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Abstract

and the improvement of the genome assembly.

Background: Anguilla japonica (Japanese eel) is currently one of the most important research subjects in eastern
Asia aquaculture. Enigmatic life cycle of the organism makes study of artificial reproduction extremely limited.
Henceforth genomic and transcriptomic resources of eels are urgently needed to help solving the problems
surrounding this organism across multiple fields. We hereby provide a reconstructed transcriptome from deep
sequencing of juvenile (glass eels) whole body samples. The provided expressed sequence tags were used to
annotate the currently available draft genome sequence. Homologous information derived from the annotation
result was applied to improve the group of scaffolds into available linkage groups.

Results: With the transcriptome sequence data combined with publicly available expressed sequence tags evidences,
18,121 genes were structurally and functionally annotated on the draft genome. Among them, 3,921 genes were
located in the 19 linkage groups. 137 scaffolds covering 13 million bases were grouped into the linkage groups
in additional to the original partial linkage groups, increasing the linkage group coverage from 13 to 14 %.

Conclusions: This annotation provide information of the coding regions of the genes supported by transcriptome
based evidence. The derived homologous evidences pave the way for phylogenetic analysis of important genetic traits

Keywords: Anguilla japonica, Scaffolding, RNA-seq, Transcriptome, Genome annotation

Background

Abundance of Japanese eel, as well as other freshwater eels
belongs to genus Anguilla, has been radically shrinking in
the past decade [1]. Catadromous eels’ enigmatic life cycle
makes their reproduction affected deeply by anthropogenic
impacts. Lack of an economical method to artificial repro-
duce makes this organism extremely vulnerable to over-
consumption. Mature eels migrate thousands of kilometers
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into the open ocean to spawn eggs. Exact spawning loca-
tions of Japanese eels were hard to pinpoint and remained
unknown until recently when they were found near West-
ern Mariana Ridge. What prohibits the research from fur-
ther improvement is that, eggs and larvae of Anguilla
japonica are spread by the Kuroshio Current, making the
habitats spans a wide area of Eastern Asia [2]. Cylindrical
shape larva develops into transparent color leptocephalus
larvae, which eventually metamorphosis into glass eels.
Glass eels migrate back into the freshwater through estuar-
ies, sometimes traveling within wet sands into the inner
continent, where they spend years going through pig-
mentation into yellow eels, and then silver eels [3].
Such wide area of habitation potentially makes effect
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of pollution and diseases to be accumulated. Long life
cycle and the spawning habit through migration make
wild Anguilla eels hard to recover from the damage
caused by overfishing.

Physical linkage map of Japanese eel were constructed
in 2011 [4]. High throughput Sequencing technology
was rarely applied upon this issue before. However,
with the advances of sequencing technologies bringing
down the cost and time consuming of DNA and RNA
sequencing, plus the approaching extinction of fresh
water eels, the field began to change. In 2010, mRNA-
Seq study of deep sequencing and de novo reconstruc-
tion of European glass eel were reported as well as the
hox genes of the specie [5], 2 years following that, draft
genome sequence of European were also published [3].
The incorporative research of genomic and transcripto-
mics information from the deep sequencing should
have major impacts in multiple fields. Expression profil-
ing of both transcriptome of European eels response to
environmental pollution were reported in 2012 [6]. The
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first draft genome of Japanese eel was assembled [7],
proving that the hox genes and genomic distance of
European and Japanese eels were conserved. By 2014, a
ddRAD-based linkage map was published, providing
13 % coverage of the draft genome [8]. Such results left
plenty of space for improvement.

Hereby, we provide a reconstructed transcriptome
from whole body samples of juvenile (glass eels). The
high throughput sequencing provides unprecedented
amount of transcriptomic information. Instead of fo-
cusing only on certain types of tissues or organs, full
transcriptome of the entire organism was sequenced.
For future experimental design and guidance on eco-
logical, physiological, artificially breeding and even
toxicity resistance study of Japanese eel, such tran-
scriptome can provide additional guidance. What's
more, the massive amount of evidence provided by the
transcriptome helps the complete of draft genome
structural annotation. Combining transcriptome se-
quence data with publicly available expressed sequence
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(See figure on previous page.)

