representation of the relation-

ships among the individual variables of the given miRNA

and mRNA expression profiles. Taking the variables as

the vertices of a weighted bipartite graph G, a weighted

edge is introduced between a miRNA variable and a
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mRNA variable to represent their interaction. Referring

to Fig. 1, given p miRNAs and q mRNAs, let W denote

the (p × q) miRNA-mRNA interaction weights matrix,

where wij is the interaction weight for miRNA i tar-

geting mRNA j. To compute miRNA-mRNA interaction

weights, we calculate the Pearson correlation coefficient

(PCC) [25] between each pair of miRNA and mRNA

using the R built-in function, cor. The obtained PCCs are

within the range of [−1, 1], and the signed correlation

coefficients provide two types of valuable information:

the absolute values implying the strength of the miRNA-

mRNA interactions (the higher the values, the stronger

the interactions), and the signs indicating the directions

of the associations. However, as the aim of the paper

is to identify MMRMs (and thus to uncover miRNA-

mRNA regulatory relationships), the collaboration score

(explained in the next section) defined for discovering the

modules considers the sum of the miRNA-mRNA corre-

lations. In order to cater for both up and down miRNA

regulations when calculating the total strength of the

interactions, we use absolute values of the PCCs in the

interaction weights matrixW, otherwise the signed PCCs

or interaction weights will cancel out in Eq. (1).

Due to the higher possibility of dense interactions in

the expression profile datasets, complete weighted graph

miningmay not be able to distinguish correct group struc-

ture. Accordingly we used a cutoff threshold η to trade

off between the two extreme approaches namely complete

unweighted graph mining and complete weighted graph

mining.

At stage 1, we separately identify groups of miR-

NAs and groups of mRNAs. Referring to Fig. 1, based

on the interaction weights matrix W, we firstly calcu-

late the collaboration score between each pair of miR-

NAs and create the miRNA-miRNA collaboration matrix,

S. The collaboration score between a pair of miRNAs

reflects their similarity or collaboration in regulating tar-

get mRNAs (more details of collaboration scores are

given in the next section). In a similar way, we com-

pute the collaboration score between each pair of mRNAs

(which implies their similarity in being regulated by

miRNAs) and create the mRNA-mRNA collaboration

matrix, T.

The identification of groups of miRNAs (or groups of

mRNAs) is formulated as an overlapping clustering prob-

lem. Only the miRNAs (or mRNAs) that have strong

collaboration between them are put in the same group,

i.e. we use their collaboration scores as the similarity mea-

sure for the clustering. The clustering process is then

aimed at maximizing the overall similarity of the miR-

NAs (or mRNAs) within the same group. We define such

overall similarity within a group as the cohesiveness of

a group (details of the definition is provided in the next

section). The underlying clustering algorithm adapts from

ClusterONE, which was originally developed for protein

protein interaction networks [29]. Adopting the idea from

[25], we discard groups with fewer than 5 mRNAs (i.e.

minimum size threshold for mRNAs, θg = 5), as they

usually do not provide relevant information. Similarly, we

are not interested to consider groups having more than

500 mRNAs. Additionally, in order to avoid ‘star-shaped’

basic network structure, we choose 3 as minimum size

threshold for miRNAs, θm.

At stage 2, we use canonical correlation analysis to com-

pute the strength of the collective relationships between

groups of miRNAs and groups of mRNAs in terms

of canonical correlations, and obtain COREs, which is

eventually equivalent to MMRMs with additional quan-

titative information. We considered only the top COREs

identified (i.e. the COREs with the higher canonical

correlations), having minimum canonical correlation of

ρ = 0.50.

Details of DICORE

In the following, we introduce the details of the collabora-

tion score and how CCA is used to measure the strength

of the collective group relationships.

The collaboration score expresses the degree of collab-

oration between two miRNAs (or between two mRNAs)

considering their common interactions with mRNAs (or

miRNAs). Given miRNA i, miRNA j (6= i) and the interac-

tion weights matrix W, the collaboration score of the two

miRNAs is calculated as follows:

vij =

(

l
∑

k=1

wikwjk

)2

l
∑

k=1

wik ×
l

∑

k=1

wjk

, (1)

where l is the number of other possible components that

both miRNA i and miRNA j interact with, in this case

mRNAs, so l = q. Let S refer to the miRNA-miRNA

collaboration matrix of size p × p, where sij = vij.

Similarly, we compute the mRNA-mRNA collaboration

score between mRNA i and mRNA j (6= i) by applying

Eq. (1) on the transpose of the interaction weights matrix

W, where l = p, the number of miRNAs. Let T refer to the

mRNA-mRNA collaboration matrix of size q × q, where

tij = vij.

