
RESEARCH Open Access

Evolutionary hallmarks of the human
proteome: chasing the age and
coregulation of protein-coding genes
Katia de Paiva Lopes1,2, Francisco José Campos-Laborie1, Ricardo Assunção Vialle2, José Miguel Ortega2

and Javier De Las Rivas1*

From 6th SolBio International Conference 2016 (SoIBio-IC&W-2016)
Riviera Maya, Mexico. 22-26 April 2016

Abstract

Background: The development of large-scale technologies for quantitative transcriptomics has enabled
comprehensive analysis of the gene expression profiles in complete genomes. RNA-Seq allows the measurement
of gene expression levels in a manner far more precise and global than previous methods. Studies using this
technology are altering our view about the extent and complexity of the eukaryotic transcriptomes. In this respect,
multiple efforts have been done to determine and analyse the gene expression patterns of human cell types in
different conditions, either in normal or pathological states. However, until recently, little has been reported about
the evolutionary marks present in human protein-coding genes, particularly from the combined perspective of
gene expression and protein evolution.

Results: We present a combined analysis of human protein-coding gene expression profiling and time-scale
ancestry mapping, that places the genes in taxonomy clades and reveals eight evolutionary major steps
(“hallmarks”), that include clusters of functionally coherent proteins. The human expressed genes are analysed
using a RNA-Seq dataset of 116 samples from 32 tissues. The evolutionary analysis of the human proteins is
performed combining the information from: (i) a database of orthologous proteins (OMA), (ii) the taxonomy
mapping of genes to lineage clades (from NCBI Taxonomy) and (iii) the evolution time-scale mapping provided by
TimeTree (Timescale of Life). The human protein-coding genes are also placed in a relational context based in the
construction of a robust gene coexpression network, that reveals tighter links between age-related protein-coding
genes and finds functionally coherent gene modules.

Conclusions: Understanding the relational landscape of the human protein-coding genes is essential for
interpreting the functional elements and modules of our active genome. Moreover, decoding the evolutionary
history of the human genes can provide very valuable information to reveal or uncover their origin and function.

Keywords: Human protein evolution, Human gene evolution, Transcriptomics, RNA-seq, Tissue transcriptomics,
Protein families, Gene coexpression, Gene house-keeping, Gene tissue-enriched

* Correspondence: jrivas@usal.es
1Bioinformatics and Functional Genomics Group, Cancer Research Center
(CiC-IBMCC, CSIC/USAL/IBSAL), Consejo Superior de Investigaciones
Cientificas (CSIC), Salamanca, Spain
Full list of author information is available at the end of the article

© 2016 The Author(s). Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

The Author(s) BMC Genomics 2016, 17(Suppl 8):725
DOI 10.1186/s12864-016-3062-y

http://crossmark.crossref.org/dialog/?doi=10.1186/s12864-016-3062-y&domain=pdf
mailto:jrivas@usal.es
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


Background
RNA-Seq allows the measurement of the gene expres-
sion levels in a manner far more precise than previous
methods. Studies using this approach have already al-
tered our view of the extent and complexity of the
eukaryotic transcriptomes [1]. Important analyses have
been performed based on transcriptomic data obtained
from multiple human tissues. The FANTOM project, for
example, presents the gene expression profiling of 56
human healthy tissues associated with the functional an-
notation of the mammalian genomes [2]. The Human
Protein Atlas applies RNA-Seq to 32 human tissues to
find the correlation between gene expression and protein
presence in the characterization of several parts of the hu-
man proteome: membrane proteome, druggable proteome,
cancer proteome, secretome and proteome involved in
metabolic processes [3]. The Genotype-Tissue Expression
(The GTEx Consortium) [4] provides an extensive resource
of human transcriptomic data permitting the inference of
different patterns across human tissues and individuals [5],
and the construction of tissue-specific gene co-expression
networks [6]. Other studies are more focused on specific
cells or tissue types, like the article entitled “A compre-
hensive analysis of the human placenta transcriptome”
that characterizes the transcriptome of placenta from
20 healthy women with uncomplicated pregnancies
using RNA-Seq [7].
The assembly of comprehensive maps of the human

transcriptome is essential for a clear identification of the
functional elements of our genome and to reveal the
molecular constituents of different cells and tissues [1].
Despite the accomplishment of many transcriptomic
studies, little has been reported until recently about the
evolutionary determinants of human cell identity, par-
ticularly from a joint perspective of protein evolution
and gene expression [8]. The evolutionary history of a
gene can be very informative about its function. Gene
age (i.e. the question How old is a gene?) is an important
piece of information that can be inferred in different
ways and has been used in some genome-scale studies
and in some studies on gene families [9]. Phylostratigra-
phy is the usual methodology applied to find the origin
and emergence of genes [10, 11]. Previous phylogenetic
studies showed that the evolutionary history of different
coding parts of the genome have relations with diseases
[12], codon usage [13], essentiality, interactions [14], stem-
ness and self-renewal [15]. Other studies have shown that
older genes evolve slower [16], encode longer proteins,
present higher expression levels, possess higher intron
density and are subject to stronger purifying selection [17,
18]. Several of these studies approach the question of gene
age in different ways, but most of them are not focused on
human genes or do not applied phylostratigraphy using
large-scale genomic data.

