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Short bowel syndrome results in increased
gene expression associated with
proliferation, inflammation, bile acid
synthesis and immune system activation:
RNA sequencing a zebrafish SBS model
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Abstract

Background: Much of the morbidity associated with short bowel syndrome (SBS) is attributed to effects of
decreased enteral nutrition and administration of total parenteral nutrition (TPN). We hypothesized that acute
SBS alone has significant effects on gene expression beyond epithelial proliferation, and tested this in a zebrafish SBS
model.

Methods: In a model of SBS in zebrafish (laparotomy, proximal stoma, distal ligation, n = 29) or sham (laparotomy
alone, n = 28) surgery, RNA-Seq was performed after 2 weeks. The proximal intestine was harvested and RNA isolated.
The three samples from each group with the highest amount of RNA were spiked with external RNA controls
consortium (ERCC) controls, sequenced and aligned to reference genome with gene ontology (GO) enrichment analysis
performed. Gene expression of ctnnb1, ccnb1, ccnd1, cyp7a1a, dkk3, ifng1-2, igf2a, il1b, lef1, nos2b, saa1, stat3, tnfa and
wnt5a were confirmed to be elevated in SBS by RT-qPCR.

Results: RNA-seq analysis identified 1346 significantly upregulated genes and 678 significantly downregulated genes
in SBS zebrafish intestine compared to sham with Ingenuity analysis. The upregulated genes were involved in cell
proliferation, acute phase response signaling, innate and adaptive immunity, bile acid regulation, production of nitric
oxide and reactive oxygen species, cellular barrier and coagulation. The downregulated genes were involved in folate
synthesis, gluconeogenesis, glycogenolysis, fatty-acid oxidation and activation and drug and steroid metabolism.
RT-qPCR confirmed gene expression differences from RNA-Sequencing.

Conclusion: Changes of gene expression after 2 weeks of SBS indicate complex and extensive alterations
of multiple pathways, some previously implicated as effects of TPN. The systemic sequelae of SBS alone are
significant and indicate multiple targets for investigating future therapies.
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and adaptive immunity
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Background
Short bowel syndrome (SBS) and intestinal failure occur
after surgical resection of large amounts of small intes-
tine, which is a necessary response to multiple congeni-
tal anomalies, newborn surgical emergencies or trauma.
The incidence of SBS is almost double the cumulative
incidence of all invasive childhood cancers and has a
30% 5-year mortality [1, 2]. The usual treatment for SBS
is the administration of intravenous (IV) nutrition be-
cause there is inadequate available intestinal surface area
to absorb sufficient nutrition. A reduction of just 10% of
US patients requiring home IV nutrition for SBS would
result in estimated savings of $780,000,000 [3]. The pa-
tients who wean off of IV nutrition for SBS are able to
do so because the remainder of their intestine undergoes
adaptation. In intestinal adaptation, the epithelial surface
area markedly increases with taller villi and deeper
crypts, which results in a gain of available cell surfaces
to absorb nutrition. For this reason, SBS has been par-
ticularly understood as a problem of diminished nutri-
tional absorption, and the epithelial response has been
much more studied than the in vivo intestine as a whole.
But systemic effects beyond epithelial responses to nutri-
tion such as inflammation, infection, cholestasis, hepatic
fibrosis, electrolyte abnormalities and catheter related in-
fections are observed in patients with SBS [4–6]. These
systemic effects have been attributed to some of the
treatment therapies as opposed to the actual disease
process, such as the association of liver fibrosis to the
administration of IV nutrition.
The systemic effects resulting from SBS have not been

