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Abstract

Background: Automatically generated bacterial metabolic models, and even some curated models, lack accuracy
in predicting energy yields due to poor representation of key pathways in energy biosynthesis and the electron
transport chain (ETC). Further compounding the problem, complex interlinking pathways in genome-scale
metabolic models, and the need for extensive gapfilling to support complex biomass reactions, often results in
predicting unrealistic yields or unrealistic physiological flux profiles.

Results: To overcome this challenge, we developed methods and tools (http://coremodels.mcs.anl.gov) to build
high quality core metabolic models (CMM) representing accurate energy biosynthesis based on a well studied,
phylogenetically diverse set of model organisms. We compare these models to explore the variability of core

pathways across all microbial life, and by analyzing the ability of our core models to synthesize ATP and essential
biomass precursors, we evaluate the extent to which the core metabolic pathways and functional ETCs are known
for all microbes. 6,600 (80 %) of our models were found to have some type of aerobic ETC, whereas 5,100 (62 %)
have an anaerobic ETC, and 1,279 (15 %) do not have any ETC. Using our manually curated ETC and energy
biosynthesis pathways with no gapfilling at all, we predict accurate ATP yields for nearly 5586 (70 %) of the models
under aerobic and anaerobic growth conditions. This study revealed gaps in our knowledge of the central
pathways that result in 2,495 (30 %) CMMs being unable to produce ATP under any of the tested conditions. We
then established a methodology for the systematic identification and correction of inconsistent annotations using
core metabolic models coupled with phylogenetic analysis.

Conclusions: We predict accurate energy yields based on our improved annotations in energy biosynthesis

pathways and the implementation of diverse ETC reactions across the microbial tree of life. We highlighted missing
annotations that were essential to energy biosynthesis in our models. We examine the diversity of these pathways
across all microbial life and enable the scientific community to explore the analyses generated from this large-scale

analysis of over 8000 microbial genomes.

Background

One of the most important elements of an organism’s
biochemistry is its ability to produce energy in the form
of ATP from nutrients in the environment under a wide
variety of environmental conditions. Energy production
pathways are of fundamental importance because these
pathways define much of the behavior of a microbe and
have the greatest impact on the quantitative prediction

* Correspondence: chenry@mcs.anl.gov

'Mathematics and Computer Science Department, Argonne National
Laboratory, S. Cass Avenue, Argonne, IL 60439, USA

“Computer Science Department and Computation Institute, University of
Chicago, 5640, South Ellis Avenue, Chicago, IL 60637, USA

( BiolMed Central

of biomass and metabolite production yields [1]. Cellular
energy generation in microbes is a crucial aspect of
metabolic modeling, which depends on environmental
factors such as carbon source, electron donor, fermenta-
tion capability, presence of electron acceptors, and varia-
tions in the electron transport chain (ETC).

Metabolic models provide a valuable means for simula-
ting and understanding energy metabolism based on
annotated genome sequences [2]. Recently, tools such as
the Model SEED [3-5] have emerged to automate the
generation of draft metabolic models to keep pace with
the ever growing set of sequenced genomes. However,
automatically reconstructed models, and even some
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curated models, struggle to represent energy biosynthesis
accurately primarily for three reasons: (1) genome-scale
models integrate complex interweaving pathways that,
when under-constrained, can interact to form routes for
energy production that are not biologically meaningful or
even physically feasible; (2) poor representation of com-
plex and diverse bacterial ETCs and the key pathways
related to energy production; and (3) these models often
require extensive gapfilling [6] that can lead to the inclu-
sion of some pathways that are not actually present in the
species being modeled.

Here we present a set of tools and analyses aimed at a
focused understanding of energy biosynthesis across the
prokaryotic tree of life. Building on important early work
in metabolic modeling and engineering [7], we define a
“core metabolic model” (CMM), which has a reduced
scope consisting of well-annotated central metabolism,
fermentation, and ETC pathways. We developed a new
high-throughput pipeline for the reconstruction, compari-
son, and analysis of CMMs for prokaryotic genomes
(Fig. 1, Additional file 1: Figure S1). Then we applied our
pipeline to the reconstruction and analysis of CMMs for
over 8,000 (Additional file 2: Table S1) completely
sequenced prokaryotic genomes (http://coremodels.mc
s.anl.gov). The CMMs produced by our pipeline had
minimal need for gapfilling, demonstrating a key value in
CMMs as functional models that are as close as possible
to raw annotation output, minimizing model-driven
conjectures. In tests of the ATP yield on our models, the
results show nearly complete agreement with known
values for model organisms. Most importantly, compa-
rative analysis of our core models revealed substantial
variation in energy biosynthesis strategies and pathway
representation, including variations even at short phylo-
genetic distances. We observe only a small fraction of the-
oretically possible combinations of these pathways, with
both positive and negative correlations in energy biosyn-
thesis pathways, suggesting a limited number of optimal
pathway configurations.