Fig. 2 Homolog Linkage Map of Anguilla Japonica (Linkage Groups 1 to 6). The graph shows genetic linkage maps on 6 of the 19 linkage groups.
With the homologs synteny information derived from the functional annotation, we successfully allocated 137 scaffolds (13 Mb) into the established
linkage group. This graph illustrates the relative position of the scaffolds. Order of the combined scaffolds was determined by an application of
topological sort to combine the linkage maps of male and female linkage. Since evidence of the distance between scaffolds is not available, only the
putative order was demonstrated here. The homologs gene cluster was showed in gray color

tags evidences, 18,121 genes were structurally and
functionally annotated on the draft genome. The struc-
tural annotation was performed through an established
pipeline, MAKER [9]. Functional annotation was based
on sequence alignment. The acquired homologous evi-
dences were further used to improve the draft genome
scaffolding. Applying an improved version of scaffold-
ing algorithm developed by Aganezov et al. [10], syn-
teny of Anguilla japonica was compared to the
genome of Fugu, Stickleback, Medaka, Tetraodon,
Coelacanth and Zebra fish. Obtained results were inte-
grated with previously published linkage map [8], put-
ting 3,921 genes into the 19 linkage groups, which
represent chromosomes of Anguilla japonica. 137 scaf-
folds were grouped into the linkage groups in addition
to the original partial linkage groups. Phylogenetic
analysis of the gene clusters correlation to thyroid hor-
mone receptors and pigmentation were performed
with MEGA 6.0 [11].

Results and discussion

Sequencing through Illumina HiSeq™ 2000 generated
total 85,233,812 reads, with length of 101 nucleotides.
After quality control, low quality reads were trimmed
and left 77,939,562 reads were left with an average
length of 99.575 nucleotides (Additional file 1: Figure
S1). Quality control of the sequence reads is summa-
rized in Additional file 1: Figure S2 and Additional file
1: Table S3. Assembly were assessed through average
length of unigenes, as well as quality score N50 and
NO90. As the result shows in Additional file 1: Table S2,
average length, N50 and N90 of clustered unigenes are
significantly higher than results of single De Novo as-
sembly tools. Composition of assembled unigenes
showed in Additional file 1: Table S3 demonstrates that
clustered unigenes tends to have higher composition of
longer nucleotides. Hence assembles generated through
clustering were considered to have higher accuracy
and were used for further annotation. In Additional file
1: Figure S2, we demonstrate that expression level
measured with FPKM, frequency of reads per kilo base
per million, distributes through all different length of
assembles.

Summary of the functional annotation is listed in
Additional file 1: Table S4. From the total 32,210 as-
sembled unigenes, 16,106 were found to be aligned to
known proteins in NCBI Non Redundant protein

database. 10,848 of the unigenes were found to contain
functional domains through RPSBLAST against NCBI
Conserved Domain Database. 5641 transcripts were
found to involve with system biological pathway in
Kyoto Encyclopedia of Genes and Genomes (KEGGQG)
[12]. 13,434 transcripts were annotated to certain Gene
Ontology terms. Up to top 5 blast hits per query were
considered in the process. Distribution of homologs be-
longing to other organisms were illustrated in Additional
file 1: Figure S3.

Expression level of the transcripts was examined to-
gether with their frequency to be assigned to certain
Gene Ontology terms. As demonstrated in Additional
file 1: Figure S4, transcripts regarding enzyme regula-
tor activity express level exceeded the total average
expression level despite the fact that only four of
them were found. Distribution of assembled tran-
scripts through different KEGG pathways categories
(Additional file 1: Figures S5 and S6) were also ob-
served alongside with average expression level. As
shows in Additional file 1: Figure S5, despite only few
transcripts found in some pathway categories such as
Circulatory system and Reaction module maps, aver-
age expression level of transcripts within these cat-
egories demonstrates potential rich activities of these
pathways.

Protein functional domains found on the assembled
transcripts were also viewed in their distribution
alongside with expression level, demonstrated in
Additional file 1: Figures S7 and S8. Protein func-
tional domains with extreme expression level can
provide guidance to the future protein- protein inter-
action study.