Notably, if W were a binary matrix, Eq. (1) became the

ratio of number of target mRNAs shared between miRNA

i and miRNA j over the numbers of target mRNAs pos-

sessed separately by miRNA i or miRNA j (or the ratio

of number of common miRNAs regulate both mRNA

i and mRNA j over the numbers of miRNAs individu-

ally regulate mRNA i or mRNA j). An miRNA (or an
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mRNA) i is then ranked by the total collaboration score as
p
∑

k=1

sik

(

or
q
∑

k=1

tik

)

.

Using collaboration scores as the similarity measures

of pairs of miRNAs or pairs of mRNAs, miRNAs and

mRNAs are clustered separately into cohesive groups by

using a greedy strategy that maximize the cohesiveness

score of groups. Similar to the cohesiveness defined in

[29], we define cohesiveness score, cs(Ci) for any group Ci

as follows:

cs(Ci) = wint(Ci)

wint(Ci) + wext(Ci) + α ∗ |Ci|
(2)

wherewint(Ci) denotes the sum of the collaboration scores

of all the internal pairs of variables, i.e. each pair only con-

tains variables within the group Ci; wext(Ci) is the sum of

the collaboration scores of all the external pairs, i.e. each

pair contains one variable within the group Ci and one

variable outside the group Ci; and α∗|Ci| is a penalty term
asserting the existence of unidentified interactions in the

dataset, practically assuming that every component in Ci

has α additional interactions that are undetected due to

the limitations in the experimental setting.

DICORE uses canonical correlation analysis (CCA) [30]

to compute the strength of the collective relationships

between a group of miRNAs and a group of mRNAs in

terms of the group pair’s canonical correlations. CCA

is commonly used for quantifying the linear association

between two sets of variables. Consider A = Ea′ EX, B =
Eb′ EY be the corresponding linear combinations of sets of

variables EX and EY respectively, where Ea and Eb are coef-

ficient vectors. Vectors Ea and Eb are chosen such that the

correlation betweenA and B, i.e.,

r = Corr(A,B) = Ea′6XY
Eb

√Ea′6XXEa
√

Eb′6YY
Eb

(3)

is maximized, where 6XX , 6YY and 6XY are variance

of EX, variance of EY , and covariance between EX and EY ,
respectively. The correlation r between the pair of lin-

ear combinations in Eq. (3) is called canonical correlation.

Specifically, canonical correlation between a group of

miRNAs and a group of mRNAs is computed using the R

function CCA from the package PMA.

The intuition behind applying CCA is twofold. Firstly

CCA captures weight scores of all interactions between all

miRNAs andmRNAs in both groups of a group pair, while

computing the strength of the collective interactions of

the group pair. As a consequence, CCA mitigates the loss

of weight scores of interactions due to the application of

cutoff threshold η earlier. Secondly, it also makes it possi-

ble for a group of miRNAs (or a group of mRNAs) to be

included in more than one CORE i.e. one module, if the

strength of collective interactions satisfies the specified

threshold.

Data collection

Three real-world gene expression datasets are used to

validate DICORE: an NCI60 dataset for Epithelial to Mes-

enchymal Transition, a breast-cancer (BR) dataset, and

a multi-class cancer (MCC) dataset. The pre-processed

differentially expressed gene expression datasets were col-

lected from [31].

Epithelial to Mesenchymal Transition (EMT) is a bio-

logical process that enables cells to acquire migratory

mesenchymal characteristics by losing epithelial features.

The EMTs are associated with embryonic development,

wound healing, organ fibrosis, and in the initiation of

metastasis for cancer progression. The NCI60 dataset

includes 60 cancer cell lines from the National Cancer

Institute (NCI). Cell lines categorized as epithelial (11

samples) and mesenchymal (36 samples) were used for

this work. As a result of the differential gene expression

analysis, 1154 mRNAs and 35 miRNAs were identified

to be differentially expressed at significant level (adjusted

p-value < 0.05, adjusted by Benjamini-Hochberg (BH)

method).

The BR dataset includes expression profiles of the 50

cell lines of breast cancer. The cell lines were categorized

as luminal (27 cell lines) and basal (23 cell lines). In the

dataset, 89 miRNAs (adjusted p-value < 0.02) and 1500

mRNAs (adjusted p-value < 0.0001) were identified to be

differentially expressed.

The MCC dataset includes samples from multiple can-

cers namely bladder, breast, colon, kidney, lung, pancreas,

prostate and uterus. Samples of the dataset classified as

normal (21 samples) and tumor (67 samples) were used

in this work. In total, 62 miRNAs and 1318 mRNAs were

obtained to be differentially expressed at significant level

(adjusted p-value < 0.05).

The datasets are available in Additional file 1.

We used the expression data to calculate the miRNA-

mRNA interaction weights matrix W. We obtained the

interaction weights of W by computing the absolute val-

ues of the Pearson correlation coefficients between pairs

of miRNA and mRNA.

In order to obtain the ‘ground-truth’ databases of experi-

mentally confirmedmiRNA-mRNA interactions, we com-

bined the interactions from four popular interactions

databases, namely DIANA-TarBase v7.0 [32], miRTarBase

v4.5 [33], miRecords v2013 [34], and miRWalk v2.0 [35].