In this work, we address the key question about the
age of the human genes using a combination of comple-
mentary genome-wide data and databases that are ana-
lysed and integrated to achieve a map of the human
genes on the evolutionary time-scale. This integrative
analysis uses a comprehensive human tissue RNA-Seq
dataset that allows deep expression profiling of
protein-coding genes [3]; a database of orthologous
proteins that allows finding the oldest relatives to
each human protein along different species [19, 20];
the taxonomy mapping of genes to lineage clades
from the NCBI Taxonomy database (www.ncbi.nlm.
nih.gov/taxonomy); and the time-scale mapping pro-
vided by TimeTree resource (www.timetree.org) [21,
22]. The generation of clusters of orthologous pro-
teins built along multiple species is more accurate for
phylogenetic studies than simple sequence homology
search [19], because it does not look for singular best
homologous but it implies a conservation along the
evolutionary tree and can provide a way to date the
origin of protein modules involved in specific func-
tions or in specific biological pathways [23, 24]. Fi-
nally, to complete the view of the protein-coding
gene phylostratigraphy, we use the genome-wide ex-
pression data to produce a human gene network
based on a coexpression analysis of the transcriptomic
RNA-Seq profiles along multiple tissues and identify
the genes that can be considered House-keeping
(HKg) or Tissue-enriched (TEg). The allocation of
these gene subsets (HKg and TEg) on the evolution-
ary time map shows a clear difference in gene age, in-
dicating that house-keeping genes are older.

Methods
Gene expression data from human normal tissues
The genome-wide expression dataset used in this work
corresponds to a series of RNA-Seq analyses performed
with Illumina HiSeq 2000 paired end sequencing on
cDNA libraries prepared from samples of 122 human in-
dividuals from 33 different tissues [3] (ArrayExpress DB:
E-MTAB-2836). The data provided reads for 20,344
genes detected per sample, and 18,545 of these genes
showed relevant expression signal corresponding to
mean(FPKM) ≥ 1 in all the selected tissues. After
normalization and comparative analysis of the expres-
sion distributions of the samples from this dataset, we
selected a total of 116 samples with two to five biological
replicates for the following 32 tissues: adrenal gland (3
replicates), appendices (3), bone marrow (4), brain (3),
colon rectum (5), duodenum (2), endometrium (5),
esophagus (3), fallopian tube (5), adipose tissue (3), gall-
bladder (3), heart (4), kidney (4), liver (3), lung (5),
lymph node (5), ovary (3), pancreas (2), placenta (4),
prostate (4), rectum (4), salivary gland (3), skeletal
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muscle (5), skin (3), small intestine (4), smooth muscle
(3), spleen (4), stomach (3), testis (5), thyroid (4), tonsil
(3) and urinary bladder (2).

Expression profiling and coexpression data analyses
RNA-Seq expression data from all the tissue samples,
taken as normalized FPKM (Fragments Per Kilobase of
transcript per Million mapped reads) from [3], were log2
transformed to obtain the final expression values as:
log2(FPKM+ 1). Normalized expression distributions of
these samples can be seen in Additional file 1: Figures
S1 and S2. Unsupervised clustering of the samples based
in all genes expression was done using agglomerative
hierarchical clustering (with the hclust R function) and
calculating the distances based on: [1 – Spearman_corre-
lation]. This clustering was done for all the 116 samples
(Fig. 1) and just for the 32 tissues using the average ex-
pression of the replicates (Additional file 1: Figure S3).
The coexpression dataset was built calculating the pair-

wise Spearman correlation coefficient (r) of all the genes
along the 116 samples and only selecting, as positive
gene-pairs, the ones with a correlation coefficient ≥ 0.85.
Crossvalidation of these correlation values was applied
by a random selection of two sample replicates from
each tissue (i.e. 32 × 2 = 64 samples) and recalculating
again the Spearman correlation for these random sub-
sets of the data. This sampling was done 100 times, an-
notating for each gene-pair the number of times that its
r coefficient was ≥ 0.85. Only the gene-pairs validated
100 times in this sampling were selected. In this way, a
final set of highly correlated gene-pairs was produced
that included 2298 genes and 20,005 coexpression
interactions. This coexpression dataset is provided as
Additional file 2, indicating the names of all the gene-
pairs and their correlation value. A gene coexpression
network derived from the coexpression data was built
using Cytoscape (www.cytoscape.org) and we applied
the MCODE algorithm to identify clusters inside the

Fig. 1 Heatmap presenting the comparison of the transcriptomic profiles of 32 human tissues. Unsupervised clustering analysis of the global
expression correlation along 116 samples of 32 human normal tissues. The main plot presents the color heatmap and dendrogram produced by
the comparison of all the expressed genes (18,545) along all the samples. The pair-wise distances between samples are calculated using the
values of: 1 – Spearman correlation coefficient. The color bar with scales shows dark-red corresponding to minimum distances (i.e. maximum
correlation) and dark-blue to maximum distances (i.e. minimum correlation)
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network. This algorithm performs an analysis of the
topology of the network to find densely connected re-
gions that define modules. The coexpression network
built with Cytoscape including all the subnetworks
found (with information about the specific proteins in
each), as well as the parameters derived from the
graph analysis, is provided in Additional file 3.

