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Abstract

Background: MicroRNAs (miRNA) are varied in length, under 25 nucleotides, single-stranded noncoding RNA that
regulate post-transcriptional gene expression via translational repression or mRNA degradation. Elevated levels of
miRNAs can be detected in systemic circulation after tissue injury, suggesting that miRNAs are released following
cellular damage. Because of their remarkable stability, ease of detection in biofluids, and tissue specific expression
patterns, miRNAs have the potential to be specific biomarkers of organ injury. The identification of miRNA biomarkers
requires a systematic approach: 1) determine the miRNA tissue expression profiles within a mammalian species via next
generation sequencing; 2) identify enriched and/or specific miRNA expression within organs of toxicologic interest,
and 3) in vivo validation with tissue-specific toxicants. While miRNA tissue expression has been reported in rodents and
humans, little data exists on miRNA tissue expression in the dog, a relevant toxicology species. The generation and
evaluation of the first dog miRNA tissue atlas is described here.

Results: Analysis of 16 tissues from five male beagle dogs identified 106 tissue enriched miRNAs, 60 of which were
highly enriched in a single organ, and thus may serve as biomarkers of organ injury. A proof of concept study in dogs
dosed with hepatotoxicants evaluated a qPCR panel of 15 tissue enriched miRNAs specific to liver, heart, skeletal
muscle, pancreas, testes, and brain. Dogs with elevated serum levels of miR-122 and miR-885 had a correlative
increase of alanine aminotransferase, and microscopic analysis confirmed liver damage. Other non-liver enriched
miRNAs included in the screening panel were unaffected. Eli Lilly authors created a complimentary Sprague Dawely rat
miRNA tissue atlas and demonstrated increased pancreas enriched miRNA levels in circulation, following caerulein
administration in rat and dog.

Conclusion: The dog miRNA tissue atlas provides a resource for biomarker discovery and can be further mined with
refinement of dog genome annotation. The 60 highly enriched tissue miRNAs identified within the dog miRNA tissue
atlas could serve as diagnostic biomarkers and will require further validation by in vivo correlation to histopathology.
Once validated, these tissue enriched miRNAs could be combined into a powerful gPCR screening panel to identify
organ toxicity during early drug development.
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Background

MicroRNAs (miRNA) are varied in length, under 25 nu-
cleotides, single-stranded noncoding RNA that regulate
post-transcriptional gene expression via translational re-
pression or mRNA degradation [1]. miRNAs have prop-
erties which makes them ideal candidates for bio-fluid
based biomarkers. miRNAs are detectable in a wide var-
iety of biofluids [2-5], are stable in serum and can be
quantified using sensitive and specific qPCR assays. miR-
NAs have been associated with and put forth as putative
biomarkers of human disease, including hepatitis C
(miR-122) [6], cardiovascular diseases (miR-192) [7] and
various types of cancers [8].

Many miRNAs are highly conserved among mamma-
lian species and demonstrate tissue-specific expression
[1, 9-14]. In humans, there are approximately 2600 an-
notated human miRNAs in miRBase (v. 21) [15]. Studies
comparing expression among vertebrates (zebrafish,
chickens, and mice) have demonstrated that miRNA ex-
pression is not strictly conserved [11]. Not all human
miRNAs are detected in other mammalian species [10,
14, 16]. However, there are examples of validated bio-
markers such as miR-122, which is detectable in the
blood after liver injury in mice, rats, dogs and humans
[9, 17-20]. Thus, miRNA biomarkers have great poten-
tial as translatable tools to monitor for organ specific in-
jury throughout all phases of drug safety assessment.

The identification of novel miRNA biomarkers requires
a systematic approach to: 1) determine the miRNA tissue
expression profiles within a mammalian species via next
generation sequencing (miR-seq); 2) identify enriched
miRNA expression within organs of toxicologic interest;
and 3) validate in vivo using select toxicants. miRNA ex-
pression atlases and candidate biomarkers of organ spe-
cific injury have been investigated to varying degrees in
rodents and humans [5, 12, 21]. Dogs are a relevant pre-
clinical species that are used in nonclinical safety assess-
ments [22, 23]. However, little is known about dog
miRNA expression or annotation of sequences.

This work describes an miRNA atlas of 16 tissues
from male Marshall Beagle dogs that was compiled
using miR-seq. In the miRNA dog tissue atlas pre-
sented, 106 tissue enriched miRNAs were identified, 66
of which demonstrated a high level of enrichment in
different tissues. Comparison of the dog atlas to cur-
rently available literature suggests that most highly
enriched miRNAs are conserved across the target or-
gans. The most unique miRNAs identified in the dog
tissue atlas were found in the central nervous system,
which is consistent with other species [5, 24]. Quantita-
tive reverse transcription PCR (Q-RT-PCR) of tissue ex-
tracts confirmed the enrichment of most miRNAs
identified by miR-seq analysis. Finally, the specificity of
the candidate miRNA biomarkers was demonstrated
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through proof of concept (POC) studies with estab-
lished liver toxicants.