While miRWalk contains both predicted and experimen-

tally validated miRNA-mRNA interactions, rest of the

databases include high quality manually curated experi-

mentally validated miRNA-mRNA interactions published

in the literature. Recently published DIANA-TarBase v7.0

alone included more than half a million interactions
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utilizing cell types from 24 species. We also added a

HITS-CLIP database [36], which lists the confirmed tar-

gets of two miRNAs, namely miR-200a and miR-200b.

We extracted only the confirmed miRNA-mRNA inter-

actions associated with the human miRNAs and mRNAs

given in the input datasets, and removed the duplicate

entries. Finally, we obtained ‘ground-truth’ databases of

2147, 5791, and 8733 unique miRNA-mRNA interactions

for the 29 miRNAs in the NCI60 dataset (there are no

confirmed interactions for the 6 miRNAs with the name

prefix hsa-miRPlus-), 89 miRNAs in the BR dataset, and

62 miRNAs in the MCC dataset, respectively. Details of

the ‘ground-truth’ databases are available in Additional

file 2.

Results and discussions
We ran the experiment for all values for the cutoff thresh-

old η in the range from 0 to 1 with a step size of 0.05.

We only reported the summary and top results for each

dataset. In each summary table, #C, mR, miR, r̄, and t

denote the number of COREs identified, average num-

ber of mRNAs in COREs, average number of miRNAs in

COREs, average strength of the COREs, and time taken

for the execution in seconds, respectively. The group dis-

tributions and all COREs for all datasets are described in

details on our website (visit [37]).

The NCI60 Dataset

The results obtained from the NCI60 dataset are sum-

marized in Table 1. It is clear from the summary that

potentially interesting results are obtained for the η val-

ues ranging from 0.60 to 0.85. By lowering the values of η,

more miRNAs and mRNAs were added to these groups.

For more in-depth analysis, we look more closely at some

of the particular results.

We obtained the most informative result (in terms of

the strength of COREs, and number of experimentally

confirmed interactions covered) for η = 0.60, with 8

COREs involving 1 miRNA groups and 8 mRNA groups.

Table 1 Summary of results of DICORE on the NCI60 dataset

η #C mR miR r̄ t

0.45 1 6.00 35.00 0.61 1142.88

0.50 4 8.50 32.00 0.64 635.31

0.55 3 11.67 27.00 0.69 246.17

0.60 8 57.00 19.00 0.80 80.89

0.65 6 83.67 10.50 0.79 86.95

0.70 4 107.50 6.25 0.81 24.30

0.75 4 44.00 5.00 0.87 4.78

0.80 2 22.50 5.00 0.91 2.44

0.85 1 12.00 5.00 0.95 0.90

Table 2 Summary of results of DICORE on the BR dataset

η #C mR miR r̄ t

0.50 3 8.00 15.00 0.66 1938.13

0.55 44 23.57 6.18 0.63 2043.01

0.60 33 48.09 6.61 0.70 216.53

0.65 24 47.79 3.00 0.69 36.49

The only group of miRNAs ‘m1N60’ catered in total

19 miRNAs including the miR-200 family. On the other

hand, we got the top mRNAs group (group having high-

est cohesiveness) ‘g1N60’ having 348 mRNAs. It included

CDH1 (epithelial cadherin or in short E-cadherin, a clas-

sical member of the cadherin superfamily, which plays a

vital role in EMT such that EMT is also characterized by

repression of E-cadherin expression), ZEB1 (E-cadherin

transcriptional repressor, which is usually targeted by

miR-200 family), and TWIST1 (one of the important EMT

inducers).

Furthermore, another interesting result was obtained

for η = 0.65. We got 6 COREs from 2 groups of miRNAs

and 3 groups of mRNAs. The top miRNAs group ‘m1N65’

catered 14 miRNAs and is a proper subset of ‘m1N60’. The

second miRNAs group ‘m2N65’ included total 7 miRNAs

including 3miRNAs from themiR-17 miRNA gene family,

namelymiR-106b,miR-18a, andmiR-18b.

The BR dataset

From the summary given in Table 2, it is seen that higher

informative results were obtained for η values from 0.55 to

0.65 from the BR dataset. The most informative result was

obtained for η = 0.60. We got 33 COREs from 2 groups

of miRNAs and 17 groups of mRNAs. The top group of

miRNAs included miR-221 and miR-222, both of them

are known to play important regulation role in aggressive

breast cancer [38].

The MCC dataset

Table 3 shows the results obtained by DICORE on the

MCC dataset. The most informative result is obtained for

η = 0.45. It catered all members of both let-7 andmiR-30

miRNA gene families into the top group of miRNAs along

with some other similar functioning miRNAs.