Results and discussion

Core model reconstructions and patterns in pathway
co-occurrence

We applied our new core model reconstruction pipeline
(Fig. 1; see Methods) to generate 8,179 CMMs belonging
to 48 major phylogenetic groups (Additional file 2: Table
S2. The number of reactions in our CMMs varied over
threefold from 40 to 163 across taxonomic groups
(Additional file 1: Figure S2). CMMs were constructed
based on a core model template (CMT) that consists of a
highly curated set of biochemical reactions derived from a
diverse set of model organisms. We selected ~200 unique
reactions (Additional file 2: Table S3) that comprise 12 key
energy biosynthesis pathways linked to central metabolism
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Fig. 1 Core metabolic model construction pipeline. The pipeline
starts with gene annotations provided by RAST annotation pipeline
of assembled microbial genomes. Next, the CMMs are constructed
based on a manually curated CMT that consists of biochemical
reactions derived from phylogenetically diverse set of model
organisms including Escherichia coli, Bacillus. subtilis, Pseudomonas
aeroginosa, Clostridium acetobutylicum, and Paracococcus denitrificans.

In the final step, FBA is performed optimizing the biomass or ATP
hydrolysis as the objective function
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(Fig. 2, Additional file 1: Figure S1) and variations of bacte-
rial ETCs (see Methods). These pathways include glucose
oxidation pathways and fermentation pathways (Fig. 2,
Additional file 1: Figure S1). The presence and absence of
each pathway was determined using a set of Boolean rules
(Additional file 2: Table S9) based on reactions present
in the CMM (Fig. 2, Additional file 1: Figure S1 and
Additional file 2: Table S4).

Although the pathways included in CMMs are funda-
mental to energy generation, not all pathways are present
in every genome. Individual pathways were annotated as
present in as few as 106 (e.g. acetone fermentation) and as
many as 6,694 (e.g. lactate fermentation) genomes. We
examined pairwise relationships among all pathways
present in CMMs in order to understand variation in core
metabolism across this diverse set of microorganisms. In
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Fig. 2 Phylogenetic distribution of CMM pathways and pathway co-occurrence in central metabolism. Presence and absence of 12 key pathways
related to energy metabolism including glucose oxidation pathways (glycolysis, ED, TCA cycle, and pentose phosphate) and fermentation pathways
(lactate, acetate, formate, ethanol, 2,3-butanediol, butyrate, butanol, and acetone) computed using Boolean rules. Taxonomic groups that are displayed
in the horizontal axis of the graph were sorted sequentially as they appear in a 16 s rRNA based phylogenetic tree. The distribution patterns of these
key pathways among major phylogenetic groups and pairwise comparisons of pathway presence or absence shows that most pathways are positively
correlated. Blue pie slices show comparisons with positive correlations in the clockwise direction while red pie slices show negative relationships in the
counterclockwise direction. Relationships shown in pies outlined in bold were consistent across all size classes. Increasing strength of correlation is
denoted by increased pie slice size as well as color intensity. Empty pies are relationships that are not significant at p < 0.05. Filled pies are self-comparisons
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this analysis, we filtered out 4062 CMMs from our dataset
because their associated genomes were overly close phylo-
genetically to other CMMs (many mapped to different
versions of genomes with the same taxon ID). We found
an overall pattern of positive co-occurrence (88 % of
co-occurrences were positive; Fig. 2) among pathways
suggesting that core metabolism is diverse, yet consists of
a set of interdependent sub-modules. Once we controlled
this analysis for CMM size (see Methods), we found
slightly fewer positive co-occurrences, with small CMMs
having 62 % positive co-occurrences, medium CMMs
having 71 % positive co-occurrences, and large CMMs
having 79 % positive co-occurrences. We found little
evidence to support the idea of substrate competition
among pathways [8], regardless of CMM size, despite
many fermentation pathways deriving from the same
substrate. To the contrary, the two strongest positive
correlations were between pairs of pathways that branched
from a single substrate: the butanol and butyrate pathways
(r2=0.76; Fig. 2) and the acetate and ethanol pathways
(r2 = 0.59; Fig. 2). Fermentation pathways deriving from the
same substrate tended to have strong positive relationships

among themselves and also tended to respond similarly to
the presence or absence of other pathways (Fig. 2).