Evolutionary analyses
For the evolutionary analysis and determination of Low-
est Common Ancestor (LCA), we used a database of
orthologous proteins: Orthologous MAtrix (OMA,
http://omabrowser.org/) [19, 20]. OMA includes a data-
base and resource with methods for the inference of
orthologous among complete genomes [19, 20]. We
downloaded the OMA database into a local MySQL
database and created Python scripts to search for the
Ensembl ID's from our transcriptomic data into this
local database and to calculate the LCA into each re-
spective ortholog group. In this way we obtained a
table with the number of protein-coding genes
assigned to each clade in the human taxonomy
lineage, as defined by the Taxonomy resource from
NCBI (Taxonomy ID 9606 for human, Homo sapiens;
database accessed 9 January 2016). Furthermore to
produce a time-scale, we integrated these data with
the TimeTree of life (www.timetree.org) [21, 22], that
includes the tree of living species calibrated to time.
The analysis of the number of genes placed along the
evolutionary time-scale allowed visualization of the
profile of human genes origin for the whole genome
(genome-wide) or for specific subsets of genes. In this
genes/time profile we calculated the number of
protein-coding genes that had LCA corresponding to
each clade (or level) in the taxonomy lineage –that for
human includes 31 consecutive levels– and we identi-
fied certain levels where major changes occur. These
are taken as most significant stages and proposed as
key evolutionary hallmarks including specific sets of
the human protein-coding genes that are identified.

Functional enrichment analysis and identification of gene
modules
For the functional enrichment analysis we used DAVID
(david.ncifcrf.gov) [25] and GeneTerm-Linker (gtlin-
ker.cnb.csic.es) [26] bioinformatic tools with the list of
genes from each evolutionary stage level of the human
lineage. In all cases the enrichment analyses were done
using a hypergeometric test and adjusting the p-values
for multiple testing with the Benjamini-Hochberg pro-
cedure [27]. In the same way, we also investigated the
functional enrichment of the subnetworks generated by
the clusters and modules found in the analysis of the
gene coexpression network.

General calculations and statistics
All the data analyses and graphics have been produced
in the R statistic environment. General functions as box-
plot, image, qplot (from ggplot2 library) or wilcox.test,
have been applied over the different data presented.
Some specific methods or algorithms are cited along dif-
ferent sections of this manuscript.

Results and discussion
Human global transcriptome profile based on expression
in multiple tissues
The unsupervised clustering analysis of the global ex-
pression correlation along 116 samples of 32 human
normal tissues is presented in Fig. 1. This plot shows the
color heatmap and dendrogram produced by the com-
parison of all the expressed genes (18,545) along all
samples. The pair-wise distances were calculated as: (1 –
Spearman correlation coefficient); that is a non-
parametric approach to calculate similarity and distance.
In this way, the heatmap shows a clear relationship be-
tween the samples from the same tissue (i.e. the bio-
logical replicates come together) and also presents the
proximity between the tissues that have strong biological
and physiological links, such as: spleen, lymph nodes
and tonsils (all related to the lymphatic system); or
stomach, duodenum, small intestine, colon and rectum
(all related to the digestive system). A color bar with
scales for the heatmap is included in Fig. 1, to indicate
that dark-red corresponds to minimum distance (i.e.
maximum correlation) and dark-blue to maximum dis-
tance (i.e. minimum correlation). White color corre-
sponds to medium values and the distributions inside
the color bars show that the major part of the compari-
sons have values around r = 0.80–0.85 (i.e. pale-red
colors). The results also reveal that some tissues have
transcriptomic profiles very different to the rest, being
testis the most different one that produces a clearly sep-
arated branch in the dendrogram.