Catadromous eels’ reproduction is limited by their
long life cycle and migration spawning. To produce
enough supply without consuming wild glass eels, de-
velopment of technology that would shorten the
period of time for eels to mature, and would
artificially induced spawning of healthy larvae is in-
evitable. Hence, revealing the mechanisms of meta-
morphosis from leptocephalus larvae into glass eels,
as well as fermentation from glass eels to mature sil-
ver eels is the key to successful artificial reproduction
to supply commercial demands and keep wild eels
from extinction.

In the past, transcriptomic studies of eels mainly re-
lied on classical molecular biological experimental
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(See figure on previous page.)

Fig. 3 Homolog Linkage Map of Anguilla Japonica (Linkage Groups 7 to 12). The graph shows genetic linkage maps on 6 of the 19 linkage groups.
With the homologs synteny information derived from the functional annotation, we successfully allocated 137 scaffolds (13 Mb) into the established
linkage group. This graph illustrates the relative position of the scaffolds. Order of the combined scaffolds was determined by an application of
topological sort to combine the linkage maps of male and female linkage. Since evidence of the distance between scaffolds is not available, only the
putative order was demonstrated here. The homologs gene cluster was showed in gray color

methods. Studies of various mechanisms were per-
formed with classical molecular methods such as clon-
ing and protein purification. Cloning and protein
purification provide only partial view of the transcripts
[1]. To fully capture all protein coding transcripts, a
combination of next generation sequencing and new
transcript assembly algorisms is necessary [13]. In 2014,
a study of mRNA expression profile through RT-PCR
of prolactin, growth hormone, and somatolactin of
Japanese eel was reported [14]. However, researches
utilizing genome information of Japanese eel, and the
respective resources available for the experimental de-
sign are still limited. On the other hand, hybrids of
European and American eels were found occurred nat-
urally in Iceland [15], import of European glass eels
into East Asia could trigger interspecific hybridization
of Anguilla eel, inducing further anthropogenic impacts
to this species near extinction [1]. Proven possibilities
of hybrid reproduction [15], as well as the successful
artificial hybrid of European and Japanese eels also
bring new possibilities to the artificially reproduction
[16]. However, the transcriptomic information is still
limited. In 2013, the first transcriptomic study through
454 deep sequencing was performed on gill of Anguilla
japonica [17]. Utilization of proteomic approaches and
transcriptomic sequencing gave insights into the osmo-
regulation mechanism, providing transcriptomic view
of Anguilla japonica’s catadromous behavior. However
the study [17] didn’t correlate with the currently avail-
able draft genome.

On eel sexualize mechanism, several surveys have
been conducted on ovarian steroid genesis [18]. Ex-
pression level of several genes were also found to be
related to the ovarian development. Through the at-
tempts of artificial reproduction of glass eels has
been attempted since 1930s in Europe [1], only until
2003, first successful artificially induced spawning of
Japanese eel was achieved through injection of sal-
mon pituitary extracts into the female eel and human
chorionic gonadotropin into male eel [19]. An un-
published successful F2 generation was declaimed in
2011 [4]. However current technology is not suffi-
cient for large scale reproduction. Mortality of artifi-
cially cultured eels is still high.

Under current circumstance, all main stream studies
of Japanese eels should inevitably focus on how to
successfully improve life cycle of eels under the

artificial environment to suit the existing demand.
Such studies would take into consideration with all
kinds of mechanisms. Metamorphosis, pigmentation
and sexualize mechanisms of eels are all deeply cor-
related to their catadromous spawning activities, es-
pecially the metamorphosis mechanisms including
reorganization of the entire body plan. Complete
genome structure and transcriptome is essential for
future study.

To suite such a purpose, we provide the first complete
transcriptome of glass eels. Application of deep sequen-
cing provides not only the information of homologs,
but also the potential novel genes of Japanese eels.
Clustering of De Novo assembled transcripts from dif-
ferent tools through overlapping successfully increase
the assembly quality. Distribution of assembled tran-
scripts through different species, GO terms, system bio-
logical pathway and protein functional domains of
found genes were examined and demonstrated. In
addition, we further provide expression level alongside
the distributions. Such demonstration successfully pro-
vides the hidden information about pathways with few
genes but extreme expression levels.