extensively studied. However, isolated SBS was found to
create a systemic pro-inflammatory state that is magni-
fied by sepsis independent of TPN [4]. Given that effects
of SBS on gene expression in cell types outside of the
epithelium have not been intensively studied, we evalu-
ated matched samples of zebrafish intestine with and
without SBS that was established 2 weeks prior to har-
vest, a model we previously validated [7], with RNA
sequencing. This SBS model demonstrated increased
villus epithelial perimeter, a measure of the exuberant
epithelial expansion that accompanies intestinal adapta-
tion in human SBS, as well as increased proliferation
with more BrdU+ cells identified at 2 weeks after SBS
surgery. The significant increase in BrdU+ cells was
identified at 2 weeks in the SBS group, but is no longer
statistically significant by the 4-week timepoint. The 2-
week timepoint was chosen for these experiments to
capture data at a known timepoint of cellular prolifera-
tion during adaptation in SBS. This analysis identified
1346 upregulated genes and 678 downregulated genes in
SBS zebrafish intestine compared to sham-operated fish,
with key genes confirmed by PCR. The upregulated
genes were involved in cell proliferation, acute phase

response signaling, innate and adaptive immunity, bile
acid regulation, production of nitric oxide and reactive
oxygen species, cellular barrier and coagulation. The
downregulated genes were involved in folate synthesis,
gluconeogenesis, glycogenolysis, fatty-acid oxidation and
activation and drug and steroid metabolism.

Methods
All protocols were approved by Children’s Hospital Los
Angeles animal care facility and IACUC.

Generation of SBS and sham zebrafish
We previously reported a zebrafish SBS model in which
the intestine is resected at a reproducible site analogous
to a human jejunostomy [7]. To generate SBS for RNA-
seq analysis, we followed this established protocol, and
adult male wild-type Ekk zebrafish were grouped into
either SBS surgery (n = 29) or sham (n = 28) groups.
Zebrafish were housed and handled in accordance with
our approved animal protocol, and maintained in tank
water changed every other day and pH balanced. Health
checks were performed at these times and more fre-
quently just after surgery, in accordance with our proto-
col. 3 from each group were harvested for RNA
sequencing at 2 weeks and the remaining fish were har-
vested for evaluation by histology or RT-qPCR. The
number of replicates was determined by a pilot experi-
ment and statistical power analysis. False discovery rate
adjusted p-values (Benjamini-Hochberg) were generated
by edgeR software after a general logistic model fit and
in comparison to a negative binomial distribution of the
same size.
Briefly, the zebrafish were anesthetized with 0.02% tri-

caine and placed on an operating sponge under the
stereomicroscope (Olympus SZX9). A ventral laparot-
omy was made anterior to the anal fins, the liver swept
cephalad and the proximal loop of intestine brought out.
The distal intestine at the junction of segment 3 and 4
(S3/S4) was suture ligated with 10–0 monofilament
polypropylene and the proximal intestine was tacked to
the abdominal wall at the junction of segment 1 and 2
(S1/S2). The mid-portion (S2/S3) was removed and the
abdominal contents were placed back into the abdom-
inal cavity, leaving behind a proximal functional ostomy.
The sham operation consisted of a ventral laparotomy
with no bowel manipulation.

Weight measurement
The zebrafish were weighed weekly until harvest at
2 weeks, beginning immediately after the surgical pro-
cedure. Zebrafish were anesthetized, patted dry and
placed on a balance. Weight was recorded as a percent-
age of initial weight ± SEM.
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Harvest procedure
At 2 weeks postoperatively, the SBS and sham zebrafish
were anesthetized, the proximal S1 intestine resected
and placed in RNALater for RNA extraction (Sigma Life
Sciences, #R0901).

RNA extraction
The RNA was extracted with the Qiagen RNeasy mini
kit and and RNA concentration was determined with the
Nanodrop 2000 system (Thermo Scientific). The three
samples with the highest RNA concentration were
selected to make cDNA libraries to be sequenced while
the remaining samples were analyzed by RT-qPCR.