House-keeping and tissue-enriched genes
The transcriptomic data allowed creation of two relevant
subsets of genes: House-keeping (HKg) and Tissue-
enriched (TEg) genes. Figure 2a shows the number of
genes expressed, with FPKM equal or higher than 1, per
number of tissues. This calculation allowed the identifi-
cation of 8961 ubiquitous genes present in at least one
replicate of all tissues, and 7668 genes expressed in all
the 116 samples (i.e. in all the biological replicates of all
tissues). The intersection of these 7668 genes with a cu-
rated dataset of 3804 house-keeping genes created by
Eisenberg et al. [28] gave a total of 3524 HKg (Fig. 2c),
indicating a large overlap of 93 %. To identify how rele-
vant was this, we calculated the odds ratio (OR) of such
overlap and obtained a very significant value of OR =
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32.09 (with 95 % confidence interval, CI, of the OR =
28.27–36.43). For the tissue-enriched genes we explored
the other side of the data in Fig. 2a and considered just
the genes that were expressed in only one, two or three
tissues (2459 genes). We did not take only one, but also
two or three tissues, because some tissues are physiolo-
gically very related and in fact presented high correlation
between them, for example: colon and rectum; small in-
testine and duodenum, etc. These observations indicated
that such tissues share a large number of common genes
in their expression profile. Finally, a global comparison
of the expression distributions of HKg versus TEg indi-
cated that the Tissue-enriched genes showed signifi-
cantly lower expression values than the House-keeping
genes (Fig. 2b). To demonstrate this difference, we made
two statistical tests, t-test and Wilcoxon. In both cases,
the p-values were very low (p-value < 1e-10) and the dif-
ference between the mean expressions of TEg and HKg
was 1.61 (in the log2 scale). Thus, we can conclude that
this difference is not by chance but due to a real differ-
ent expression regulation that should be considered in
further analyses. These boxplots also show that the glo-
bal variability of TEg (which presents values below 1 and
above 12 in the log2 scale) was larger than the global
variability of HKg. This observation indicates that the
TEg present a larger range of expression values along
different tissues and the HKg have a tighter regulation.

Human gene hallmarks on the evolutionary time-scale
For the evolutionary analysis, we used a phylostratigraphic
method for reconstruction of macro-evolutionary trends
based on the principle of “founder gene” formation [10].
Typically, these methods first identify the homologues of a
given gene and then use the divergence between the two
most distant to determine the gene age. Historically, such
studies have been using BLAST [29] for homology
searches. However, this approach was shown to introduce
some biases into the analyses [30, 31]. Another approach
is to use orthologous groups to determine the age of a
gene. Orthologues are believed to be functionally more
similar than paralogues [32] and by definition they trace
back to an ancestral gene that was present in a common
ancestor of the compared species [33]. The parameters
used for clustering orthologous groups affect the age
estimations for a gene; for example, restrictive parameters
tend to limit the set of possible progenitors [9]. Neverthe-
less, both approaches used for dating the gene origin
depend on the correct identification of homologues and/
or orthologues, but in the second case the accurate
reconstruction of orthologous families imposes a higher
stringency and it implies a conservation along the evolu-
tionary clades.
For our analysis, we identified the group of ortholo-

gues that corresponded to each of the 18,545 genes
detected in the transcriptomic study, mapping them

Fig. 2 Number of genes expressed along 32 tissues derived from RNA-Seq transcriptomic data. a Plot showing the number of genes expressed,
with FPKM equal or higher than 1, per number of tissues. The house-keeping genes are labeled as HKg and tissue-enriched genes as TEg.
b Comparison of the expression distributions of HKg versus TEg. c Venn diagrams showing the intersection of 7668 genes (expressed in all the
biological replicates of all tissues) with the dataset of 3804 house-keeping genes obtained from Eisenberg and Levanon (2013) [28]
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to the corresponding human protein-coding genes in
the OMA database [20] (i.e. mapping of 18,545 genes
to 17,437 proteins), and then assigning the Lowest
Common Ancestor (LCA) to each human protein ac-
cording to its orthologous family. The use of OMA in
comparison with BLAST homology approach gives us
a more detailed view of gene origin since, as we indi-
cated above, it uses a more restrictive grouping
method. Thereby, the number of genes dated on an-
cient clades is lower. Once we identified the LCA for
each human protein-coding gene we assigned such
protein/gene to the corresponding taxonomy level in the
human lineage as defined in NCBI (http://www.ncbi.nlm.
nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=
9606), that includes 31 taxonomic groups as consecutive
clades from the first one, named cellular organisms, to the
last one Homo sapiens. Figure 3 presents these 31 taxo-
nomic clades placed along the time-scale (in million years
ago, Mya) from the origin to present. For each one of
these taxonomy levels we represented the cumulative per-
centage of proteins that are dated at such level. This is

done in the following way: first, plotting all the genes
mapped to OMA proteins (Fig. 3, black line in the graphic,
that includes 17,437 proteins); second, the same plot
is produced but including only the proteins that cor-
respond to House-keeping genes (Fig. 3, blue line in-
cludes 3393 proteins, HK); third, plot including only
the Tissue-enriched genes (Fig. 3, red line includes
2157 proteins, TE).
The analyses of these plots obtained with the phylos-

tratigraphic method revealed the presence of some
major differential steps on the emergence of protein-
coding genes along the evolutionary time-scale from ori-
gin to present. Looking at all the expressed coding
genes, we can see the global evolutionary profile of the
organism (human, in this case), but along this profile we
can identify some more prominent steps in the accumu-
lated relative number of genes (genes count) along time.
For example, looking at the plot of the HK a large in-
crease is observed at the start of the curve, from the first
taxonomy level (origin, Cellular organisms) to second
(Eukaryota) taxonomy level (i.e. the first phylostratum