Without structural and functional annotation, draft
genome [7] provides only limited information since
Anguilla japonica is not an established model organ-
ism [20]. The massive amount of information provided
by RNA Sequencing for our experiment makes tran-
scriptome evidence sufficient enough to perform
complete structure annotation, which identifies genes
and their intron-exon structure. Before doing so, due
to the fact that Eukaryotic genomes are rich with re-
peat sequences, a process of repeat masking needs to
be carried out. Usually such a process would need a
well-established repeat sequence library to serve as
guideline. However such a library doesn’t exist for
Anguilla japonica. In this case [20], de novo con-
structing a new library [21] from the draft genome is a
better choice than using established model organism
data base such as Repbase [22]. Structural annotation
supported by RNA-seq could be done by directly as-
sembling reads on to the genome with tool like Cuf-
flinks. We further improved the de novo assembly into
a genome based assembly following the convention
guideline [20]. An overview of the annotation process
can be found in Fig. 1. The automatic pipeline we
used, MAKER [9], performs multiple ab initio gene
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Fig. 4 Homolog Linkage Map of Anguilla Japonica (Linkage Groups 13 to 16). The graph shows genetic linkage maps on 4 of the 19 linkage groups.
With the homologs synteny information derived from the functional annotation, we successfully allocated 137 scaffolds (13 Mb) into the established
linkage group. This graph illustrates the relative position of the scaffolds. Order of the combined scaffolds was determined by an application of
topological sort to combine the linkage maps of male and female linkage. Since evidence of the distance between scaffolds is not available, only the
putative order was demonstrated here. The homologs gene cluster was showed in gray color

predictions, and cross verifies with the evidence driven
prediction. Such prediction, backed up by the rich evi-
dences, increase the accuracy of the structural
annotation.

Many assemblies of the bone fish draft genomes were
built upon SNP base linkage groups. With the homologs
synteny information derived from the functional annota-
tion, we successfully allocated 137 scaffolds (13 Mb) into
the established linkage group. The relative position of
the homologs and clusters on these linkage map are il-
lustrated in Figs. 2, 3, 4 and 5. The plots were generated
with Mapchart [23].

We hypothesis that metamorphosis mechanism of
Anguilla japonica, like other Teleost fishes, conserve

with amphibians [24], based on the fact that develop-
ment and growth of fish correlates to thyroid hormone
had been widely accepted [25]. Such metamorphosis
of vertebrate tends to be triggered by environmental
control on hypothalamo-pituitary-thyroid axis in the
brain [24], and regulated by the thyroid hormone re-
ceptor on cell membrane. The environment control, in
this case, would be the catadromous activity from
ocean to inland. In certain developmental stages of the
larval, the brain senses the environmental stress ur-
ging the metamorphosis to glass eel, and releases cor-
ticotropin release factor (CRF), which correlated with
genes crh and CRHBP. CRF binds on receptors of an-
terior pituitary, forcing it produce thyrotrophin (TSH)
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Fig. 5 Homolog Linkage Map of Anguilla Japonica (Linkage Groups 17 to 19). The graph shows genetic linkage maps on 3 of the 19 linkage groups.
With the homologs synteny information derived from the functional annotation, we successfully allocated 137 scaffolds (13 Mb) into the established
linkage group. This graph illustrates the relative position of the scaffolds. Order of the combined scaffolds was determined by an application of
topological sort to combine the linkage maps of male and female linkage. Since evidence of the distance between scaffolds is not available, only the
putative order was demonstrated here. The homologs gene cluster was showed in gray color
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and adrenocorticotrophic hormone (ACTH). TSH trig-
gers thyroids to secret thyroid hormone, while ACTH
triggers adrenals or Interrenals to secret corticoids.
From our functional annotation, we observed that the
trha homolog of Japanese eel is correlated with TSH,
and pomcb homolog is correlated with ACTH of
Anguilla japonica. Finally, thyroid hormone receptors
on the cell membrane as well as nuclear receptors
within the cell regulate whether the metamorphosis
would be triggered. We believe that thyroid hormone
receptors of Anguilla japonica are regulated by the
TRIP4, THRAP3, TRIP11, TRIP12, TRIP13 genes ho-
mologs, while the nuclear receptors are regulated by
the genes NR4A3, NR2C2, NCOA3 and NR2F6 ho-
mologs respectfully. Phylogenetic tree of thyroid hor-
mone receptor interactor (TRIP) family homologs is
illustrated in Figs. 6 and 7. Through the analysis we
found that the thyroid hormone receptor interactor
family genes of Japanese eel are homologous to Asian
arowana, Northern Pike, Rainbow trout, Marbled
rockcod, Atlantic herring and Spotted gar. Phylogen-
etic tree of nuclear receptor subfamily 2 is illustrated
in Figs. 8 and 9. From the graph we observed that
the receptors were also closely related to homologs of
same six fishes, Asian arowana, Northern Pike, Rain-
bow trout, Marbled rockcod, Atlantic herring and
Spotted gar.