Seven negative relationships between pathways were
identified, with five of these being consistent across CMM
size classes. These consistent negative co-occurrences
may represent physiological trade-offs between adaptation
toward maximizing biomass yield and growth rate. A yield
versus growth rate trade-off has been previously suggested
[9, 10], and is supported by the multiple negative relation-
ships with the Entner-Doudoroff (ED) pathway observed
here. For example, we found a negative correlation between
ED and glycolysis. ED is found in a wide range of genomes,
despite having a lower ATP production efficiency [9].
Meanwhile, glycolysis is more efficient with twice the ATP
yield, but it incurs a greater enzymatic cost [9], potentially
leading to slower growth than ED (Fig. 2, Additional file 1:
Figure S1). ED also had non-positive relationships with
fermentation pathways containing three or more reactions
(Fig. 2). These longer fermentation pathways were found
primarily in fermentative anaerobes expected to grow
under energy-limited conditions, which have been shown
to favour energy-efficient glycolysis [9]. In these organisms,
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continued selection pressure for maximizing ATP produc-
tion may have led to an overall negative relationship be-
tween these fermentation pathways and ED.

ETC variations, predictions and ATP yield in core models

As metabolic models generally require an objective func-
tion (OF) that is optimized during flux balance analysis
(FBA) to predict flux profiles, we explored two OFs
(see Methods). In order to quantitatively predict energy
biosynthesis in CMMs, we used the ATP hydrolysis reac-
tion (ATP + H,O - > ADP + Pi + H") as one OF. Using this
OF we performed FBA on seven minimal media condi-
tions (Additional file 2: Table S10, http://coremodels.mc
s.anl.gov) with a range of electron acceptors to determine
the ATP yield under various environmental conditions
(Additional file 2: Table S5). These models were not
subjected to gapfilling and the predictions were based
solely on reactions derived from existing annotations. ATP
production depended on the carbon source used, type(s) of
electron acceptors available in the media, and the ability to
recycle cofactors through the fermentation pathways. This
analysis demonstrated a strong capacity for CMMs to

Page 4 of 11

capture variations in growth yields and flux profiles based
on the electron donor and acceptors present in the media
(Fig. 3). When grown in the presence of oxygen, facultative
anaerobes, such as Escherichia coli and Pseudomonas
putida preferentially use oxygen as the preferred electron
acceptor [11, 12]. Thus aerobic conditions using glucose as
the primary carbon source resulted in the highest yields for
these organisms, enabled by oxidative phosphorylation
activity. FBA simulations also showed variations in ATP
production among different carbon sources. For example,
when E.coli or Salmonella enterica were grown anaerobi-
cally in glucose or glycerol with nitrate as the electron
acceptor, predicted ATP production from glycerol (per-mol
basis) was lower than ATP production from glucose
(per-mol basis), as expected given that glycerol is a more
oxidized carbon source (Fig. 3). We also note that when
CMMs are grown aerobically, in some cases the flux
distributions show that they use aerobic respiration in
combination with fermentation. We notice that about 12 %
(716) of the models that are able to produce ATP show this
behavior. This result agrees with observed behavior when
organisms are grown under laboratory conditions [13-16].

mmol ATP/mmol of Glucose or Glycerol

Glc-with 02 Glc-Nitrate

Glc-w/o 02

for FBA simulations

Glc-TMAO

Glucose(Glc) or Glycerol(Gly) minimal media with various electron acceptors

Fig. 3 Predictions of ATP yields using FBA on selected core models. The ATP yield predictions were simulated in presence of aerobic, anaerobic
electron acceptors (nitrate, TMAQO) and without any electron acceptors. Glucose or glycerol was used as the carbon source. Labeled bars show
the mmol of ATP/mmol of glucose/glycerol for Escherichia coli K12 and Clostridium botulinum A str. ATCC 3502. ATP hydrolysis is used as the OF
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i Bacillus subtilis subsp. subtilis str. 168
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Variations in anaerobic respiration also resulted in differing
yields due to differences in the number of protons pumped
out of the cell membrane in response to particular electron
acceptors and due to differences in the degree of substrate-
level phosphorylation. Some obligate anaerobic organisms
belonging to the class Clostridia (e.g. Clostridium acetobu-
tylicum) have neither aerobic nor anaerobic respiration;
hence such organisms use fermentation as the sole means
of ATP production [17]. Their yields in our simulations
were constant regardless of the electron acceptors present
(Fig. 3). Thus, CMMs are accurate enough to capture ATP
yields by integrating only relevant ETCs based on consis-
tent RAST annotations. Our E. coli model predicts ATP
yields under aerobic respiration and anaerobic fermentation
that closely agree with the theoretically determined values
described in Kaleta. et al and Muir. et al respectively
[18, 19]. Specifically, we predict 26.5 mmol ATP/mmol of
glucose during aerobic growth (literature value 26) and
2.75 mmol ATP/mmol of glucose during anaerobic
fermentation (literature value range 2.8-3.2). Further-
more, analysis of CMMs shows that organisms such as
Bacillus subtilis or Streptomyces coelicolor, which are clas-
sified as obligate aerobes in the public domain, in fact do
have the ability to respire anaerobically in the presence of
nitrate. These predictions are in agreement with previous
studies done on these organisms [20, 21]. Analysis of
CMMs can shed light on respiratory capabilities of any
sequenced bacterium and generate hypotheses regarding
which sets of environmental conditions favour its activity.
A complete list of FBA results from our CMM simulations
can be found in Additional file 2: Table S5.