RNA sequencing
After RNA extraction, the RNA integrity was determined
with a bioanalyzer (Agilent Technologies) and found to
have RNA integrity numbers (RIN) greater than 9.3.
Multiple samples had RIN of 10.0, indicating high qual-
ity RNA. Ex-Fold External RNA Controls Consortium
(ERCC) controls (Ambion, Foster City, CA) were added
to the samples prior to cDNA library creation [8]. ERCC
controls contain two mixes of 92 sequences not found in
eukaryotes, at different concentrations. The libraries
were initially sequenced to 10 million reads and a power
analysis completed with the Scotty algorithm [9]. The
libraries were then deep sequenced further to get a total
sequence of 50 million reads. The RNA short reads were
sequenced and all samples were evaluated for quality
with the FastQC bioanalyzer [10]. Sequences with low
Phred quality scores were removed with Trimmomatic
[11]. The remaining RNA sequences were aligned to the
Danio rerio reference genome generated by the
Wellcome Trust Sanger Institute (danRer7) [12] down-
loaded from UCSC genome database using RNA-star
short read aligner and the ENCODE recommended
parameters [13]. The read counts per transcript were
found with the HTSeq-count python script [14].
Reads per kilobase per million mapped reads (RPKM)
were produced with the edgeR [15] R/Bioconductor
software package [16]. Differential gene expression
was analyzed with the Remove Unwanted Variation
R/Bioconductor software package (RUVSeq) [17] com-
bined with edgeR. Analysis was performed with
Ingenuity pathway analysis (http://www.ingenuity.com)
and Gene ontology (GO) enrichment using the
GOstats R/bioconductor software [18] and Gene
Ontology Consortium (geneontology.org). Gene signa-
tures for differentially expressed genes with false dis-
covery rate (FDR)-corrected p-values <0.05 were
converted with the NCBI homologene into corre-
sponding human genes. The relative log expression
graphs and principal component graphs were pro-
duced with the EDASeq R/Bioconductor software.

The threshold for significant gene expression was
expressed as log fold change ≥1.5 or ≤ −1.5.

Reverse transcription quantitative polymerase chain
reaction (RT-qPCR)
Seven-hundred-fifty nanograms of RNA as calculated
after determination of the RNA concentration of the
samples by the Nanodrop 2000 (Thermo Scientific) were
reverse-transcribed to cDNA with iScript Reverse Tran-
scription Supermix (Bio-Rad, #170-8841) from each
sample. RT-qPCR was performed in triplicate according
to the SYBR green protocol with SYBR-Green I Master
Mix (Roche #4717516001) and the LightCycler 480 II
(Roche) with the primers in Additional file 1: Table S1
and positive and no template negative controls, and
melting curve analysis according to manufacturer
instructions. Gene expression was normalized to a
housekeeping gene, elf1-alpha (elf1a). Outliers were
determined by ROUT method with a Q value of
0.5%. Statistical significance was determined by a
student’s t-test in Prism Graphpad software. Signifi-
cance was determined by p-value of <0.5.

Immunofluorescence staining for β –catenin and counting
Proximal (S1) intestines were harvested from sham or
SBS fish. An additional segment was harvested as well:
the more distal (S4) segment of the intestine that
remains after the creation of SBS, which was also
harvested in each group (n = 5 for sham proximal, sham
distal and SBS proximal, n = 6 for SBS distal). The intes-
tinal samples were oriented, formalin fixed, paraffin
embedded and cut onto slides. Slides were subjected to a
deparaffinization and rehydration process. Antigen
retrieval was performed in a decloaking chamber with
slides immersed in a 0.1 M sodium citrate solution for
10 min at 120°. Once cooled, slides were washed in PBS
with 0.1% Tween (PBSt) for 15 min and blocked with
10% normal goat serum in PBSt for 1 h. Primary anti-
body anti-β-catenin (1:1,000, C2206 rabbit polyclonal;
Sigma) was applied and samples were incubated over-
night at 4 °C. The next day, slides were washed with
PBSt for 15 min and exposed to secondary antibody
goat-anti-rabbit 488 (1:500; Molecular Probes) for 2 h at
room temperature. Slides were rinsed, counterstained
and mounted in Vectashield with DAPI (Vector).
Imaging was performed with an immunofluorescent
microscope (Leica DM5500). β –catenin was quantified
in the epithelium by counting the number of β –catenin
positive cells per hemivillus, defined as cells from the
intervillus pocket to the tip of the villi. All areas with
complete hemi-villus were included in the quantifica-
tion. A qualified, blinded observer carried out the
quantification. The measurements were recorded as
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the percentage of β –catenin positive cells per total
DAPI-stained epithelial cells per hemi-villus ± SEM.