In parallel to this effort, Eli Lilly authors have con-
structed a rat miRNA tissue atlas using miR-seq in 5
male and 5 female Sprague Dawley rats and 21 and 23
organs, respectively. Publication of both miRNA tissue
atlases will provide an invaluable resource for the
characterization of potential biomarkers of organ injury
in the two most common nonclinical species used in
drug development safety assessment.

The ultimate objective of this collaboration will be to as-
semble a serum based Q-RT-PCR screening panel of vali-
dated miRNA biomarkers of organ injury. The basic
miRNA panels described herein and in the complimentary
rat miRNA tissue atlas manuscript may be valuable tools
in the early stages of drug development to understand test
article-related target organ profiles.

Methods

Tissue sample collection

Sixteen different tissues were harvested from five 10-
month old male Marshall Beagle dogs at Bioreclamation,
LLC including: liver, heart, testis, lung, skeletal muscle
(quadriceps), kidney, thymus, brain, sciatic nerve, pan-
creas, small intestine (duodenum, jejunum, and ileum),
colon, bone marrow, and plasma. In order to minimize
the contribution of blood cells to miRNA expression de-
tected in individual organs, dogs were perfused with
phosphate buffered saline prior to collection of organs
analyzed in the dog tissue atlas. Tissue samples were
placed in RNAlater® solution (Life Technologies), snap
frozen in liquid nitrogen, and then stored at -80 °C until
RNA isolation and miR-seq analysis.

RNA isolation

For tissues, samples were homogenized with lysis buffer
(RLT [Qiagen] + 1 %-p mercaptoethanol) using a rotor-
stator homogenizer. RNA was extraced from tissue hom-
ogenate with KingFisher™ Pure RNA Tissue Kit (Thermo
Scientific). Briefly, tissue homogenates were combined
with magnetic beads and ethanol, and loaded onto a
KingFisher Magnetic Particle Processor (Thermo Scien-
tific). Samples were DNase-treated, washed, and eluted
in RNase-free water. Due to the low level of total RNA
isolated from dog sciatic nerve, the five individual sam-
ples were pooled and split into three sample replicates
for analysis. RNA isolation of the bone marrow was per-
formed with 3-fold volume of TriReagent LS (Life Tech-
nologies). Additional details are in the Additional file 1.

Assessment of RNA purity, quantity, and integrity

The purity and quantity of total RNA samples were de-
termined by absorbance readings at 260 and 280 nm
using a NanoDrop ND-1000 UV-Vis spectrophotometer
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(Thermo Scientific). The integrity of total RNA was
assessed by capillary electrophoresis using an Agilent
Bioanalyzer 2100 (Agilent).

miR-seq annotation and sample analysis

Dog miRNAs were aligned to the canine genome identi-
fied by the annotation prefix canis familiaris annotation
(cfa). The annotation of mature miRNAs within miRBase
was much smaller for dog (453 miRNAs) than for rat
(765) or human (2588). Given the hypothesis that most
miRNAs are conserved across mammalian species, a more
comprehensive annotation of the dog miRNA tissue atlas
was conducted using annotation from dog, rat, and hu-
man mature miRNA sequences. This was accomplished in
four sequential steps: 1) identification of mature miRNA
sequences for dog, rat, and human (n = 3896) using miR-
Base v.21; 2) consolidation of mature miRNA by eliminat-
ing sequences that were conserved across all three species
(n =3355); 3) alignment of sequences from the dog genome
using Omicsoft Sequence Aligner (OSA) v4, and retained
sequences that aligned with zero mismatches (n=1087);
and 4) merging of miRNAs that aligned to approximately
the same location. This process resulted in the annotation
of 857 miRNAs in the dog genome, including 314 putative
dog miRNAs that were annotated using rat and/or human
miRNA sequences which were not present in the current
dog miRNA genome.

Total RNA from dog tissue samples were analyzed
using miR-seq. A TruSeq Small RNA Library Kit (Illu-
mina) was used for library construction of dog tissue
RNA. Sequencing was performed on the GAIllx (Illu-
mina) at 36 base pair read length and targeting 12 mil-
lion reads per sample. Adaptor sequences were clipped
and OSA v4 (http://omicsoft.com/osa) was used to align
the reads to the dog genome (CanFam3.1) [25] allowing
zero mismatches and excluding any reads that aligned to
greater than 10 genomic locations. Expression levels were
quantified using bedtools (https://github.com/arq5x/bed-
tools2). Aligned reads were counted in miRNA expression
only if they overlapped with at least 70 % of known or pu-
tative miRNA loci. Additional details of analyses are de-
scribed in the Additional file 1.