Fermentation is an essential process for obligate anaer-
obes to produce ATP and for many facultative anaerobes,
which use it to produce ATP when suitable exogenous
electron acceptors are not present. It is also important for
metabolic engineering applications, as it is a primary
means of producing many biofuel molecules. Analysis of
CMMs for the ability to produce fermentation products
showed that obligate anaerobes and facultative anaerobes
are able to use a variety of fermentation pathways when
oxidizing sugars under anaerobic conditions. For example,
FBA simulations of a taxonomically diverse set of orga-
nisms including facultative anaerobes and anaerobes
grown in glucose solely by fermentation, show ATP yields
around 2 mmol ATP/mmol of glucose for wide range of
bacteria [1, 17] (Fig. 3, Additional file 2: Table S5). In our
analysis we found that fermentation pathways, including
formation of formate, ethanol, and acetate, are conserved
in the classes Bacilli and alpha, gamma and beta preoteo-
bacteria (Additional file 1: Figure S3). 91 % of acetate,
93 % of ethanol and 84 % of formate producing pathways
are present in models belonging to one of those four
classes. Volatile fermentation products such as acetone, bu-
tyrate, butanol, and 2,3 butanediol (BDOH) are conserved
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mostly in organisms belonging to the Bacilli and Clostridia
classes. A complete list of FBA results from these simu-
lations can be found in Additional file 2: Table S5. A
complete list of the organisms and the presence and ab-
sence of fermentation pathways can be found in Additional
file 2: Table S4.

Coverage of the core model template

Our reconstruction of CMMs for over 8000 microbial
genomes provides a means of evaluating the extent to
which the annotations and biochemistry comprising our
core-model template are sufficient to capture at least one
of the energy biosynthesis strategies for each sequenced
organism used in this study. To conduct this evaluation,
we simulated FBA on all CMMs in seven media condi-
tions using ATP production as the OF. Our analysis shows
that about 6,600 (80 %) of the CMMs have some type of
aerobic electron transport chain (ETC), whereas about
5,100 (62 %) have an anaerobic ETC; and 1,279 (15 %) of
CMMs do not have any ETC. Furthermore, we see that
5,291 models (65 %) were able to produce ATP in glucose
minimal media aerobically, while up to 61 % of the CMMs
were able to produce ATP with each of the alternate
electron acceptors (AEA) examined here. 4,440 (54 %)
CMMs were able to grow solely by fermentation when no
electron acceptors were present. If AEAs were present in
the medium, then CMMs with ETCs tended to use anaer-
obic ETCs via reduction of the terminal AEAs. This study
demonstrates that using CMMs in standard FBA while
maximizing energy production can produce accurate pre-
dictions for a wide range of organisms.

We also identified 2,495 (30 %) CMMs those were unable
to produce ATP under any of the tested conditions
(Additional file 2: Table S6). We found two explanations for
the lack of ATP production in these species: (1) many
species are parasitic and have lost key genes in their central
metabolism which results these organisms unable to
oxidize glucose or glycerol to produce energy and biomass,
and (2) annotation inconsistencies or missing annotations
in the respective genomes. To explore the extent of key
missing reactions in central metabolic pathways, we simu-
lated the CMMs with a biomass OF based on biomass
precursor stoichiometry derived by Varma and Palsson (see
Methods, Additional file 1: Figure S1 and Additional file 2:
Table S12). Models were subjected to gapfilling [6] using
glucose as the sole carbon source and oxygen as the elec-
tron acceptor. Our analysis shows 3,415 models (42 %)
across different phyla did not require any gapfilling to pro-
duce all 12 central carbon biomass precursors (Additional
file 1: Figure S1). Of the remaining 4,667 models that
required gapfilling, 3,183 (66 %) required five or fewer
reactions to be added or modified in order to generate all
biomass precursors (Fig. 4, Additional file 2: Table S7). It is
possible that these models did not grow on glucose because
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they lack the pathways needed to utilize glucose as a sole
carbon source. Thus we explored the capacity of these
models to utilize one or more alternative carbon sources,
including glycerol, lactate, succinate and ribose. This study
revealed that only a small percentage of the models that
failed to grow on glucose (<0.03 %) were able to utilize one
of these alternate carbon sources instead (Additional file 2:
Table S11). From this result, we can conclude that most of
the models that fail to grow on glucose do so because of
gaps in the biosynthetic pathways for the production of one
or more biomass precursor compounds. We applied flux
balance analysis with these models to identify which spe-
cific biomass precursors could not be produced by each
model. This data is provided in Additional file 2: Table S7.