Results
After 2 weeks of SBS, zebrafish intestine has a high
number of upregulated differentially expressed genes
based on RNA sequencing
Correlating with multiple previous experiments in this
model, and the human condition, the SBS zebrafish lost
a significant percentage of initial weight when compared
to the sham group (Fig. 1a) (82.5% vs 92.0%, p < 0.05).
RNA-seq genome wide analysis was performed on three
SBS and sham zebrafish proximal intestine (Table 1).
The SBS group had 1346 significant differentially
expressed genes that were upregulated while there were
678 genes that were downregulated (Table 2).

SBS zebrafish intestine had increased gene expression
differences when compared to the sham group based on
RNA-seq analysis
RNA sequencing of SBS and sham zebrafish demon-
strated low variation between all samples as shown in
the biological coefficient of variation graph (Fig. 1b) with
many significantly upregulated and downregulated SBS

genes with a ≥1.5 or ≤ −1.5 cutoff (Fig. 1c). Principal
component analysis showed marked differences in the
SBS zebrafish intestine as compared to the sham zebra-
fish, more so than the differences between samples
(Fig. 1d). External controls were added to the samples
prior to sequencing to evaluate sequencing quality. The
ERCC graph shows that the observed log2 fold change
(FC) was very close to the expected log2 FC, confirming
high quality sequencing of the samples (Fig. 1e).

RNA sequencing data was of high quality, including the
ERCC controls
Sequencing reads aligned to the zebrafish genome were
used to generate a number of data quality assessment
plots. After data processing, a ‘smear’ plot (Fig. 1c) was
produced of the determined log2 fold-change (logFC)
versus the average log2 counts per million mapped reads
(logCPM). Each point belongs to a specific genetic elem-
ent for which an Ensembl gene ID exists in the DanRer
7 annotated genome. Genetic elements colored red
correspond to elements that have been identified to be
statistically significant (FDR corrected p-value < 0.05).
No artifacts were detected at any of the lower or higher
ranges of the log2CPM.

Fig. 1 SBS zebrafish have significantly different gene expression than sham. a SBS zebrafish lost a significant percentage of preoperative weight
compared to sham zebrafish over 2 weeks. b The biological coefficient variation over average log counts per million mapped reads with the
trend line in blue and the common in red. c The volcano plot of sequenced genes showing log fold change. Each gene is expressed by a dot
with the red dots representing an FDR corrected p-value <0.05 with significant upregulated SBS genes >1.5 and downregulated genes <1.5.
d Principal component analysis compared the SBS zebrafish intestine to the sham group. (E) ERCC graph comparing observed log2 fold change
(FC) to the expected log2 FC with good correlation
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The External RNA controls consortium ExFold
probes (ERCC) were included as a ‘spike-in’ control to
assess the performance of the statistical analysis. The
ERCC probes consist of two mixes of 92 sequences
not found in Eukaryotes. Each mix contains the same
92 sequences but at different concentrations, which
span six log decades. The measurements for these
sequences was used to construct an expected versus
observed log2FC plot (Fig. 1e) which demonstrates
excellent agreement considering the potential for bias
introduced by recombinant reverse transcription used
to generate the cDNA library.
The R/Bioconductor software edgeR also facilitated an

assessment of the biological coefficient of variation
(BCV) across all of the genes measured [19]. A graph of
the calculated BCV versus the log2CPM (Fig. 1b) shows
an average BCV of 28% and the vast majority of mea-
surements under 40% for all ranges of log2CPM.
The quality of the raw data was assessed by principle

component analysis using the software R/Bioconductor
software EDASeq [20]. Principle component analysis
shows that the data is well separated on principle com-
ponent axis 1 (80%) and fairly well on axis 2.
Gene set enrichment was performed using the R/