Fig. 3 Evolutionary hallmarks of human protein-coding genes along time-scale. Plot presenting the number of human protein-coding genes (in
relative terms to the total, %) that are assigned to each of the 31 taxonomic clades (labeled in colors on the right). For each one of these
taxonomy levels the graph represents the cumulative percentage of protein-coding genes that are dated at such level. In this way, the 31 taxo-
nomic clades are placed as dots along the time-scale (in million years ago, Mya) from the origin to present. Line in black includes all the 17,437
proteins derived from the mapping of expressed genes in OMA. Line in blue includes only the HK genes: 3393. Line in red includes only the TE
genes: 2157
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Cellular organisms - Eukaryota). By contrast, the TE have
the major emergence of genes much later (around the
Mammalia) (Fig. 3). The complete timeline includes 31
phylogenetic clades (named in the figure legend), but by
analysing these points it was possible to identify eight major
steps or stage levels (named “hallmarks”) that appear on
the human gene profile along evolutionary time. Moreover,
we could assign the number of human protein-coding
genes that emerged along each one of these eight stages for
the three categories reported: all the expressed protein-
coding genes mapped to OMA, the HK and the TE. The
eight stage levels identified are: st1) Cellular organisms
(Prokaryota); st2) Cellular organisms to Eukaryota; st3)
Eukaryota to Metazoa; st4) Metazoa to Vertebrata; st5)
Vertebrata to Euteleostomi; st6) Euteleostomi to Mamma-
lia; st7) Mammalia to Primates; and st8) Primates to
Homo sapiens. All the numbers corresponding to the hu-
man protein-coding genes assigned to each of these eight
evolutionary hallmarks are included in Fig. 4, that indicates
how many are in each stage either considering the
complete human gene set or just the HK or the TE. All the
information about each one of the 17,437 human protein-
coding genes including the assignment to stages is also pro-
vided as Additional file 4.
The analysis of the hallmarks also reveals that the HK

genes are more ancient than TE genes. The plots in Fig. 3
and the data in Fig. 4 show clear difference between
them. The HK genes present a major increase or expan-
sion in stage 2 (Prokaryota to Eukaryota), with 1009
genes and a change of ≈ 30 % with respect to the total.
By contrast, the TE genes show a major increase in stage
7 (Mammalia to Primates) with 799 genes and a change
of ≈ 37 %. These observations seem to indicate that

house-keeping genes emerged early in evolution and are
older in age, knowing that they reflect more essential
and constitutive functions. The idea that gene essential-
ity is associated with older genes has been reported in
several studies, for example on yeast [14] and mamma-
lian genes [16]. By contrast, the observations that human
tissue-specific genes had emerged later in evolution may
reveal that human specific cellular or physiological roles
are implemented at molecular level by the appearance of
newer genes.

Gene age data comparison
As we indicated above, there are some studies that use
the phylostratigraphic method to explore the age of hu-
man genes, but most of these studies use sequence simi-
larity search (with algorithms like BLAST) to look for
the oldest homologues to the human [12, 16, 34]. To
compare the results on human gene age assignment
done in this work with other available age assignments,
we took the published data from Domazet-Lošo (2008)
[12] and from Neme (2013) [34], and we represented the
information about allocation to Lowest Common Ances-
tor (LCA) of the human genes in phylogenetic clades of
the evolutionary tree. The assignments were done using
15 common phylostratum to allow the comparison of
the data. The results of this comparison are included in
Additional file 1: Figure S4 and they show a general
similarity but some important differences. The most sig-
nificant difference corresponds to the fact that both
Domazet-Lošo [12] and Neme [34] placed a very large
number of genes on the first stage of the evolutionary
time-scale that goes from the origin of life to first cellu-
lar organisms (i.e. pre-eukaryota): 8285 of 22,845 (36 %)

Fig. 4 Evolutionary hallmarks of human protein-coding genes along time-scale. Table showing the numbers corresponding to the human
proteins found at each of the eight major evolutionary steps depicted from placing them on the time-scale. These eight stages provide the
evolutionary hallmarks of the human proteome. The stage levels correspond to: st1) Cellular organisms (Prokaryota); st2) Cellular organisms to
Eukaryota; st3) Eukaryota to Metazoa; st4) Metazoa to Vertebrata; st5) Vertebrata to Euteleostomi; st6) Euteleostomi to Mammalia; st7) Mammalia to
Primates; and st8) Primates to Homo sapiens. The numbers are presented for all the 17,437 protein-coding genes, for the 3393 HK genes and for the
2157 TE genes
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[12] and 7309 of 22,154 (33 %) [34]. This result denotes
a bias that, as we indicated above, can be due to the
methodology of using the homology search approach. In
any case, the idea suggested that one third of the human
proteoma may have emerged in evolutionary time before
the origin of eukaryotic cells needs deeper studies and it
is not what we observed in our analyses.
Another important difference is that the proposed age

mapping allocates the largest number of genes, first, to
the Chordata-Vertebrata-Euteleostomi phylostratums
(with 5070 genes) and, second, to the Mammalia-Eu-
theria (with 2172 genes) (Additional file 1: Figure S4).
From the evolutionary point of view these results make
a lot of sense since the time-scale of life [21, 22] reveals
two large expansions of the species precisely around the
vertebrates time (between 600 and 400 Mya) and around
the time of the mammals appearance (between 250 and
100 Mya). These expansions are well reflected in our
time-scale profile (Fig. 3). Finally, it is important to indi-
cate that the age mapping presented in our study only
considers human protein-coding genes that are included
in orthologous families (mapping a total of 17,437) and
in this way it has a lower coverage over human genes
than the other reported studies which include more than
22,000 genes in each case [12, 34].