In our gapfilling analysis, we found that over 1000
organisms were missing an annotation for the anaplero-
tic reaction “Pyruvate carboxylase (EC 6.4.1.1)” that is
required to supplement oxaloacetate during glucose
oxidation in Gram positive bacteria [17]. Among heavily
gapfilled models, many of the organisms that were iden-
tified belonged to genera known for either parasitic or
pathogenic lifestyles including Streptococcus, Clostridium,
Lactobacillus, Bifidobacterium, Enterococcus, Helicobacter,
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and Campylobacter as well as more apparently parasitic
bacteria with small genomes in the genera Rickettsia,
Ureaplasma, Borrelia, Chlamydia, Treponema and Myco-
plasma [22, 23] (Additional file 2: Table S7). These organ-
isms lack the ability to synthesise a range of intermediates
in central metabolic pathways, primarily in the TCA cycle,
which prevent their growth in glucose. In addition, this
analysis was able to capture the reactions and metabolites
that are absent in these organisms due to a loss of genes
in glycolysis, pentose phosphate pathway, and the TCA
cycle, which are the key precursors for synthesis of amino
acids, vitamins, cofactors and lipids [1] (Additional file 1:
Figure S1). We suggest that this type of analysis is useful
in screening likely parasitic organisms. A complete list
of organisms and their gapfilling analysis is available in
Additional file 2: Table S7.

Exploration and analysis of CMM pathways in a
phylogenetic context

We explored the potential presence of annotation incon-
sistencies in our models by examining CMM biochemical
pathways within a phylogenetic context (Fig. 2, Additional
file 1: Figure S4). We found that missing or incorrect
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annotations can be systematically recognized and fixed
with high accuracy when genome annotations are ana-
lysed in the context of biochemical pathways. Having the
ability to visualize these pathways with respect to phylo-
genetic relationships (Additional file 1: Figures S4 and S5),
annotators can see the propagation of incorrectly anno-
tated pathways in closely related genomes in order to
correct them. We also demonstrate the value of focusing
on the most well curated pathways first, as with these
pathways errors may be more easily separated from novel
biology.

In our analysis we identified multiple missing or incor-
rect annotations including transporter genes, key genes
in central metabolism and fermentation pathways. For
instance, through our analysis we noticed an aerobic ETC
present in obligate anaerobes belonging to the genus
Bacteroides. This error was due to an incorrectly anno-
tated “ubiquinol cytochrome oxidase” gene throughout
this genus. Usually ubiquinol-based cytochrome oxidases
could not be found in obligate anaerobes. We corrected this
issue in our models. Additionally, we improved the specifi-
city of our annotations where appropriate, such as “cyto-
chrome O ubiquinol oxidase subunit IV (EC 1.10.3.-)”
instead of “ubiquinol cytochrome oxidase”. We then inte-
grated these new more-specific functions into our template.
We also noticed that the genus Acinetobacter does not
appear to have functional glycolysis or ED pathways for the
degradation of glucose, yet previous studies have suggested
that many Acinetobacter species are able to utilize the ED
pathway for oxidization of glucose [24, 25]. We found that
all enzymes in the ED pathway are consistently annotated
in Acinetobacter except for the enzyme “Gluconolactonase
3.1.1.17”. This apparent inconsistency may in fact be bio-
logically accurate, because the reaction catalysed by this
enzyme has been shown to occur spontaneously, and thus
the enzyme may not be necessary in every organism con-
taining the broader pathway [26].