Hereafter, we define two terms to describe the enrich-
ment status of miRNA: tissue enriched (TE) and highly
tissue enriched (HTE). Briefly, an miRNA was consid-
ered to be TE if the fold-change level within the tissue
of interest was>5, and the FDR-corrected Wilcoxon
Rank-Sum p-value was <0.05 [26]. To be classified as
HTE, the miRNA median expression required > 5 fold
higher expressed compared to the maximum expression
value observed in any other tissue analyzed and was
only detected in <2 tissues within the atlas. Details of
the criteria used for these terms are described in the
Additional file 1.
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miRNA atlas verification

Q-RT-PCR analysis was conducted to verify the expres-
sion levels of candidate miRNAs identified via miR-seq.
Briefly, total RNA was reverse transcribed using the
Applied Biosystems TagMan MicroRNA RT Kit (Life
Technologies) according to manufacturer instructions.
For each PCR reaction, cDNA was mixed with Applied
Biosystems TaqMan Universal PCR Master Mix, No
AmpErase’ UNG (Life Technologies). All amplifications
were performed in triplicate using a 7900HT Fast Real-
Time PCR System (Applied Biosystems). Technical
replicate threshold cycle (C,) values were averaged for
each sample. C, values greater than 38 were removed
from the analysis because they were within a 10-fold
level of the final cycle and were deemed less reliable
or not expressed. Relative miRNA expression quantifi-
cation was derived using the ACt method [27]. Add-
itional experimental details are described in the
Additional file 1.

Atlas utilization in dog toxicology studies

Naive male beagle dogs (approximately 10 months old)
were acquired from Marshall BioResources. Animals
were housed in a facility accredited by the Association
for Assessment and Accreditation of Laboratory Animal
Care International. At the end of study, liver samples
were harvested and placed in neutral buffered formalin
for a minimum of 24 h before trimming, embedding,
and histopathologic processing. Slides for histopatho-
logic assessment were prepared using hematoxylin and
eosin staining. Histopathologic assessment of liver sec-
tions was conducted by a board certified veterinary
pathologist.

Assessment of a 5 miRNA biomarker screening panel in a
7-day repeat-dose study with Compound X

Three male dogs per group were administered either ve-
hicle (10 % hydroxypropyl-beta-cyclodextrin [HP-B-CD]
+ 3.5 % NaHCO3) or Compound X at 500 mg/kg via oral
gavage twice daily for seven consecutive days. Animals
were fasted overnight prior to the end of study on Day 8
(24 h after the last dose). Liver tissues were harvested
for histopathologic assessment and serum was collected
for serum chemistry and Q-RT-PCR analysis using a 5
miRNA biomarker screening panel. The miRNAs evalu-
ated were cfa-miR-122 and cfa-miR-885 (both consid-
ered to be highly liver enriched) as well as putative
negative controls for heart (cfa-miR-1), pancreas (cfa-
miR-216a), and muscle (cfa-miR-133a).

Assessment of a 22 miRNA biomarker screening panel in
a 14-day repeat-dose study with Compound Y

Six male dogs per group were administered either vehicle
(0.5 % methylcellulose) or 600 mg/kg of Compound Y via
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oral gavage daily for 14 days. Blood samples were collected
on Days 1, 7, and 14 (at predose, and 24 h postdose) for
serum chemistry and Q-RT-PCR analysis of 22 miRNAs.
The miRNAs evaluated were cfa-miR-122 and cfa-miR-
885, and an extended panel of non-liver enriched miRNAs
for heart/muscle (cfa-miR-1, -133a/b, and -208b), heart
(cfa-miR-499), muscle (cfa-miR-206), brain and sciatic
nerve (cfa-miR-212 and -432), testis (cfa-miR-34b/c), pan-
creas (cfa-miR-216a/b), putative liver (cfa-miR-21 and
-192) and ubiquitous controls (cfa-miR-16, -29a, and
-186). Dogs were euthanized on Day 15 (24 h after the last
dose) and liver tissue was harvested for microscopic
assessment.

Results and discussion

Atlas tissue, RNA, and sequencing quality

This work describes the first comprehensive miRNA
atlas of 16 tissues from male beagle dogs that was gener-
ated using miR-seq. Similar miRNA tissue atlases exist
for other toxicologically relevant nonclinical species,
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such as the rat and monkey [5, 28]. Collectively, these
atlases may contribute to the identification and monitor-
ability of organ specific toxicities and provide an add-
itional tool in the drug development process.

Data from five samples per tissue type were included
in miR-seq analysis to generate the dog miRNA tissue
atlas with the following exceptions: only 4 of 5 colon
samples and 3 sciatic nerve miRNA samples were in-
cluded in downstream enrichment analysis. The 3 sciatic
nerve samples comprised 2 individual samples and 3
samples were pooled due to low RNA yields. Quality as-
sessments used for sample analysis included Spearman’s
(Rank %) correlation of miRNA expression across all
tissue samples (Fig. 1a), total tissue RNA (RNA integrity
number [RIN]) the number of miRNAs, and the percent
mapped reads in each tissue sample (Fig. 1b). Based on
Spearman’s correlation, the majority of tissue expression
profiles demonstrated good reproducibility between tis-
sue samples of the same organ (average 1> 0.85) with
the exception of muscle, duodenum, testis, and thymus
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(Fig. 1la). Tissues with similar miRNA expression pat-
terns between organs included heart and muscle (aver-
age ”=0.8) and tissues of the upper and lower
gastrointestinal (GI) tract (duodenum, jejunum, ileum,
and colon; average r* =0.9). In contrast, the brain dem-
onstrated the most distinct miRNA expression profile
(average r*=0.3) when compared to all other tissues
examined.