Among the homolog clusters we have found, lyso-
somal trafficking regulator LYST cluster in linkage group
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10 (LG10) was related to the GO term pigmentation
GO0:0043473 [26]. Correlated scaffolds in the linkage
group and phylogenetic analysis of the found homologs
are illustrated in Fig. 10. From the phylogenetic tree we
found that LYST homolog of Japanese eel is also close
related to Asian arowana, a kind of freshwater East Asia
fish with high commercial value.

While such a full transcriptome from whole body is
proven to be effective on functional annotation, scope
of this annotation is still limited by the sample. Since
the messenger RNAs were isolated from glass eels be-
fore sexualization, certain types of hormones from
gender specific tissues of silver eels such as ovarian
and testicular cannot be found in such samples. On
the other hand, satellite sequences and mRNAs from
eggs and larval might not necessary been expressed in
our samples. Despite some of a portion of this infor-
mation is available on NCBI, which we used in our
annotation, these factors could still limit the complete-
ness of the annotation.

Materials and methods

Isolated whole RNA from the five glass eels were pre-
pare for the RNA sequencing. Libraries for the RNA-
Seq were sequenced through Illumina HiSeq™ 2000
following the manufacturer’s manual. Pair end libraries
were sequenced in 101 X 2 nucleotides length reads,
with 120 nucleotides adaptors. The entire fragment
length was 357 nucleotides. The base calling and image

oooooooooooo
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Fig. 6 Phylogenetic Tree of Thyroid Hormone Receptor Interactor (TRIP) Family Homologs. This graph illustrated the thyroid hormone receptors
homologs of Anguilla Japonica. From the separate color subtree of TRIP4, TRIP11, TRIP12 and TRIP13 genes homologs, we can see that the different
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analysis were done following Illumina standard pipe-
line. Raw reads of deep sequencing went through qual-
ity control procedure done by using FASTX-Toolkit:
FASTQ/A short reads pre-processing tools, with only
Quality value Phred score over 20 nucleotides remain,
which means only reads with per base accuracy over

99 % were kept. Also, we trimmed the length of the
reads down to 70 nucleotides for low quality reads. The
transcriptome were first reconstructed through de novo
assembly. To achieve maximum accuracy, we applied
three different main stream de novo assembly tools :
Trinity , Oases [27], and SOAPdenovo-Trans [28].
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Quality controlled reads were assembled into three sep-
arate sets of contigs, with the three different tools.
Trinity was applied with default settings, while Oases
and SOAPdenovo-Trans were applied with multiple-
kmers strategy. To further eliminate overlapping con-
tigs, we clustered the three sets of contigs with CD-
HIT-EST [29] into three sets of unigenes. Finally, we
clustered unigenes with high similarity together with
the tool CAP3 [30]. Quality of the assembly was esti-
mated mainly through an average length of unigenes,
as well as quality score N50 and N90. N50 repre-
sents the length of the longest unigene among the
collection of unigenes equal to a half of the sum of
all unigenes, while N90 means the length of the
shortest unigene among the collection of unigenes
equal to ninety percent of the sum of all unigenes.
Maximum and minimum length of assembled uni-
gene also serves as an index for the assessment.
Abundance of the assembled unigenes were estimated
through RSEM pipeline [31]. Quantities of the tran-
scripts were estimated through FPKM value. FPKM,
frequency of reads per kilo base per million ,value was
calculated through aligning reads onto assembled tran-
scripts with Bowtie [32]. A de novo repeat library of
Anguilla japonica was built from the draft genome [7]
through RepeatScout [21]. Then, de novo assembly of
the RNA-Seq data were pooled with the complete and
partial CDS, EST and previously done gill RNA-seq as-
sembly [17] of Anguilla japonica from NCBI as EST
evidence. The EST evidence includes the public avail-
able RNA-seq data sets SRX482728, SRX247092,
SRX115953 and the whole body transcriptome

sequence data. Together with the known proteins from
NCBI, genome structural annotation was performed
through the pipeline MAKER [9]. The pipeline firstly
masked the repeat sequences according to the previ-
ously build library with Repeatmasker (http://repeat-
masker.org), and then perform ab initio prediction
through repeat training of SNAP [33] and polished with
Exonerate [34].