Table 3 Summary of results of DICORE on the MCC dataset

η #C mR miR r̄ t

0.40 7 15.71 35.00 0.58 354.30

0.45 10 84.70 20.40 0.58 540.36

0.50 5 30.40 29.00 0.72 12.40

0.55 1 55.00 25.00 0.80 4.18

0.60 1 19.00 9.00 0.82 1.45
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Table 4 Confirmed interactions in COREs from the NCI60 for

η = 0.65

ID Confirmed interactions

C1N65 miR-141: BICD2, CDH1, EHF, IRF6, KLF5,

PARD6B, RAB32, RAB8B, RHOD, SLC20A1,

TWIST1;

miR-148b: BIK, DDR1, ELOVL5, ERMP1, FAM84B,

KLF5, MAL2, MAP1B, QKI, RAB8B, ST14,

TBC1D30, TRAF4;

miR-200a: BICD2, CDH1, EHF, ELOVL5, GRHL2,

ITGB4, MAP1B, MSN, PARD6B, RAB32, TWIST1;

miR-200b: AP1S2, ARHGAP32, CDH1, CLDN4, DSP,

ELOVL5, ENSA, EPCAM, ESRP2, KIAA1949, KLF5,

MAL2, MAP1B, MAPK13, MSN, OSTM1, PARD6B,

QKI, SACS, SLC20A1, TINAGL1, TTL, TWIST1;

miR-200c: AP1S2, CDH1, ENSA, ICA1, MSN,

OSTM1, PARD6B, QKI, SLC20A1, ST14, TPD52L1,

TWIST1, VIM;

miR-203: ARHGAP32, CDH1, ENSA, FAM84B,

OVOL1, PARD6B, TC2N, TPD52L1, VIM;

miR-301a: AP1S2, BICD2, ERMP1, ESRP2, IRF6,

MAL2, MAP1B, MAP7, PRRG4, SLC20A1, TRAF4,

TTL, TWIST1;

miR-301b: AP1S2, BICD2, MAP1B, PRRG4, TRAF4,

TTL;

miR-32: BICD2, QKI, RAB8B, RBM47, RNF43,

SACS, TWIST1, VIM;

miR-429: GRHL1, QKI, TWIST1;

miR-590-3p: CDS1, DSP, ELOVL5, MAP1B, MRPL49,

PARD6B, RAB8B, RBM47, SACS, SLC20A1;

miR-7: ARHGAP32, DSC2, DSP, EPN3, ESRP1,

F11R, FAM83H, FAM84B, GRHL1, GSR, LPAR2,

MAP1B, MYO5B, PARD6B, PLS1, QKI, RAB11FIP4,

S100A14, SACS, SLC29A2, TRAF4;

C2N65 miR-141: TMC5;

miR-148b: EFNA1, MUC13, TBC1D30, TSKU;

miR-200a: PLEKHF2, TMC5, TSKU;

miR-200b: EFNA1, TACSTD2;

miR-200c: EFNA1; miR-301a: PLEKHF2, TSKU;

miR-301b: PLEKHF2; miR-32: PALM2-AKAP2;

miR-429: EFNA1; miR-7: ANGEL1, LPAR2, TSKU;

C3N65 miR-101: AP1S2, BICD2, CLDN4, DLG3, MSN,

RAB8B, SACS, SLC29A2, TST;

miR-106b: BICD2, BMP4, DSP, ESRP1, F11R,

GIPC2, KIAA1522, MAP7, MCF2L, MPZL2, MYO5B,

OSTM1, PARD6B, PLS1, RAB8B, RBM47, S100P,

Table 4 Confirmed interactions in COREs from the NCI60 for

η = 0.65 (Continued)

SACS, SLC29A2, TBC1D30

miR-18a: BICD2, BMP4, ELOVL5, ESRP1, INADL,

MAP1B, MARK2, PARD6B;

miR-18b: BICD2, ESRP1, INADL, MAP1B, SCNN1A;

miR-30e: ABHD11, ANPEP, DSP, ELOVL5, FAM84B,

GCNT3, GRHL2, ITGB4, MANSC1, MCF2L, OVOL1,

PARD6B, PLS1, PPL, QKI, RAB32, RAB8B,

SACS, SLC20A1, TC2N, VIM;

miR-96: CDH1, CEP170, DSP, MAL2, PARD6B,

RHOD, SLC20A1, TUBA1A, VIM;

C4N65 miR-200b: VIPR1; miR-7: RABGAP1L

C5N65 miR-106b: TBC1D30; miR-18a: SLC12A2;

miR-30e: MOSC1, SLC12A2, TACSTD2;

miR-96: EFNA1, ERBB3, PRPS1, TSKU;

miRNAs are highlighted in bold-face texts

Functional enrichment analysis of the COREs

A CORE consists of a group of miRNAs and a group

of mRNAs, in which the individual interactions between

miRNAs and mRNAs play a vital role. To demonstrate

the effectiveness of DICORE, we identified the interac-

tions in the obtained COREs and compared them with

the experimentally confirmed interactions found in the

‘ground-truth’ databases. The confirmed interactions of

the top COREs identified from the NCI60 dataset for η =
0.65 are summarized in Table 4. The confirmed interac-

tions for the miRNAs in the miR-200 family included in

the top CORE ‘C1N65’ are illustrated in Fig. 2 using an

example CORE, where red nodes are miRNAs and green

nodes are experimentally confirmed target mRNAs. The

higher number of confirmed interactions demonstrated

the effectiveness of DICORE.