Functional enrichment of the genes at different
evolutionary hallmarks
We performed functional enrichment analyses of the
sets of protein-coding genes included in each one of
eight major stages found in the evolutionary study. The
full results of these analyses are provided as Additional
file 5. In all the stages the functional enrichment makes
clear biological sense and provides a strong support to
the allocation of many biological processes in evolution-
ary time. In brief, we comment and discuss below some
interesting functions enriched in each stage.
Stage-1, from the origin of life to first cellular organ-

isms (i.e. Prokaryota). This stage comprises the genes
occurring over two major domains of life: Archaea and
Bacteria. Determining the LCA, our data shows that hu-
man has 6.76 % (1178) of the protein-coding genes
assigned to Prokaryotic age. Prokaryotes are organisms
that lack both membrane-bound organelles and nucleus.
Functional enrichment analysis showed that this stage
involved many basic metabolic processes like glycolysis
(GO:0006007, glucose catabolic process), the Krebs cycle
(GO:0006099, tricarboxylic acid cycle), and lipid oxida-
tion (GO:0009062, fatty acid catabolic process). The
enrichment also shows the appearance of the oldest
cellular organelle, the mitochondria, and the oldest
macromolecular machine, the ribosome, that are well re-
ported to be dated to Prokaryotic times.

Stage-2, Cellular organisms to Eukaryota. According
to basic literature, the defining feature of eukaryotic cells
is that they have membrane-bound organelles, especially
the nucleus, which contains the genetic material, and is
enclosed by the nuclear envelope. Protists, fungi, animals,
and plants all consist of eukaryotic cells. Eukaryotic cells
also contain other membrane-bound organelles such as
the Golgi apparatus. Eukaryotic organisms can be unicel-
lular or multicellular. The functional enrichment analysis
for the 2178 genes that emerged along this stage showed
well the formation of the principal complexes expected in
Eukaryotes. In this way it is remarkable the enrichment on
nuclear pore proteins, nuclear import proteins, nucleo-
some and chromatin proteins, as well as many proteins
involved DNA and RNA activity: mRNA and rRNA pro-
cessing, mRNA splicing, DNA unwinding, DNA polymer-
ase, DNA/RNA helicase. This stage also marks in time the
appearance and biogenesis of some major molecular com-
plexes: the proteasome (GO:0005839, proteasome core
complex), the spliceosome, and the ribosome (at this stage
mainly the proteins of the large subunit RPLs, in contrast
to the ribosomal proteins of the small subunit RPSs, that
were mostly allocated to Prokaryotic age).
Stage-3, Eukaryota to Metazoa. The third stage com-

prises organisms from Opisthokonta and Metazoan
clades with 1395 protein-coding genes (27.25 % cumula-
tive). The Opisthokonts are a broad group of eukaryotes,
including both the animal and fungi kingdoms, some-
times referred to as the “fungi/metazoan group” [35].
This stage comprises metazoan, fungal and protistan
taxa, and other multicellular taxa (such as plants, and
red and brown algae) [36]. They also include known
fungi and/or parasites of plants like: Ascomycota, Basid-
iomycota, Chytridiomycetes, Glomeromycota, Microspori-
dia, Urediniomycetes, Ustilaginomycetes and Zygomycota
[37]. According to our functional enrichment analysis, this
stage involves different genes responsible for signal trans-
duction like the GTPases. Some of the enriched terms are:
pyrophosphatase activity, nucleoside-triphosphatase activ-
ity, GTP binding, transferring phosphorus-containing
groups. All these functions indicate that it may be the time
when phosphorus and phospate acquired a key role in
protein function and regulation. Other enriched functions,
like post-translational protein modification, calcium-
binding EF-hand, protein transport and localization
also indicate cellular protein regulation.
Stage-4, Metazoa to Vertebrata. This stage includes

organisms from Eumetazoa, Bilateria, Deuterostomia,
Chordata, Craniata and Vertebrata with 2333 genes
(40.63 % cumulative). The main novelties of this stage
are the appearance of protein kinase activity, and the
presence of growth factors and some specific signaling
proteins like WNT. All biochemically characterized
members of the WNT superfamily encode enzymes that
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transfer organic acids, typically fatty acids, onto hydroxyl
groups of membrane-embedded targets [38]. Other
enriched terms in this stage, like sarcomere and con-
tractile fiber part, may indicate the emergence of the
muscular structures present in vertebrates [39].
Stage-5,Vertebrata to Euteleostomi. This stage represents