It has been known that some members of Streptococcus
produce formate during fermentation [27], yet no annota-
tions representing formate transporters were found within
the Streptococcus genus. We also identified key missing
gene-protein reaction associations within the CMM tem-
plate, such as Polyphosphate glucokinase (EC 2.7.1.63), a
gene that is abundant in many Actinobacteria [28]. Anno-
tation inconsistencies can be a result of multiple factors
including poorly sequenced areas of the genomes, assem-
bly errors, and missed or incorrectly assigned annotations.
Through this study we also determined that the genome
annotations associated with important reducing reactions
for iron, chromium, sulphur, and sulphur derivatives are
either not present or not fully propagated among the
RAST annotated genomes. In RAST, the consistent propa-
gation of functional annotations is driven by the creation,
curation, and maintenance of annotation subsystems [29].
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Often, when a subsystem is missing, this is due to a lack
of literature data required to accurately assign constituent
functions across a diverse set of microbial genera. Proper
annotation of these reducing reactions will ultimately
permit the prediction of at least one energy production
strategy for additional organisms, further improving the
coverage of energy production by our CMMs. The ap-
proach we used in this study to explore and identify incon-
sistent or missing annotations in our CMMs by evaluating
the coverage of our core model template, comparative ana-
lysis of complete biochemical pathways across the microbial
tree of life, and gapfilling analysis all represent promising
routes to producing consistent annotations.

Conclusions

Here we present CMMs and comparative analysis for over
8,000 completely sequenced genomes in diverse phylo-
genetic groups that are derived from a manually curated
core model template. Unlike the complexity of genome
scale models, CMMs are simpler, offering a quick and
accurate way of determining: (i) respiration type(s)
(Additional file 1: Figure S5 and Additional file 2: Table
S8) and ATP yield predictions (Fig. 3), (ii) electron accep-
tors that can be reduced during anaerobic respiration
(Additional file 2: Table S5), (iii) ability to produce useful
fermentation products (Additional file 1: Figure S3 and
Additional file 2: Table S4), (iv) presence/absence of func-
tional pathways in central metabolism (Additional file 1:
Figure S4 and Additional file 2: Table S4) and (v) evaluate
ability to produce key pathway intermediates in central
metabolism which are precursors of essential biomass
compounds (Additional file 2: Table S7). Having integrated
a set of highly curated reactions that represent ETCs,
fermentation, and central metabolic pathways, CMMs are
able to predict ATP vyield variations under aerobic and
anaerobic conditions mediated by anaerobic electron accep-
tors present in the growth medium (Fig. 3) [18, 30]. Using
glucose or glycerol as the sole carbon source, we found
~30 % (2,495) of the genomes (Additional file 2: Table S6)
used in this study could not be simulated to produce ATP
solely based on existing RAST annotations due to incom-
plete or missing annotations that mapped to reactions
comprising the energy producing pathways and ETCs. A
major piece of missing ETCs consisted of key reducing
reactions for inorganic electron acceptors including iron,
chromium, and sulphur that are not consistently annotated
across the prokaryotic tree of life. Annotation inconsis-
tencies and missing annotations identified in this study
evaluate the quality of RAST annotations and highlight the
areas where more attention is needed. Metabolic pathway
determination data (Additional file 2: Table S4) and respi-
ration type determinations (Additional file 2: Table S8) are
a valuable resource in recognizing inconsistent annotations
across the tree of life, even at short phylogenetic distances.
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Using pathway determinations we identified patterns in
pathway co-occurrence and identified potential physio-
logical trade-offs that may influence the ability of organisms
to maintain individual central metabolic pathways (Fig. 2).
While these tools and analyses were developed specifically
to examine central metabolism, the approach is easily
scalable to consider the entire metabolic network or other
subsets of metabolism of interest enabling researches to
address specific research goals.

Methods

Core model reconstruction pipeline

CMMs were built on the previously developed metabolic
modeling tool Model SEED [3], where the model construc-
tion pipeline begins with gene annotations of microbial
genomes provided by RAST [29]. This combined use of
RAST annotation and Model SEED reconstruction results
in high-quality genome annotations, enzyme identification,
reaction network assembly, and thermodynamic analysis of
reaction reversibility. Our reconstructions of CMMs were
achieved by creating a “core model template” (CMT),
which consists of a highly curated set of biochemical reac-
tions derived from a well-studied, phylogenetically diverse
set of model organisms including E. coli, B. subtilis, Pseudo-
monas aeroginosa, Clostridium acetobutylicum, and Para-
cococcus denitrificans 1, 17, 31-35].