We got similar higher experimentally confirmed inter-

actions for top COREs identified from BR and MCC

datasets. The experimentally confirmed interactions for

top COREs identified from the three datasets are listed in

Additional file 3.

Pathway analysis of the COREs

A biological pathway is a group of genes that partici-

pate in a particular biological process to perform certain

functionality in a cell. To find the controlling factors of a

disease, it is meaningful to study the genes by considering

their pathway information.

We used the GeneCodis [39] online tool at [40] to

conduct pathway enrichment analysis of the COREs

with the focus on significant Kyoto Encyclopedia of

Genes and Genomes (KEGG) [41] pathways (adjusted
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Fig. 2 Confirmed interactions for miRNAs of themiR-200 family included in the top CORE ‘C1N65’ obtained from the NCI60. Red nodes are miRNAs,

and green nodes are experimentally confirmed target mRNAs

p-value < 0.05). We selected the top COREs ‘C1N60’,

‘C1B60’, and ‘C1M45’ discovered from the NCI60, BR, and

MCC datasets, respectively for the analysis, and the top 7

enrichment KEGG pathways annotated with the COREs

are listed respectively in Tables 5, 6 and 7 with their

p-values, where the p-values are adjusted by Benjamini-

Hochberg (BH) method. As shown in the tables, all the

Table 5 Top 7 enrichment KEGG pathways for CORE ‘C1N60’

from the NCI60 for η = 0.60

No KEGG Pathways p-value

1 Tight junction 9.28E–08

2
Arrhythmogenic right ventricular

5.73E–04
cardiomyopathy (ARVC)

3 Glutathione metabolism 3.40E–03

4 Leukocyte transendothelial migration 4.84E–03

5 Axon guidance 8.35E–03

6 Pathways in cancer 1.01E–02

7 Endocytosis 1.44E–02

COREs are significantly associated with the KEGG path-

way: Pathways in cancer. Since the three datasets are all

cancer datasets, the results demonstrate that the identi-

fied COREs are closely related to the biological conditions

of their respective datasets.

Again, we used GeneGo Metacore [42] from GeneGo

Inc. to identify the pathways previously discovered in the

literature that involve the mRNAs in the identified top

Table 6 Top 7 enrichment KEGG pathways for CORE ‘C1B60’

from the BR for η = 0.60

No KEGG Pathways p-value

1 Inositol phosphate metabolism 2.44E–02

2 Complement and coagulation cascades 3.01E–02

3 Regulation of actin cytoskeleton 3.42E–02

4 Phosphatidylinositol signaling system 3.59E–02

5 Pathways in cancer 4.05E–02

6 ECM-receptor interaction 4.44E–02

7 Prostate cancer 4.59E–02
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Table 7 Top 7 enrichment KEGG pathways for CORE ‘C1M45’

from the MCC for η = 0.45

No KEGG Pathways p-value

1 Vascular smooth muscle contraction 3.85E–08

2 Oocyte meiosis 6.07E–04

3 Complement and coagulation cascades 2.37E–03

4 Adherens junction 2.41E–03

5 Long-term depression 2.52E–03

6 Pathways in cancer 3.05E–03

7 Tight junction 4.46E–03

COREs. Table 8 shows the first 10 pathways as well as

some other related pathways identified for another top

CORE ‘C1N65’ from the NCI60 dataset. It confirms that

‘C1N65’ is highly relevant to the biological condition of

the dataset. For instance, pathways number 1, 8, 11, 14

and 20 are direct pathways of the development of EMT,

and others are important pathways involved in the process

of EMT. Moreover, pathway number 1 includes total 12

members, of which 7 were identified in ‘C1N65’.