miRNA sequencing: tissue enrichment analysis

miRNA alignment, annotation, and quantification

There are 453 annotated mature miRNA sequences for
the dog in miRBase (v.21), far less than for rat (765) or
human (2588). To increase the numbers of known miR-
NAs, a de novo annotation of dog miRNAs was per-
formed using known rat and human sequences as guides
(Fig. 2a). Sequence alignment with the combined rat,
dog, and human miRNA annotation resulted in the iden-
tification of 857 putative homologous miRNAs within
the dog genome. Of these, 650 miRNAs (355 from dog
and 295 from rat and/or human) were detected by miR-
seq and aligned to the genome of dogs, and 106 poten-
tial miRNA biomarkers were identified (Fig. 2b). A
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comprehensive list of the 106 potential miRNA bio-
markers and the tissues in which they were enriched is
presented in Fig. 2c. The similarity in sequences between
the dog miR-seq data and the 295 miRNAs annotated
using rat/human miRNA homologs strongly suggests that
these miRNAs, while not currently annotated in the dog
genome, are likely well conserved in the dog as well as in
rat and human. Additionally, 20 of the 66 highly tissue
expressed miRNAs were not annotated in the dog and in-
stead were identified through rat/human homologs.

miRNA enrichment

This study identified 298 miRNAs with normalized reads
per million (RPM) greater than 100 in at least one tissue.
Of these, 214 miRNAs were annotated dog miRNAs and
84 were identified using rat and/or human sequences. A
total of 106 dog miRNA sequences were TE, 66 miRNAs
were HTE and of these, 60 were enriched in only one
tissue while the remaining 6 were enriched in two tis-
sues (Fig. 3). Additional information about specific ma-
ture miRNA homologs in rats and humans is presented
in Additional file 2: Figure S1. The top 20 TE/HTE miR-
NAs from the dog atlas (Additional file 3: Figure S2) and
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Tissue miRNA Enrichment Tissue miRNA Enrichment
Brain miR-105a HTE Bone Marrow, Jejunum miR-374b TE
Brain miR-105b HTE Bone Marrow, Plasma miR-144 TE
Brain miR-124 HTE Bone Marrow, Plasma miR-25 TE
Brain miR-128 HTE Bone Marrow, Plasma miR-451 TE
Brain miR-132 HTE Bone Marrow, Plasma _miR-144 HTE
Brain miR-137 HTE Bone Marrow, Testis miR-450a TE
Brain miR-138a HTE Bone Marrow, Testis miR-450b TE
Brain miR-149 HTE Colon, lleum miR-147 TE
Brain miR-212 HTE Heart miR-499 HTE
Brain miR-219 HTE Heart, Striated Muscle miR-1 TE
Brain miR-323 HTE Heart, Striated Muscle miR-133a HTE
Brain miR-380 HTE Heart, Striated Muscle miR-133b TE
Brain miR-410 HTE Heart, Striated Muscle miR-208b TE
Brain miR-487a HTE Heart, Striated Muscle miR-133a HTE
Brain miR-487b HTE lleum, Jejunum miR-215 TE
Brain miR-874 HTE Liver miR-122 HTE
Brain miR-889 HTE Liver miR-3591 HTE
Brain miR-9-5p HTE Liver, Pancreas miR-148a-5p TE
Brain miR-92b HTE Pancreas miR-148a-3p HTE
Brain miR-105 HTE Pancreas miR-216a HTE
Brain miR-128 HTE Pancreas miR-216b HTE
Brain miR-129 HTE Pancreas miR-217 HTE
Brain miR-1298 HTE Pancreas miR-375 HTE
Brain miR-132 HTE Pancreas miR-216a HTE
Brain miR-136 HTE Pancreas miR-217 HTE
Brain miR-139 HTE Pancreas, Jejunum miR-141 TE
Brain miR-212 HTE Pancreas, Jejunum miR-802 TE
Brain miR-431 HTE Plasma miR-423a HTE
Brain miR-487a HTE Plasma miR-16 HTE
Brain miR-9a-3p HTE Plasma, Brain miR-107 TE
Brain, Sciatic Nerve miR-1249 TE Plasma, Brain miR-383 TE
Brain, Sciatic Nerve miR-127 TE Plasma, Brain miR-331 TE
Brain, Sciatic Nerve miR-184 HTE Plasma, lleum miR-15a TE
Brain, Sciatic Nerve miR-411 TE Sciatic Nerve, Thymus miR-193a TE
Brain, Sciatic Nerve miR-432 TE Striated Muscle miR-206 HTE
Brain, Sciatic Nerve miR-504 TE Testis miR-202 HTE
Brain, Sciatic Nerve miR-338 TE Testis miR-34b HTE
Brain, Sciatic Nerve miR-382 TE Testis miR-34c HTE
Brain, Sciatic Nerve miR-411 TE Testis miR-449a HTE
Brain, Sciatic Nerve miR-744 TE Testis miR-506 HTE
Brain, Testis miR-146b TE Testis miR-507b HTE
Brain, Testis miR-335 TE Testis miR-508a HTE
Brain, Testis miR-335 TE Testis miR-508b HTE
Brain, Testis miR-873 TE Testis miR-8831 HTE
Brain, Jejunum miR-342 TE Testis miR-8908a-3p HTE
Brain, Liver miR-885 TE Testis miR-8908a-5p HTE
Brain, Pancreas miR-135a TE Testis miR-8908b HTE
Brain, Pancreas miR-153 TE Testis miR-8908¢c HTE
Bone Marrow miR-8865 HTE Testis miR-34b HTE
Bone Marrow, Brain miR-129 TE Testis miR-34c HTE
Bone Marrow, Brain miR-628 TE Testis miR-449b HTE
Bone Marrow, Brain miR-7 HTE Testis, Thymus miR-106a TE
Bone Marrow, Brain miR-129-1 TE Testis, Thymus miR-205 HTE
Fig. 3 List of 106 enriched dog miRNAs by tissue. miRNAs are annotated as tissue enriched (TE) or highly tissue enriched (HTE). Only miRNA stem
loop names are shown for sake of ease