In total, we selected ~200 unique reactions (Additional
file 2: Table S3) comprising glucose oxidation pathways
(glycolysis, ED, TCA cycle, and pentose phosphate path-
way) and fermentation pathways (producing end products:
lactate, acetate, formate, ethanol, 2,3-butanediol, butyrate,
butanol, and acetone) linked directly to central carbon
metabolism [36] (Additional file 1: Figure S1) as well as
variations in bacterial ETCs [37—46]. These pathways were
chosen because they are found across a phylogenetically
diverse group of organisms and are relatively well studied
and consistently annotated in RAST. We excluded some
ETC variants known to be important to energy biosyn-
thesis in some organisms (e.g. sulphate reduction path-
ways) because they were either not broadly distributed or
not consistently annotated by RAST. Absence of these
variations of ETCs may result in an inflated number of
organisms unable to grow in our FBA simulations due to
exclusion of these pathways of known importance, result-
ing in a conservative estimate of CMM coverage.

In the initial step of the pipeline, genome annotations
generated by RAST are applied in combination with our
CMT to generate a set of gene protein-reaction (GPR)
associations used to reconstruct each CMM (Additional
file 2: Table S2). This automated reconstruction process is
explained in detail in Henry, DeJongh et al. (2010). The
paired CMT and GPR associations were then applied to
build CMMs for 8,179 genomes using the Model SEED
model construction service. This service has recently been
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made publicly available for users through KBase (www.kba
se.us) services, which was built, in part, from RAST and
Model SEED. The core metabolic model construction pipe-
line with supporting commentary can be accessed through
KBase Narrative interface at https://narrative.kbase.us/nar
rative/ws.15253.0bj.1. The reconstruction of all models was
completed in less than 24 h. It is important to note the
flexibility of the model construction process. In this study
we designed a CMT supported by RAST annotations, yet
additional templates may be constructed based on other
annotation databases with their own annotation ontologies.
These templates can then be used to construct metabolic
models specifically tailored to address unique research
goals.

Metabolic models generally require an OF [47] that is
optimized during flux balance analysis to predict flux
profiles. In our CMMs, we explored two OFs: a biomass
biosynthesis objective function and an ATP hydrolysis
objective function. While CMMs do not include the
amino acids, nucleotides, lipids, and cofactors that are
typically included in the biomass biosynthesis objective
function of genome-scale models, they do include the
central carbon precursor metabolites for these com-
pounds. Thus the biomass biosynthesis OF for our CMMs
was constructed based on the biomass precursor stoi-
chiometry derived by Varma and Parlsson [48] and used
in one of the earliest models of E. coli [48, 49] (Additional
file 1: Figure S1). Coefficient values for NADPH and
Erythrose-4-Phosphate have been modified in our OF
from the original source material (Additional file 2: Table
S12). When analysing CMMs using the biomass bio-
synthesis OF, we found that occasionally gapfilling was
required to enable synthesis of all essential biomass pre-
cursors (Fig. 4). To permit a focused study of energy
biosynthesis in our models without gapfilling, we deve-
loped a second OF for our CMMs consisting only of the
ATP hydrolysis reaction: ATP+H,O ->ADP +Pi+H".
Using this OF, we computed ATP production yields in all
models without any gapfilling; hence, these computations
were based solely on reactions derived from existing
RAST annotations.

Integration of electron transport chains into core models

Many current metabolic models have a simplified version
of ETC, lacking representation of multiple steps of proton
pumping reactions or lacking reactions that are related to
the reduction of anaerobic electron acceptors (e.g. nitrate,
dimethyl solfuxide) resulting in inaccurate prediction of
ATP production. These issues persist because of difficul-
ties integrating ETCs into models. In designing ETCs for
the CMMs, we incorporated well-studied variations of
ETCs in model organisms that were supported by consis-
tent RAST annotations, and we integrated these variations
into our CMT (Additional file 2: Table S3). This CMT
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includes new GPR associations for ETCs to facilitate
diverse proton pumping reactions, terminal electron
acceptor reducing reactions, and key fermentation path-
ways, which increased the accuracy of the ATP yield
predictions (Fig. 3). As more consistent annotations be-
come available representing a broader range of ETC varia-
tions, those GPR associations will be added to our
template to expand the coverage of ETC by our CMMs.
Organisms that contain at least one type of respiration
chain are classified as aerobic or anaerobic, while organ-
isms that contain both aerobic and anaerobic respiration
chains are classified as facultative (Additional file 1: Figure
S5 and Additional file 2: Table S8).