The pathway enrichment analysis has clearly justified

the use of CCA in ranking the COREs, as the top ranked

COREs show higher biological significance, and represent

the given datasets. The detailed information of significant

Table 8 GeneGo mapped pathways for CORE ‘C1N65’ from the

NCI60 for η = 0.65

No Pathway maps p-value

1 Development_miRNA-dependent inhibition
of EMT 3.38E–12

2 Cytoskeleton remodelling_Keratin filaments 2.41E–11

3 Cell adhesion_Endothelial cell contacts by
junctional mechanisms 1.03E–07

4 Cell adhesion_Tight junctions 8.05E–07

5 Cell adhesion_Gap junctions 1.54E–04

6 Development_Neural stem cell lineage
commitment (schema) 3.92E–04

7 Cell cycle_Role of 14–3–3 proteins in cell
cycle regulation 1.03E–03

8 Hypoxia–induced EMT in cancer and fibrosis 2.90E–03

9 LRRK2 in neurons in Parkinson’s disease 3.39E–03

10 G–protein signaling_RhoA regulation
pathway 3.69E–03

11 Development_TGF–β–dependent induction
of EMT via SMADs 4.01E–03

14 Development_TGF–β–dependent induction
of EMT via MAPK 9.18E–03

20 Development_Regulation of EMT 2.11E–02

pathways identified from the three datasets is summarized

in Additional file 4.

Implication of the COREs in cancer

Since all of the input datasets included the expression

profiles of miRNAs and genes associated with cancer sam-

ples, it is expected that the COREs identified from those

datasets are to be related to cancer. To verify this, we

used a cancer miRNA benchmark dataset of 147 miRNAs

from a review article of [43]. Each of these miRNAs was

reported in the literature to be dysregulated in one or

more cancers.

The NCI60 dataset has 14 miRNAs from the bench-

mark, and except for miR-205, rest 13 are included in the

top COREs. Both the top COREs ‘C1N60’ and ‘C1N65’

from the NCI60 dataset included 9 of the 14 miRNAs

(namely miR-141, miR-148b, miR-200a, miR-200b, miR-

200c,miR-203,miR-301a,miR-32,miR-7), which are asso-

ciated with different cancers like Glioblastoma, Prostate,

Lung, Bladder, Colon, Breast, Esophageal, Colorectal,

Hepatocarcinoma, Ovarian, squamous cell carcinoma of

tongue (SCCT), and Pancreatic.

Again, among these 147 miRNAs, 34 miRNAs are rele-

vant to breast cancer. The BR dataset has 7 miRNAs out

of these 34, of which 4 are identified in the top COREs.

On the other hand, the MCC dataset has 49 miRNAs

out of the benchmark 147 miRNAs. The only CORE for

η = 0.60 included 9 miRNAs, of which 8 are from

the benchmark. These miRNAs are involved in verified

association with breast cancer (let-7d, miR-98, miR-101),

ovarian cancer (let-7c, let-7d, miR-100, miR-126, miR-

99a), prostate cancer (let-7c), Burkitt Lymphoma can-

cer (let-7c), pancreatic cancer (let-7d, miR-100), blad-

der cancer (miR-100, miR-195, miR-99a), SCCT can-

cer (miR-100, miR-195, miR-99a), lung cancer (miR-101,

miR-126), cervical cancer (miR-126), colon cancer (miR-

126), and hepatocarcinoma (miR-126) [43]. It is inter-

esting to note that one of the important parts of the

COREs identified fromMCC, i.e. the let-7 family has spe-

cial characteristics and mechanisms of tumor suppressor

activity [44, 45].

Targets prediction for miRNAs of the COREs

In this section, we report a set of novel miRNA-mRNA

interactions for further experiments. These miRNA-

mRNA interactions identified by DICORE are the pre-

dicted targets of conserved miRNA families in TargetScan

v6.2 [4, 46]. Fig 3 visualizes the predicted interactions in

a model interaction representation of the CORE ‘C1N65’,

where red nodes are miRNAs, yellow nodes are conserved

target mRNAs, and white nodes are poorly conserved tar-

get mRNAs. Predicted (conserved) interactions for top

COREs from the three databases are given in Additional

file 5.
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Fig. 3 Predicted interactions for miRNAs included in the top CORE ‘C1N65’ obtained from the NCI60. Red nodes are miRNAs, yellow and white

nodes are predicted (conserved) targets and poorly conserved targets of conserved miRNA families, respectively. Solid lines and dashed lines are

used to represent links between miRNAs and their conserved targets and poorly conserved targets, respectively. The interactions are predicted by

both DICORE and TargetScan

Comparison with other methods

We summarize here the comparison study of the result

of DICORE with the results of a few recent methods

Mirsynergy [27], SNMNMF [25], and PIMiM [47] reported

in [27]. We obtained the same ovarian cancer (OVC)

dataset processed in [25]. The original miRNA and gene

expression profiles for 385 ovarian cancer samples were

downloaded from [48]. The expression dataset contains

measurements of 559 miRNAs and 12456 mRNAs.

In case of performing a comparison study, our initial

intention was to compare the result of DICORE with the

results of two other methods, Mirsynergy [27] and SNM-

NMF [25] by applying them to the three cancer datasets

(NCI60, BR and MCC) used for validating DICORE.