Bioconductor software GOstats [18]. The subset of
genes with FDR corrected p-values less than 0.05
were compared to all of the genes for which there
was a measurement. GOstats performs hypergeo-
metric testing comparing the distribution of gene
ontology (GO) terms between the subset and the
whole. If the ratio of genes corresponding a particu-
lar GO term is different between the subset and the
whole, that GO term is overrepresented if the ratio
of genes corresponding to the GO term is higher
than the whole, and underrepresented if the ratio of
genes corresponding to the GO term is lower than
the whole.

SBS results in increased gene expression associated with
proliferation, inflammation and immune system
activation
RNA-seq analysis heat-maps revealed many significant
differences. SBS zebrafish intestine demonstrated up-
regulation of genes associated with cell proliferation,
acute phase response signaling and innate and adap-
tive immunity (Fig. 2a–c). Key genes in cell prolifera-
tion were confirmed with RT-qPCR showing a
significant increase in igf2a, ccnb1 (cyclin B1) and
ccnd1 (cyclin D1) (Fig. 2d–f ). Another signaling
pathway involved in cell proliferation is the Wnt
pathway, which is significantly increased with expres-
sion of ctnnb1 (β-catenin), lef1, wnt5a and dkk3
(Fig. 2g–j). This correlated with an increased expres-
sion of β –catenin detected by immunofluorescence
in the proximal intestine of SBS fish compared to the
proximal segment in Sham fish (4.676% +/− 0.4711,
n = 39 vs. 2.969% +/− 0.4128 n = 27 p =0.0123). Fur-
thermore, β –catenin-positive cells were detected in
greater numbers in SBS proximal bowel compared to
SBS distal bowel (4.676% +/− 0.4711 n = 39 vs 2.379% +/−
0.4782, n = 47 p = 0.0011). No significant difference was
noted between Sham proximal and distal intestine
(Additional file 2: Figure S1).
Acute phase response signaling is also increased in

SBS intestine when compared to the sham group,
confirmed with significantly increased expression of
saa1, tnfa and stat3 on RT-qPCR (Fig. 2k–m). Innate
and adaptive immunity is also significantly increased
within the SBS group, confirmed by il1b (il-1β) and
ifng1-2 (ifn-γ) RT-qPCR (Fig. 2n–o).

SBS results in increased gene expression in the intestine
of genes commonly expressed in the liver and also those
associated with barrier function
Heat-maps of RNA-seq analysis revealed increased
expression in SBS of genes more usually identified in
liver in the condition of bile acid regulation and hep-
atic fibrosis, as well as genes that regulate nitric
oxide production, the cellular barrier and coagulation
pathways (Fig. 3a–d). Expression in the SBS intestine
of genes usually identified in cholestatic, hepatic
fibrosis, bile acid regulation and coagulation

Table 1 The number of sequenced reads mapped to the SBS and sham zebrafish intestine

Sample ID Raw reads Raw combined Clean reads (percentage) Mapped reads (percentage)

Sham 1 4.80E + 07 6.70E + 07 65982094 (98.06%) 63078706 (95.60%)

Sham 2 4.40E + 07 6.20E + 07 60497171 (97.63%) 56858850 (93.99%)

Sham 3 4.80E + 07 6.80E + 07 67161466 (98.13%) 64522681 (96.07%)

SBS 1 1.90E + 07 3.70E + 07 36112322 (96.71) 33326196 (92.28%)

SBS 2 4.70E + 07 6.60E + 07 65338859 (98.58%) 61739067 (94.49%)

SBS 3 4.60E + 07 6.50E + 07 63391449 (97.98%) 59498306 (93.86%)

Table 2 The number of differentially expressed genes between
SBS and sham zebrafish intestine