top 10 expressed miRNAs per tissue (Additional file 4:
Figure S3) are also presented.

Brain tissue had the greatest number of enriched miR-
NAs (55), including 30 HTE and 25 TE miRNAs (Fig. 3).
This is consistent with previous findings that approxi-
mately 70 % of miRNAs are expressed in the brain [29].
Rat studies identified numerous enriched brain miRNA,
including miR-9, -124, -128, -184, and -219 [5, 9, 30].
There are 14 known enriched miRNAs in the human
brain [29]. Four dog brain HTE miRNAs (cfa-miR-9,
-124, -128, and -219) share sequence homology with rat

and human, and are cross-species biomarker candidates
for brain injury. Of these, miR-9 was among the highest
expressed miRNAs in the dog atlas (Additional file 3:
Figure S2).

The testes had the second largest number of tissue
enriched miRNAs (23), including 16 HTE and 7 TE
(Fig. 3). Interestingly, 10 testes HTE miRNAs were among
the most highly expressed miRNAs across all tissues, in-
cluding the two highest level of expression miRNAs
(cfa-miR-508b and -202) observed within the entire dog
miRNA tissue atlas (Additional file 3: Figure S2). Except
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for miR-34b/c, which has a role germ cell maturation in
murine testes [31, 32], none of these miRNAs have re-
ported associations with testis. Testes enriched cfa-miR-
34b/c, and the other testes HTE dog miRNA identified
here may be invaluable as biomarkers for an organ that
presently lacks a definitive diagnostic test for tissue
injury.

There were 12 enriched miRNAs observed in the pan-
creas (7 HTE and 5 TE) (Fig. 3). Of these, only cfa-miR-
216a correlated with observed expression in both
mouse and rat pancreas [33]. A recent rat study demon-
strated that plasma levels of miR-216a and miR-216b in-
creased after pancreatic injury [34]. The pancreatic HTE
cfa-miR-217-3p had an annotated homolog in rat but
not human (Additional file 5: Figure S4). This novel
finding suggests that human miR-217 should in fact be
two separate mature miRNA sequences: miR-217-5p and
miR-217-3p.

The two liver HTE miRNAs in dogs were miR-122
and the reverse complement miR-3591 (Fig. 3). In the
literature, miR-122 is liver specific for mice, rats, and
humans and has been used as a biomarker for liver in-
jury [5, 10, 12]. miR-855 is a liver TE miRNA reported
to be significantly elevated in sera from patients with
liver disease [35]. Others have reported miR-192 as a
liver specific biomarker in multiple species [9, 20]. In
contrast, the findings presented in this dog atlas show
that cfa-miR-192 was expressed at relatively high levels
(>650 RPM) in all tissues. Because this miRNA did not
meet the TE miRNA criteria, it does not appear to be a
suitable biomarker of liver injury in the dog.

A single HTE miRNA was identified in the dog heart
(cfa-miR-499) and in skeletal muscle (cfa-miR-206), and
both tissues had the same 5 TE miRNAs (cfa-miR-1,
-133a-5p, -133a-3p, -133b, and -208) (Fig. 3). Enrich-
ment of miR-499 in the heart has been demonstrated in
rat, monkey, and human [36, 37]. Likewise, miR-206 is
enriched in the skeletal muscle from rodents and
humans [38]. The overlap of heart and muscle miRNA
expression is supported by the Spearman’s correlation
(Fig. 1) and is consistent with the literature [39]. The
family of ‘myomiRs’ (miR-1, -133a, -133b, and -208) is
known to be expressed in both cardiac and muscle tis-
sues [39, 40], and was enriched in the myocardium of
rats, dogs, and monkeys [41].