However, both Mirsynergy and SNMNMF require as

their input the gene-gene interactions (GGIs) derived

from protein-protein interactions and transcription fac-

tor binding sites, which, according to [25] and [27], are

to be obtained from the two datasets, BioGrid [49] and

TRANSFAC [50]. Unfortunately, we could only man-

age to get the GGIs associated with the three cancer

datasets from BioGrid. As a consequence, the results

we obtained from Mirsynergy using these three cancer

datasets were not good. Therefore to make a fair com-

parison with the two methods, we apply our method

to the dataset (the OVC dataset) on which Mirsynergy

and SNMNMF have had their results reported in the

literature.
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Similar to the setting used in [27], we used the absolute

values of only negative interaction weights ofW and same

pair of values for the density thresholds, and set 2 for the

penalty value in calculating cohesiveness scores. In addi-

tion, we set 2 = (θm, θg) = 2 for both groups of miRNAs

and mRNAs due to the requirement for calculating CCA,

as CCA can not be applied on groups having less than 2

components.

Table 9 shows a summary of the performance of the four

methods. DICORE identified 56 modules with an aver-

age of 8.3 miRNAs and 43.83 mRNAs per module for

η = 0.35. The average strength of collective relationships

is 0.61 in terms of canonical correlation among the groups.

Furthermore, for η = 0.30,DICORE got 102modules with

11.23 miRNAs and 73.22 mRNAs per module, and having

average strength of 0.60. The average number of mRNAs

identified by Mirsynergy is too small compared to other

methods. However, average number of mRNAs identified

by DICORE is reasonable.

We report here two interesting modules. Firstly, the

module or CORE ‘C9O35’ consists of 4 miRNAs, namely

miR-29c*, miR-29a, miR-29b, and miR-29c from the same

miR-29 family. The human miR-29 family of miRNAs is

known to be associated with ovarian cancer [43, 51]. The

pathway analysis of this module also shows association

with cancer (see Table 10).

The module or CORE ‘C17O35’ included 16 miR-

NAs and 74 mRNAs. The module has miRNAs, namely

miR-17, miR-19b-1*, miR-19b, miR-19a, miR-18b, miR-

18a, miR-20a*, miR-20a, miR-20b from the polycistronic

miRNA cluster miR-17-92, located in chromosome 13.

They are considered to act as a tumor suppressor for ovar-

ian cancer in some circumstances [52]. Furthermore, the

pathway analysis of this module also illustrates association

with cancer (see Table 11).

The final module structure of Mirsynergy is heavily

depended on the initial clustering of miRNAs and the

prior knowledge of gene-gene interactions. If Mirsynergy

gets c clusters of miRNAs in the first stage, finally it will

produce at most c miRNA regulatory modules. On con-

trary, DICORE separately performs clustering of miRNAs

and mRNAs based on their functional interactions with

mRNAs and miRNAs, respectively. This allows two dis-

tinct groups of mRNAs functioning differently to be part

Table 9 Performance of DICORE,Mirsynergy, SNMNMF, and PIMiM

Method #C miR mR

DICORE 56 8.30 43.83

Mirsynergy 84 4.76 7.57

SNMNMF 49 4.12 81.37

PIMiM 40 4.70 67.80

Table 10 Top enrichment KEGG pathways for ‘C9O35’ from the

OVC for η = 0.35

No KEGG Pathways p-value

1 Basal cell carcinoma 3.85E–08

2 Arginine and proline metabolism 0.0298836

3 Glutathione metabolism 0.0398112

4 Pathways in cancer 0.0426415

5 Cell cycle 0.0495754

of different modules despite the fact that they are interact-

ing with the same group of miRNAs. Furthermore, it also

allows a group of miRNAs to interact with more than one

group of miRNAs, which is common in biological sense.

Related works
Several computational approaches had been proposed to

discover MMRMs. The concept of MMRMs was intro-

duced by [18] to denote groups of co-expressed miR-

NAs and their targets mRNAs. They drew a similarity

between predicting MMRMs and mining frequent item-

set by mapping the set of miRNAs and the set of target

mRNAs to a frequent itemset and its cover, respectively.

They proposed a prediction method adopting bipartite

graphs to model binding structures of the miRNAs and

mRNAs at the sequence level. However, prediction based

on sequence may not be sufficient to correctly predict the

complex interactions.

Improved versions of this method had been proposed

which also take into account coherent expression patterns

between miRNAs and mRNAs, or the (anti)-correlations

measured between each pair of miRNAs and mRNAs

[19, 21, 26]. Joung et al. [21] integrated expression pro-

files of miRNAs and mRNAs with sequence information

by using a biclustering approach. The approach reduced

false discovery rate significantly. A rule based method

was utilized by Tran et al. [19] based on the assump-

tion that miRNAs and mRNAs of a module have similar

expression patterns. However, these existing methods for

discovering MMRMs suffered from several limitations.

For example, Peng et al. [26] proposed a sequential inte-

grative method based on enumerating maximal bicliques

in a combined miRNA-gene network. Their method was

sensitive to noise in the data, and produced too many

star structures (one miRNA, many genes) which were not

usable to explore miRNA combinatorial regulation.