Number of
DEGs

Number of up-
regulated DEGs

Number of down-
regulated DEGs

SBS vs Sham 2024 1346 678
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Fig. 2 (See legend on next page.)
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processes in the liver was confirmed by RT-qPCR,
with the identification of significantly elevated
cyp7a1a (cytochrome p450 7A1) (Fig. 3e). Nitric
oxide reactive species were also increased in SBS
zebrafish, confirmed by nos2b (nitric oxide synthase
2) on RT-qPCR (Fig. 3f ). The log2 fold change (FC)
from the RNA-seq analysis of the SBS vs sham was
compared to the RT-qPCR FC with no significant
difference between the results from the RNA-seq
analysis and the confirmatory RT-qPCR (Fig. 4).

SBS over- and under-represents multiple disparate
biological processes
Significantly different genes were then compared to the
Danio rerio genome in the Gene Ontology Consortium
database to determine which processes were either over-
or under-represented. GO analysis of over-represented
(Fig. 5a) and under-represented (Fig. 5b) processes are
shown with the associated gene count. The complete list
of over-represented processes and under-represented
processes are located in Additional file 3: Table S2 and

(See figure on previous page.)
Fig. 2 SBS zebrafish have increased expression of proliferation, inflammation and immunity. a-c Heat-maps of RNA-seq analysis show the gene
expression differences between SBS and sham zebrafish in regards to cellular proliferation, acute phase response signaling and innate
and adaptive immunity. RT-qPCR confirmation was performed on examples of cellular proliferation [igf2a (d), ccnb1 (cyclin B1, (e)), ccnd1
(cyclin D1, (f)), ctnnb1 (β-catenin, (g)), lef1 (h), wnt5a (i), dkk3 (j)], acute phase response signaling [saa1 (k), tnfa (l), stat3 (m)] and innate
and adaptive immunity (il1b (n), ifng1-2 (o)]. *denotes p < 0.5, **p < 0.1, ***p < 0.001

Fig. 3 SBS zebrafish have widespread increased systemic gene expression compared to sham. a–d Heat-maps of RNA-seq analysis show the
differences in gene expression between the SBS and sham zebrafish broken down into bile acid regulation, nitric oxide reactive species production,
cellular barrier and coagulation. RT-qPCR confirmation was performed on bile acid reguation [cyp7a1a (e)] and nitric oxide reactive species production
[nos2b (f)]. *denotes p < 0.5, **p < 0.1, ***p < 0.001
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Additional file 4: Table S3. The significantly different
genes were also analyzed with Ingenuity pathway ana-
lysis and were graphed, showing the percentage of genes
upregulated or downregulated in canonical pathways
(Fig. 6). The complete list of percentage of genes that
are upregulated or downregulated with the pathways are
shown in Additional file 5: Table S4.

Discussion
In-depth analysis of changes in the transcriptome have
not been possible in alternative models of adaptation
After SBS has been established following massive small
bowel resection, the degree of adaptation that may occur
in the residual intestine is highly variable and sometimes
fails to occur at all. When adaptation is inadequate,
salvage therapies including intestinal transplant are
still possible, but costs are high, supplies of donor
organs are low, and lifelong immunosuppression is
required [21, 22]. Because SBS and subsequent adap-
tation occur in a complex in vivo milieu, it is impos-
sible to dissect the critical mechanisms in reductionist
in vitro models.
Adaptation models have been reported in mice and

larger mammals [23]. As in the human condition,
these employ massive small bowel resection and are
complicated, time consuming and associated with low
survival and high cost. For these reasons, adaptation
is still poorly understood, limiting human therapies.
We recently developed a novel zebrafish model for
SBS in order to identify cellular and molecular

Fig. 4 RT-qPCR confirms results of RNA-seq analysis. The ratio of
the log2 fold change (FC) from the RNA-seq analysis was compared
to the fold change seen with RT-qPCR of a subset of genes.
No significant difference was found between the RNA-seq
analysis and the confirmatory RT-qPCR