the largest step in the human lineage according to the
number of protein-coding genes assigned (5070), that cor-
respond to a 29 % of the total. The stage comprises organ-
isms from Gnathostomata (jawed vertebrates), Teleostomi
(bony fish and tetrapods) and Euteleostomi (bony verte-
brate) [40]. The enrichment analysis shows a large func-
tional expansion including new biological systems, like the
neural and the vascular-circulatory systems, represented in
enriched terms like: neurogenesis, neuron differentiation,
axogenesis, voltage-gated channels, neuromuscular junc-
tion development, blood vessel development, vasculature
development, mesenchymal cell development and differen-
tiation, etc. Many other genes are assigned to biological
regulation and regulation of cellular processes; including
cell death and apoptosis. Finally, the appearance of the
large family of homeobox proteins seems to be placed at
this stage.
Stage-6, Euteleostomi to Mammalia. In this stage there

are organisms from Sarcopterygii (lobe-finned fishes) [41],
Dipnotetrapodomorpha (new taxon from NCBI comprising
lungfishes), Tetrapoda (four-legged vertebrates), Amniota
(comprising the reptiles, birds and mammals that lay their
eggs on land or retain the fertilized egg within the mother)
and up to Mammalia clades. With 1953 genes at this stage,
the human lineage achieves 80 % of its gene composition.
The most relevant enriched terms are related to the
hematologic system, marking the appearance of the leuko-
cytes and the lymphocytes. Previous phylogenetic analyses
based on gene expression data also placed the date of many
proteins from leukocytes around the time of the mammals’
clade [42].
Stage-7, Mammalia to Primates. This stage comprises

clades of Theria, Eutheria, Boreoeutheria, Euarchonto-
glires and Primates, representing organisms that give
birth to live young without using a shelled egg up to pla-
cental mammals [43]. There are 2821 genes emerged on
this stage, adding up to 97.08 % of the cummulative pro-
file in the human gene lineage. A large amount of these
genes are enriched in the terms: regulation of gene ex-
pression and transcription. Other more specific terms
are related to the skin (epidermal and epithelial cell differ-
entiation, keratinization) or with the sexual reproductive
system (male gamete generation, spermatogenesis and
sexual reproduction). This stage also includes a family of
cytochrome P450 proteins (that are around 23) and the
mammalian defensins (that are 6): DEFA1B, DEFA3,
DEFA4, DEFA5, DEFA6, and DEFB4A. Defensins are a
family of antimicrobial peptides and vital contributors to

host immune response. Being constitutive or inducible
expressed genes, they have been shown to contribute to
innate host defense via direct bactericidal activity, as well
as to adaptive immunity through effector and regulatory
functions [44].
Stage-8, Primates to Homo sapiens. The last stage of

human development, with 509 genes, presents a group
of quite specific functions played by specific protein
families, such as: somatotropin hormone, cytochrome
P450, GTPase activator activity, defense response to fun-
gus and bacterium provided by histatins. HIS1 and HIS3
(histatin proteins) have been found only in saliva of
humans, macaques and some other primates but not in
any other mammals [45]. They are a family of histidine-
rich polypeptides that probably function as part of the
non-immune host defense system and appeared very late
in evolution [45]. Cytochromes P450 constitute a super-
family of proteins that existed in virtually all species
from prokaryotes to humans. Most of these proteins in
the CYP1, CYP2, CYP3 and CYP4 families encode en-
zymes involved in the metabolism and elimination of po-
tential toxic compounds like drugs or foreign xenobiotics,
and are inducible by various environmental stimuli [46].
This last stage includes a small subset of six cytochromes
P450 that seem to be very specific of the primates-human
clades: CYP2A7, CYP2C9, CYP2D6, CYP2J2, CYP2S1 and
CYP3A43. The appearance late in evolution of some of
these genes may reflect their functional specificity and it is
known that they play a key role in human health [46].

Network analysis reveals evolutionary age conservation
of coexpressed proteins
The global coexpression analysis of the human protein-
coding genes allowed the construction of a network in-
cluding highly correlated protein pairs. The integration
of these data with the data from the evolutionary ana-
lysis –that provided the identification of the eight stages
along evolutionary time– did allow mapping the age of
the genes on the network according to such stages.
These results are presented in Fig. 5 that shows a com-
plex network –like a galaxy– that includes 1691 protein
nodes associated by 19,615 interactions. This network
corresponds to a subset of the coexpression data, build
as indicated in Methods, which included 2298 proteins
and 20,005 interactions (this full coexpression data is
provided in Additional file 2, and the network in Add-
itional file 3). The subset is done with only the groups
that had at least five linked proteins, since we wanted to
provide in Fig. 5 a visible representation of the network
with a clear color mapping of the eight stages that were
identified in the evolutionary study. The colors of the
stages are also presented in the illustrated table, Fig. 4,
to allow better identification of the number and % of
proteins at each age hallmark. The analysis of the
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network (Fig. 5) done with the algorithm MCODE re-
vealed the existence of 11 major subnetworks, which can
be considered as major constellations in the galaxy of re-
lational nodes. The color code of this large graph indi-
cates that there is enrichment in certain colors in each
subnetwork. To prove this in a more accurate way, we
built a graphic representation for each one of the 11
subnetworks found to show the proportion of proteins
assigned to each of the eight evolutionary stages with
their corresponding color code (colors as in Figs. 4 and
5). This graphic is presented in Additional file 1: Figure
S5, that shows each subnetwork with its specific color
pattern, indicating that there are always some predomin-
ant colors: subnetwork 5 is the oldest with red
predominant colors and subnetwork 11 is the newest
with blue predominant colors. As a conclusion, these