Analysis of dog plasma identified 3 HTE (cfa-miR-
423a, -144-5p, and -16-3p) and 8 TE miRNAs (Fig. 3).
Of the plasma HTE miRNAs, only miR-144 is known to
be blood cell specific [5] and is involved in erythrocyte
homeostasis [42]. Analysis of dog bone marrow identi-
fied 1 HTE miRNA (miR-8865) and 11 TE miRNAs.
Only TE miRNAs were identified in the thymus (3) and
GI tract (7). There were no HTE or TE miRNAs found
in either the dog lung, kidney or duodenum.
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There were 3 dog miRNAs (cfa-miR-16, -29a, and -186)
with ubiquitous expression across all tissues. miR-16 is
regarded as a stably expressed miRNA in human and has
been used as a reference miRNA for normalization of
serum miRNA biomarkers for breast, prostate, and colo-
rectal cancers [43—-45]. Both miR-29a and miR-186 are
some of the most frequently detected miRNAs in plasma
and serum [46]. Likewise, all three miRNAs were abun-
dantly detected, have low CV <10 %, and standard devi-
ation of 1 or below when compared across all tissues
analyzed in the dog miRNA atlas. While these miRNAs
were used to normalize miR-seq validation by qPCR data,
they could not be used in POC studies because their
serum levels unexpectedly differed between control ani-
mals and dosed animals.

Atlas verification

Tissue samples were analyzed by Q-RT-PCR to confirm
the expression levels of miRNAs identified as HTE or TE
by miR-seq analysis. A total of 22 miRNAs (Additional file
6: Figure S5) were selected for qPCR validation including
the following 14 biomarker candidates of organ toxicity:
liver (cfa-miR-122 and -885), pancreas (cfa-miR-216a/b);
heart (cfa-miR-499); muscle (cfa-miR-206); heart/muscle
(cfa-miR-1, -133a/b, and -208); testis (cfa-miR-34b/c);
and brain and sciatic nervous tissues (cfa-miR-212, -432,
and -885), and 5 miRNAs reported in the literature
(cfa-miR-21, -192, -193a/b, and -200). For Q-RT-PCR
normalization controls, 3 miRNAs identified in the dog
atlas (cfa-miR-16, -29a, and -186) were selected on the
basis that they are ubiquitously expressed at similar levels
in all tissues examined.

Eleven of 15 miRNAs examined by miR-seq and Q-
RT-PCR miRNA platforms demonstrated comparable
expression levels of individual miRNAs selected for
verification with 7* values > 0.6 (Fig. 4). The exceptions
(cfa-miR-432, -499, and -212) could not be differentiated
between tissues analyzed by Q-RT-PCR. The 3 highly
expressed ubiquitous miRNAs demonstrated good preci-
sion, as measured by the coefficient of variance (%CV =
standard deviation/mean), for all tissues in both detec-
tion platforms; miRNA-SEQ (cfa-miR-16 [4.9 %], -29a
[4.7 %], and -186 [1.8 %]) and Q-RT-PCR (cfa-miR-16
[4.1 %], -29a [4.6 %], and -186 [2.7 %]).

Highest expressed miRNA in the kidney

Although enriched miRNAs were not detected in the
dog kidney, this is a unique organ because urine can be
evaluated for biomarkers. Thus, the highest expressed
kidney miRNAs may possess the greatest potential as
urinary biomarkers of kidney injury. Circulating blood
miRNAs are not thought to pass through the kidney into
the urine intact [3]. High expression in dogs was ob-
served for cfa-miR-10a, -10b, -22, -181a, -191, -192, and
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Fig. 4 gPCR verification of atlas miRNA-seq of 15 potential biomarkers of organ toxicity. Q-RT-PCR values represent the normalized log2 expression
values (y-axis) and normalized log2 values miR-seq (x-axis) for individual animal tissue samples tested. Correlation analysis (linear regression)
demonstrated agreement of tissue enriched miRNA across both platforms

-378 (Additional file 4: Figure S3). There was a strong
overlap between the miRNA identified here in the dog
whole kidney and the highest expressed miRNA identi-
fied by Ichii et al. in the dog cortex (7/10) and medulla
(8/10) (Additional file 7: Figure S6) [47]. Kidney
enriched miR-10a and miR-192 were previously identi-
fied as potential circulating biomarkers of renal injury in
rats [48], however miR-192 had high expression in mul-
tiple dog tissues and was not identified as kidney
enriched in the current study. Other miRNAs have been
implicated in various kidney diseases, including in renal
fibrosis (miR-22) [49], nephritic syndrome (miR-181a)

[50], and renal cell carcinoma (miR-378) [51]. Levels of
miR-191 and miR-378 were elevated in the urine of rats
dosed with nephrotoxicants [52, 53]. It remains to be de-
termined whether any of these highly expressed renal
miRNAs can be detected in the urine and outperform
standard protein-based biomarkers of renal injury.