Fig. 5 SBS positively and negatively alters multiple biological processes. GO analysis demonstrated multiple systemic processes that are either
upregulated (a) or downregulated (b) in SBS as compared to sham zebrafish
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mechanisms that are critical to ensure and promote
intestinal adaptation, and to develop and confirm
human regenerative medicine targets [7]. Our initial
data indicated that SBS resulting from a proximal
intestinal diversion results in an increase in BrdU+
cells in the intervillus pocket at 2 weeks that resolves
by 4 weeks, with an increase in epithelial surface area
at that point. We therefore chose to investigate the 2-
week timepoint.

In matched samples of small intestine from SBS zebra-
fish compared to sham-operated fish, we found 1346
upregulated genes and 678 downregulated genes, of
which a subset were confirmed by PCR. The SBS fish
lost weight due to their severely truncated intestinal
length, as in the initial description of this model. The
upregulated genes were associated with cell proliferation,
acute phase response signaling, innate & adaptive im-
munity, production of nitric oxide & reactive oxygen

Fig. 6 SBS leads to many significant alterations in systemic pathways within zebrafish intestine as compared to sham. Ingenuity pathway analysis
(IPA) reveals many pathways with upregulated genes [12] and downregulated genes [31] expressed as a percentage of genes
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species, and the cellular barrier. Other upregulated genes
include those related to hepatic fibrosis, cholestasis, bile
acid regulation or coagulation although they were
expressed in the intestine. The downregulated genes
were related to folate synthesis, gluconeogenesis, glyco-
genolysis, fatty-acid oxidation and activation and drug
and steroid metabolism. We assessed key genes identi-
fied by RNA-Seq with RT-qPCR, which confirmed the
RNA-Seq data and employed ERCC controls. The sam-
ples have very low variance between replicates and a
fairly large difference in variance between the groups.
The average coefficient of variation for 300 series, 400
series and between groups using RPKM (Additional file
6: Table S5) is 45, 52 and 92% respectively amongst the
14,797 genes detected. Power analysis of a small subset
of the data (2 + 2 and 10 million reads SE) was per-
formed which indicated the criteria (depth of sequen-
cing) whereby three replicates would have sufficient
statistical power (α = 0.05, β = 0.2) as calculated by the
Scotty web-based algorithm [9].

Expansion of the epithelium is the condicio sine qua non
of adaptation, and gene expression related to cellular
proliferation was increased in the SBS group
Intestinal adaptation is a critical physiological response
necessary to increase intestinal surface area to compen-
sate for the loss of intestine. We, and others have con-
sistently measured increases in villus height and crypt
depth in the adaptive state [7, 24]. Individual growth fac-
tors have been investigated in SBS models, with conflict-
ing results. For example, Epidermal growth factor (EGF),
glucagon-like peptide 2 (Glp2), growth hormone and
insulin-like growth factor (IGF) are factors that have
been confirmed to stimulate adaptation in multiple rat,
rabbit and piglet studies [25–32]. However, studying the
addition or subtraction of each of these factors has
yielded variable results in animal models, e.g. although
both EGF and IGF signaling have been shown to be im-
portant, adaptation still occurs with disruption of both
EGFR and IGF1R [33]. However, taken together, SBS in-
testine at 2 weeks demonstrates upregulation of multiple
key proliferative genes. Some of these genes are pro-
posed to relate to cell cycle regulation such as ccnb1
(cyclin B1,3.6 log2 FC) and cdk1 (cyclin-dependent
kinase 1,3.7 log2 FC) or Wnt signaling, such as ccnd1
(cyclin D1,1.8 log2 FC) and wnt5a (6.1 log2 FC). We also
detected an increase in cells that stained for the β –ca-
tenin protein by immuofluorescent staining in the SBS
fish, as compared to sham. This observation was
strengthened by also noting an increase in the β –ca-
tenin-positive cell number in the proximal SBS segment
compared to the distal segment retained in the fish after
the SBS surgery, an increase that was not identified in
sham controls. Interestingly, dkk3 (2.3 log2 FC), a

secreted Wnt antagonist, was also increased. In a study
of enteral atrophy followed by refeeding and therefore
epithelial expansion in the mouse, wnt5A, cyclin D1 and
c-Myc all decline without enteral nutrition and then are
restored with the reintroduction of enteral nutrition and
the subsequent adaptive response [34].
Other genes associated with proliferation such as tgfβ