Pathway determination in central metabolism

One of the key advantages of metabolic models is the ability
to predict phenotypes based solely on genomic sequence.
We have examined microbial phenotypes through com-
parative analysis of the presence or absence of 12 key
energy biosynthesis-related pathways (Fig. 2) and respi-
ration types (Additional file 1: Figure S2 and Additional file
2: Table S8). We developed a set of Boolean rules to deter-
mine the presence and absence of each pathway based on
reactions present in the CMM. The Boolean rules allow for
alternative reactions within an individual step of each path-
way, but every step of each pathway must be annotated in
order for the pathway to be classified as present. Next, we
organized all CMMs by their taxonomic groups against
pathway presence and absence data (Fig. 2). Taxonomic
groups that are displayed in the horizontal axis of Fig. 2
were sorted sequentially as they appear in a 16S rRNA
based phylogenetic tree (see Generation of Phylogenetic
Trees and Pathway Visualization). As a result, we were able
to analyse the distribution patterns of these key pathways
among major phylogenetic groups.

Pairwise comparisons of the presence or absence of
individual pathways were conducted using the Hmisc
[50] and corrgram [51] packages in R [52] version 2.15.1
to examine pathway co-occurrence patterns across
CMMs. Co-occurrence analysis was performed after the
removal of models associated with identical 16S sequences
from the dataset; this criterion was applied strictly, with
only one representative model selected for each sequence
analysed (n=4117). To control for the increased like-
lihood of positive co-occurrences with larger CMM size,
all analysis were performed on three size classes: small
(<93 reactions, n = 1353), medium (93-133 reactions, n =
1416), and large (>133 reactions, n = 1348), as well as the
entire non-redundant dataset. Boolean vectors containing
presence/absence information for each of the 12 key
energy biosynthesis pathways was used to examine the
diversity of pathway combinations present within the
CMMs. Pathway presence and absence data is included
for all CMMs in Additional file 2: Table S4.
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Generation of phylogenetic trees and pathway
visualization

We constructed a phylogenetic tree for all CMM genomes
using the SEED server tools [53]. Specifically, we extracted
all copies of 16S ribosomal RNA sequences from the
complete list of 8,179 genomes. This was done by blasting
these genome contigs against a curated database of 92
diverse 16S references. For each genome, the matched
sequence with the best bit score was kept (8 genomes
were removed because they did not produce a 16S hit that
passed the quality threshold). The remaining sequences
were aligned using the MAFFT aligner [54] and a phylo-
genetic tree was built using the FastTree2 program [55].
The resulting phylogenetic tree was collapsed at an evolu-
tionary distance of 0.01 under the general time-reversible
model of nucleotide evolution. That is, for each maximal
subtree where all the pairwise leaf distances are below
0.01, the leaf that corresponds to the genome with the
highest sequence quality (based on assembly and annota-
tion metrics) in the group was chosen to represent the
subtree. This process is akin to clustering genomes into
operational taxonomic units (OTU**?) and resulted in a
representative tree of 1,864 genomes.

We then mapped presence/absence information of
subsets of the key pathways to each genome as a Boolean
vector (e.g., “Glycolysis: yes, Gluconeogenesis: no, Entner-
Doudoroff: yes” or Aerobic: yes, Anaerobic: yes, Faculta-
tive: yes) and drew circular trees using the iTOL tree
visualization tool [56]. The tree branches are color coded
by the pathway vector, and the leaves are labeled by
species names at the outer ring (Additional file 1: Figures
S4 and Figure S5). The visual juxtaposition of species
phylogeny and their core pathway profiles (reflected in the
figures as color changes) allows visual discernment of
metabolic diversity across the tree, as well as identifying
potential annotation errors when the metabolic profile of
a single genome varies distinctly from all close neighbors.

Tools for CMM comparison and analysis

We developed a web resource for exploring, comparing,
and analysing our CMMs, called the Core Model Viewer
(http://coremodels.mcs.anl.gov). In this tool, a list of models
and links to associated genomes, media, and FBA results
can be found under “Models”. Once on a model page, com-
prehensive tables of model reactions, compounds, gapfilled
reactions, and ETC diagrams are made available. Tables of
genome, media, and FBA data are organized similarly. For
comparative analysis, a subset of FBA results can be
selected from the models page and compared side-by-side
on a heat-map (Additional file 1: Figure S6) or on metabolic
pathway maps derived from KEGG [57, 58]. These tools
permit the comparison of gene presence/absence, gapfilled
reactions, FBA analyses, and ETC data for the selected


http://coremodels.mcs.anl.gov/

Edirisinghe et al. BMC Genomics (2016) 17:568

models and enable researchers to further explore the
models and results presented here.

Additional files

Additional file 1: Supplemental figures and figure descriptions. In
addition, descriptions for each supplemental data tabs in “Additional file
2" are included at the end of the document. (DOCX 17183 kb)

Additional file 2: Supplemental data table associated with this study.
There are twelve data tabs included in this table. Description for each
data tab is at the end of "Additional file 1" document. (XLSX 2418 kb)
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