Liver safety biomarkers POC studies

One concern for using miRNAs as circulating bio-
markers is how to normalize across samples [54]. While
studies have investigated the use of spiking samples with
miRNA from exogenous sources such as Arabidopsis or
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C. elegans [55, 56] or normalization by serum or plasma
volume, miRNA in the current study were normalized
using total counts. The expression patterns of miRNA in
plasma versus serum are similar [46, 56, 57]. Due to
sample availability only serum was analyzed in the dog
POC studies.

Assessment of a 5 miRNA biomarker screening panel after 7
days of dosing with Compound X

Three dogs were dosed twice daily for seven days with
500 mg/kg of Compound X or vehicle. At 24 h post-
Day 7 dosing, two dogs demonstrated mild to moderate
liver necrosis (Fig. 5a) and had an approximately 5-fold
elevation in serum alanine aminotransferase (ALT) and
aspartate aminotransferase (AST) which correlated
with mild to moderate liver necrosis (Fig. 5b). Analysis
of serum miRNA from these two dogs showed the
highest elevation (ACt) values in cfa-miR-122 and cfa-
miR-855 compared to control animals (Fig. 5¢). Histo-
pathological analysis did not identify microscopic
changes in heart, muscle and pancreas in dogs treated
with Compound X, and the levels of non-liver enriched
miRNAs (cfa-miR-1, -133 and -216) did not signifi-
cantly change when compared to control dogs (data
not shown). Taken together, these results highlight the
specificity of miR-122 and miR-885 for compound-
induced liver injury.
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Assessment of a 20 miRNA biomarker screening panel after
14 days of dosing with Compound Y
Six dogs were dosed daily with 600 mg/kg of Compound Y
or vehicle control for 14 days. Serum samples collected on
Days 1, 7, and 14 (predose and 24 h postdose) were ana-
lyzed for ALT and AST levels. Serum was also analyzed by
Q-RT-PCR for a panel of 20 tissue enriched and potential
miRNA biomarkers, including those identified for liver
(cfa-miR-122 and -885), heart/muscle (cfa-miR-1, -133,
and -206), testis (miR-34b/c), pancreas (cfa-miR-216), brain
(cfa-miR-212), and ubiquitously expressed cfa-miR-193b.
Elevations in liver enriched miR-122 and miR-885 cor-
related with increases in ALT and AST (Fig. 6a and b)
and mild to moderate hepatocellular necrosis was ob-
served in 2 of 6 animals (Dogs 1 and 3 on Day 14 [data
not shown]). Dogs 1 and 3 had high correlation between
elevations in serum miR-122 and ALT (**=0.79) and
AST (7* = 0.90) levels while elevations in serum miR-885
were higher ALT (**=0.87) and AST (¥*=0.97). Add-
itionally, Dog 3 demonstrated elevated miR-122 on Day
7 at the 24 h time point while ALT remained at baseline
levels. The four other animals dosed with Compound Y
did not demonstrate test article-related changes in
serum chemistry, miRNA or liver histopathology. Eleva-
tion of serum cfa-miR-193b in the two dogs with liver
injury (Dogs 1 and 3) was likely due to the ubiquitous
expression of the miRNA in the dog, including the liver.
The transient serum elevations of heart/muscle TE

B Histopathology

Score ALT AST
B Voderate 107 104
Mild 143 132
@ wvinimal 28 28
Control 23 24

Fig. 5 POC Compound X histopathology review and candidate safety biomarker assessment. a Representative hematoxylin and eosin stained
liver histopathology sections. Liver damage severity was scored by histopathologic review as Minimal, Mild, or Moderate. b Serum levels of ALT
and AST in animals that received Compound X or vehicle control. The colored boxes on the left correspond to the severity of liver injury.

c Serum levels of miR-122 and miR-885 in animals dosed with Compound X compared to vehicle. Samples were collected at the indicated time
points on Day 7 of dosing. The line color corresponds to the severity of damage
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Fig. 6 POC Compound Y miRNA safety biomarker panel assessment. a Serum levels of ALT and AST in animals that received Compound Y or
vehicle control. Serum was collected on Days 1, 7 and 14 at pre-dose and 24 h post-dose. The colored boxes on the right correspond to the
individual dog identification numbers. b Panel of candidate safety miRNA biomarkers utilized in the Compound Y POC study. Q-RT-PCR ACt values
(y-axis) line plot per animal for duration of Day 1, 7, and 14 treatment samples tested highlights the elevation of both liver enriched miRNAs
(miR-122 and miR-885) and ubiquitously expressed miR-193 in the 2 dogs with elevated ALT and AST. Non-liver enriched miRNAs were not elevated or
were found to be in the noise or below the lower limit of Q-RT-PCR detection

miRNAs (cfa-miR-1 and -133) and muscle HTE miRNA
(cfa-miR-206) were not correlated with microscopic
findings (data not shown) and may be due to injury dur-
ing animal handling. The remaining non-liver miRNAs
were not detected in any serum samples.