To find the assembled transcripts coding proteins,
unigenes were blasted against NCBI non-redundant
protein data base, TrTEMBL and Swiss-Port [35] with
BLASTX. Hits with an e value lower than 10 to nega-
tive 5, filtered by penalty estimation through the cred-
ibility of the protein, would be considered as homologs.
Next, available Gene Ontology [36] terms were found
listed. On the other hand, potential protein conserved
domain were found through RPSBLAST against Pfam
[37] and NCBI COG . To help the system biological
analysis in the future, available KEGG pathways [38]
were also annotated.

For scaffolding purposes, we utilized an improved
version (to be described elsewhere) of the gene order
based scaffolding method developed by Aganezov et al.
[10]. Since this method relies on gene orders of mul-
tiple genomes, we preprocessed genomic sequences of
Fugu [39], Stickleback [40], Medaka [41], Tetraodon
[40], Coelacanth [42] and Zebra fish [43] in addition
to Anguilla japonica to represent them as sequences
of homologous gene (decided by respective scaffolds
boundaries). Scaffolds with no homologous genes were
filtered out from genomes during the preprocessing. In
contrast to the original method described in Aganezov
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(See figure on previous page.)

rockcod, Atlantic herring and Spotted gar

Fig. 9 Phylogenetic Trees of Nuclear Receptor Subfamily 2 Groups. In this graph, each circular tree represents the corresponding color subtrees
illustrated in Fig. 8. a The green circular tree represent the NR2E3 subtree, with 3 Anguilla Japonica homologs marked in red dots. b The brown
circular tree represent the NR2E1 subtree, with 1 Anguilla Japonica homolog marked in red dot. ¢ The purple circular tree represent the NR2C1
subtree, with 2 Anguilla Japonica homologs marked in red dots. d The gray circular tree represent the NR2C2 subtree, with 1 Anguilla Japonica
homolog marked in red dot. e The yellow circular tree represent the NR2F2 subtree, with 3 Anguilla Japonica homologs marked in red dots. f
The blue circular tree represent the NR2F6 subtree, with 2 Anguilla Japonica homologs marked in red dots. Through the analysis we found that
the thyroid hormone receptor interactor family genes of Japanese eel are homologous to Asian arowana, Northern Pike, Rainbow trout, Marbled

et al. [10], the improved method accounts for gene in-
sertions/deletions and duplications and thus no filtra-
tion for unique gene content was needed. We utilized
the phylogenetic tree in Fig. 11 a. While provided with
7190 scaffolds with homologous genes on them, scaf-
folding method identified 525 links and assembled
scaffolds respectively. These scaffolds were then
mapped into male and female linkage maps provided
by the Kai et al. study [8]. Order of the combined scaf-

sort. With the scaffolds grouped into male and female
linkage groups overlapped with each other, order of
the scaffolds on the chromosomes can be sorted with
topological sort algorithm. Phylogenetic tree of the
fishes and the process of topological sort are illustrated

in Fig. 11.

Conclusions and prospective works
We provide a reconstructed transcriptome from whole
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Fig. 10 Phylogenetic Tree and Linkage Location of LYST Homologs. In this graph, we found a lysosomal trafficking regulator LYST cluster (in red
box) in linkage group 10 (LG10). The gene was close related to the homolog of Asian arowana. There are 4 other Anguilla Japonica homologs of
LYST marked on the circular tree
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throughput sequencing provides unprecedented amount
of transcriptomic information. For future experimental
design and guidance on ecological, physiological, artifi-
cially breeding and even toxicity resistance study of

Japanese eel, the transcriptome provide guidance. For ex-
ample, expression of specific genes shows extreme pat-
terns in glass eels and can be further compared with
larvae as well as silver eels through QPCR to provide



Liu et al. BMC Genomics 2016, 17(Suppl 1):13

further reevaluation of the metamorphosis and pigmenta-
tion mechanism.
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