results revealed that in the groups of highly coexpressed
proteins there is a tendency to include proteins of the
same evolutionary age.
Finally, we did a functional enrichment analysis of the

proteins forming the 11 subnetworks which again showed
a coherent biological enrichment in specific functions:
(subnetwork 1) immune response; (2) cell cycle; (3) cyto-
skeleton; (4) RNA splicing; (5) ribosome; (6) extracellular
matrix; (7) muscle and contraction; (8) gametes and repro-
ductive process; (9) cell junction and cell adhesion; (10)
mitochondria and ATP synthesis; (11) angiogenesis and
vasculogenesis. More detailed results for this analysis
are included in Additional file 1: Figure S6. Thus, we
observed that age-related proteins are predisposed to
present expression coregulation and to have close
functional links.

Fig. 5 Human coexpression network mapping the evolutionary age on highly correlated nodes. Representation of the coexpression complex
network –like a galaxy– that includes 1691 protein nodes related with 19,615 interactions. This network corresponds to a subset of the larger
coexpression network produced, which included 2298 proteins and 20,005 interactions (provided in Additional file 2). The subset is done to
include only the groups that had at least five linked proteins. The color mapping of the nodes correspond to the eight stages that were
identified in the evolutionary study (as reflected in the labels included at the top right). The network also includes numbers for 11 major
subnetworks –clusters of closely related proteins that include more than 20 nodes– considered as major constellations in the galaxy of nodes.
Three panels on the right show an enlarged view of three subnetworks corresponding to: ribosomal proteins (5), mitochondrial proteins (10)
and angiogenesis proteins (11)
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Combining age data, functional data and coexpression
data can provide a deeper view about the links and roles
of the human protein-coding genes. In this way, we ob-
served for example that subnetwork 5 (which contains
proteins related with ribosome and translation) pre-
sented as expected an overwhelming majority of ancient
genes from the Prokaryotic or Eukaryotic age (stages 1
and 2). On the other hand, subnetworks 1 (immune
response, leukocyte/lymphocyte activations), 8 (gam-
etes and reproductive process) and 11 (angiogenesis
and vasculogenesis) showed a higher proportion of re-
cent genes dated after Vertebrata (Additional file 1:
Figure S5). These results agree with studies based on
yeast protein physical interaction networks, arguing
that proteins preferentially interact with proteins of
same age and origin [47]. Moreover, it was previously
shown that coexpression networks can be conserved
over the evolutionary history, and these genes tend to
be functionally related and provide selective advan-
tages [48]. It has been also reported that coexpression
networks are found associated to functions like cell
adhesion, cell cycle, DNA replication and DNA repair
[49], and this is in agreement with functions found
enriched in subnetworks of our analyses: subnetwork 2
and 9 (Additional file 1: Figure S5).

Conclusions
The transcriptomic study of the human gene expression
distributions and profiles along 32 tissues provided a
global mapping of the activity of most human genes and
of the links between them, showing the expected associ-
ation of samples from common physiological regions,
i.e.: the gastrointestinal tract (stomach, duodenum, small
intestine, colon and rectum), the hematopoietic and
lymphatic system (bone marrow, lymph node, spleen,
tonsil and appendix) and the muscle (cardiac and
skeletal muscle).
The evolutionary study of the human protein-coding

genes placed them in the time-scale of the living species
and revealed eight distinct hallmarks along such time-
scale (i.e. eight major steps), showing that the HK genes
are more ancient than the TE genes. The HK genes
present the major emergence in stage 2 of the evolution-
ary profile, while the TE genes have the major emer-
gence in stage 7. The functional enrichment study found
coherent groups of terms and annotations assigned to
the genes placed at each evolutionary stage. For ex-
ample, in stage 1 there were many functional terms on
essential metabolic processes, like aerobic respiration
and mitochondrial activity; and in stage 2 there were
enriched functions related to the nucleus and genome
regulation, like chromatin and nucleosome assembly,
DNA replication, mRNA processing.

Finally, the study of the pair-wise correlation of the
gene expression profiles along tissues allowed building
human gene coexpression networks and find modules
with functional and biological meaning. The mapping of
the age of the protein-coding genes on these networks
demonstrated the existence of tight links between age-
related proteins.
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