Elevation of miR-122 in the plasma/serum after ad-
ministration of hepatotoxic compounds in rats [58, 59]
or in various human disease conditions [19, 60] is well
established. The results from these two POC studies rep-
resent the first published data demonstrating the utility

of miR-122 and miR-885 as potential biomarkers of liver
injury in the dog. Levels of miR-122 increased in correl-
ation with minimal liver injury in the absence of ALT ele-
vations, and thus may have superior sensitivity than
standard liver function tests. This is consistent with a pre-
vious rat study that detected an increase in miR-122 levels
prior to ALT elevation [58]. While the sensitivity of miR-
122 versus ALT has not been definitively determined in
any species, these collective studies indicate that miR-122
is a translatable diagnostic to detect liver injury [61].
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Conclusion

miRNAs hold promise as circulating biomarkers of
organ specific injury. While recent studies focused on
miRNA tissue expression in rodent species and humans,
there is a significant lack of miRNA data available for
dogs. The beagle dog is an important nonclinical species
for assessment of human drug safety. Identification of
miRNA biomarkers of tissue specific injury in the dog
may improve prediction and monitorability of potentially
adverse effects of compounds intended for human use.
This miRNA tissue atlas may also serve as a reference
for the identification of novel biomarkers of organ dam-
age in nonclinical species which are translatable to pa-
tients in the clinic. Analysis of the dog miRNA tissue
atlas identified 66 HTE miRNAs which offer a starting
point for exploratory pre-clinical safety monitoring, fur-
ther proof of concept and biomarker validation studies
beyond the liver biomarker potential described herein.

The dog miRNA annotation has been expanded
through the identification of homologs to rat and human
miRNAs in the dog genome which demonstrate a high
level of sequence homology and similar levels of tissue
expression among rats and humans. There are likely to
be additional miRNAs in dogs that might have been tis-
sue enriched but were not annotated. As the quality of
annotation for dog miRNA improves, so will the reso-
lution and quality of the dog miRNA database. The ex-
pression data may be re-evaluated at a later date to see if
previously unannotated miRNA sequences can be identi-
fied. Conversely, information gathered from the dog
miRNA atlas can be used to fill in gaps in the human
annotation, as in the case with miR-217. The data gener-
ated for the dog miRNA tissue atlas is publically avail-
able for further analysis (The accession number is:
GSE83278).

In collaboration with Eli Lilly, co-analyses of the dog
and rat miRNA sequencing data determined which tis-
sue enriched miRNAs were conserved between the two
species. The next phase of the atlas will be to further
demonstrate in vivo the correlation of tissue enriched
miRNA to tissue specific injury. Subsequent animal
studies are necessary to determine the sensitivity and
specificity of the miRNA qPCR panel. Candidate bio-
markers may eventually be used as an early readout of
tissue injury in drug development.
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Additional file 1: Supplementary Methods. (DOCX 18 kb)

Additional file 2: Figure S1. List of 106 enriched miRNAs by tissue.
miRNAs are annotated as tissue enriched (TE) or highly tissue enriched
(HTE). The family of miRNA and mature miRNAs in dog, human and rat
are given. (PDF 55 kb)
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Additional file 3: Figure S2. Top 20 enriched miRNAs. 10 of top 20 are
testis. (PDF 38 kb)

Additional file 4: Figure S3. Top Ten Expressed (log10 RPM values)
miRNA per tissue type. The list is sorted by dog miRNA tissue atlas
enrichment and prevalence of top 10 expressed miRNAs across the atlas
tissues. (PDF 45 kb)

Additional file 5: Figure S4. Benefit and need for enhanced annotations
for miRNA studies. (A) Pancreas enriched miR-217-3p (ro-miR-217-3p
AUCAGUUCCUAAUGCAUUGCCU) identified in the dog miRNA tissue atlas
was found as a novel un-annotated human miRNA. It is conserved in rats,
dogs, and humans, but is only annotated in miRBase as rat. (B) There is
evidence of un-annotated human reads aligning and expressed in human
expression profile experiments on the miRBase website. This study suggests
human miRBase annotation should reflect 2 mature microRNA sequences,
miR-3p and -5p. (PDF 64 kb)

Additional file 6: Figure S5. Q-RT-PCR assay list. (PDF 39 kb)

Additional file 7: Figure S6. Top 20 expressed kidney miRNA. Top 20
expressed kidney miRNA found in the dog miRNA tissue atlas compared
to previously published miRNA expression data from macro-dissection
studies of the cortex and medulla of the cat and dog (Ichii et al). Shaded
boxes indicate that the dog miRNA was among the top 10 expressed
kidney miRNAs in the dog atlas; bolded miRNAs indicate that the miRNA
was among the top 20. Comparison between dog whole kidney (dog
altas) and data from dog cortex and medulla (Ichii et al) show good
correlation with 7/10 miRNAs and 8/10 miRNAs expressed in the top 10
miRNAs, respectively, when compared to kidney expression observed in
the dog atlas. Similarly, a comparison of dog whole kidney data (dog
atlas) to cat cortex and medulla (Ichii et al) show good correlation as well
with 7/10 and 6/10 miRNAs expressed in the top 10 miRNAs, respectively,
when compared to dog whole kidney data (dog atlas). (PDF 41 kb)
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