Table 11 Top enrichment KEGG pathways for ‘C17O35’ from the

OVC for η = 0.35

No KEGG Pathways p-value

1 Pathways in cancer 0.00679353

2 MAPK signaling pathway 0.0136845
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The functional MMRMs (FMMRMs) are associated

with MMRMs with specific biological conditions. For

FMMRMs discovery, [22] and [20] proposed different

methods at around the same time. Joung and Fei [22] pro-

posed an unsupervised method which applied the author-

topic model [53, 54] in bioinformatics. The method

used the expression profiles of miRNAs and the puta-

tive miRNA target information, without considering the

expression profiles of miRNAs. As the miRNA target

information is predicted at the sequence level, it encoun-

tered similar difficulty of [18] in explaining regulation

pattern of miRNAs in their target genes in the identified

modules. On the other hand, Liu et al. [20] proposed a

supervised method which utilized association rule mining

method by associating the reverse expression patterns of

miRNAs and genes with biological conditions. However,

they only considered down-regulation patterns.

In order to discover FMMRMs, Liu et al. [23] applied

another probabilistic graphical model, correspondence

Latent Dirichlet Allocation (Corr-LDA) [55], that had

been applied to automatic image annotation with cap-

tion words. By associating topics to functional modules,

images to miRNAs, and words to mRNAs, respectively,

the method was applied to a mouse model dataset for

human breast cancer research. The method simultane-

ously identified FMMRMs using the expression profiles

of both miRNAs and genes, with or without using target

relationships between miRNAs and mRNAs. The Corr-

LDA was extended and applied to identify functional

regulatory module, and each module corresponds to a

particular biological function. In the model, each func-

tion was represented as a latent topic, and the numeric

values of expression data were converted to the counts

of expression events, similar to the counts of words in

a documents. Another similar semi-supervised method

based on a probabilistic model which is closely associated

with the Latent Dirichlet Allocation [56] was proposed

in [24]. The idea of extracting topics with caption words

to FMMRMs discovery by mapping topics to functional

modules, documents to samples, and words to mRNAs,

respectively.

The main drawback of these methods is that they

did not consider the collective relationships in identi-

fying the modules, which result in regulatory modules

that may not quite correct modeling of the real biolog-

ical systems. Recently Karim et al. [28] came up with

the idea of collective group relationships, and proposed

a method to explore miRNA-mRNA regulatory relation-

ships. They integrated two complementary approaches

associated with relationships of complex systems, namely

graphmining and CCA to discover collective relationships

with both quantitative and qualitative information. How-

ever, the proposed method considered unweighted graph,

which are prone to make computational inaccuracy due to

the approximation of many interaction weights to either 1

(interaction) or 0 (no interaction). Recently Li et al. [27]

proposed a clustering algorithm,Mirsynergy to detect syn-

ergistic miRNA regulatory modules. They used mRNA

and miRNA expression profiles, target site information

and gene-gene interactions for ovarian, breast, and thy-

roid cancers from TCGA [57] and obtained significantly

higher enrichment than existing methods. However, it

partially used collective relationships in stage 1, and but

in stage 2 depended on the prior knowledge of confirmed

gene-gene interactions.

This paper presents a novel method that discover

MMRMs by considering the collective relationships as the

driving force in identifying the miRNA-mRNA regula-

tory relationships. Furthermore, it uses the idea of ranking

the identified modules by the quantitative measure of the

strength of the collective relationships between the groups

in group pairs.

Conclusion
In this paper, we have used the notation of CORE, and

proposed a computational framework DICORE to dis-

cover MMRMs. The central idea of DICORE is to con-

sider the collective group relationship, and discover both

the groups and collective relationships simultaneously.

We have applied a greedy-based overlapping clustering

approach adapted from ClusterONE [29] to group

miRNAs and mRNAs separately based on their collec-

tive interactions with mRNAs and miRNAs respectively,

and integrate CCA in order to enrich the identification of

groups with both structural link information and strength

of collective relationships. We have experimented on

three real-world biological datasets. The experimental

results have demonstrated that the proposed method

DICORE is able to reveal correct group information with

structural link information and the strength of collective

relationships, and provide useful insights into the struc-

ture and functionality of the miRNA-mRNA regulatory

relationships in MMRMs.

The proposed framework has also opened a few inter-

esting research windows for further investigation. Instead

of using Pearson correlation coefficient to calculate the

interaction weights matrix, other approaches including

statistical methods like maximal information coefficient

[58], regression techniques like Lasso [59], causal infer-

encemethod like IDA [31] can be applied. Considering the

context of the datasets, any of the individual methods or

an ensemble method [31] can be tested and reported. Fur-

thermore, the strength of the collective interactions can be

determined by applying other similar mathematical mod-

els to capture all possible association between two sets

of variables. Another interesting future work will be to

apply the framework to discover MMRMs from datasets

obtained under different biological conditions.
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