(1.6 log2 FC) have multiple roles - although TGFβhas a
significant role of modulating the intestinal epithelium,
particularly after injury [35], has been shown to inhibit
cyclin D1 expression in vitro in rat intestinal epithelial
cell lines [36] and is an immunosuppressive cytokine
that inhibits intestinal T cell activation [37]. As in this
zebrafish model, tgfβ has been noted to rise with refeed-
ing in the mouse model noted above [34].

Signaling that is associated with innate and adaptive
immunity in SBS is increased
Expression of stat4 (1.8 log2 FC), il12b (4.8 log2 FC) and
ifng1-2 (ifnγ, 5.1 log2 FC) all increased, as did tlr1 (2.6
log2 FC), tlr5 (3.1 log2 FC) and tlr4 (3.8 log2 FC). There
are 2 types of T cells; Type 1 helper (Th1) cells produce
IFNγ, IL2 and TNFβ which activate macrophages and
are responsible for cell-mediated immunity as well as
phagocytic dependent responses. Type 2 helper cells
(Th2) cells are responsible for antibody production [38].
In human intestine, T cells associate within Peyer’s
patches and active stat4 is a transcription factor that is
an essential component of IL-12 mediated T helper-1
cell differentiation expressed in that location, inducing
IFNγ release and increased natural killer cell cytotoxicity
[39]. Activation by microbes cause an elevation in IL12,
15, 18 and therefore the release of IFNγ. Exogenous ad-
ministration of both IL12 and IL15 leads to lesions of
the GI tract, increased acute phase reactants and pro-
inflammatory cytokines, and NK Cell apoptosis [40].
IL12 also has the ability activate the stat4 pathway, and
can activate stat3 (1.68 log2 FC) as well as stat1b (2.16
log2 FC) [41]. Toll-like receptor 4, TLR4, the receptor
for Lipopolysaccharide or LPS, has been shown to be
elevated in both epithelial atrophy [42] in a mouse
model and adaptation in a rat model [43].

Many components of the transcriptome associated with
acute phase response signaling and complement system
activation are elevated
Elevations were noted in il6 (8.7 log2 FC), il6r (IL6
receptor, 3.6 log2 FC), saa1 (9.7 log2 FC), stat3 (1.6 log2
FC), tnfa (5.1 log2 FC) and il1b (5.3 log2 FC). In rats,
SBS is a proinflammatory state that is magnified by sep-
sis [4]. IL6 is a cytokine that is associated intimately with
inflammation and acute phase response signaling. Early
after induction of inflammation, IL6 is elevated and is
required for efficient stimulation of epithelial cell
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proliferation after intestinal injury within a mouse model
[44]. SAA1 is highly conserved and found to play a role
in lipid metabolism as well as bacterial clearance and
has a possible role in regulation of inflammation by
extending the lifespan of neutrophils and activating
proinflammatory cytokines (IL6, IL8, IL1beta, CXCL1,
CXCL2) through several receptors including TLR2 and
TLR4 [45].
Both IL22 and elements of the complement system are

elevated: c3a.1 (8.5 log2 FC), c3b.1 (8.3 log2 FC), il22
(6.4 log2 FC), il1b (5.3 log2 FC) Activation of comple-
ment leads to non-specific immunity and inflammation
secondary to active by-products. The main components
are the C3 and C4 complement with the addition of
other factors resulting in a membrane attack complex
that attacks the bacterial cell wall. IL22 has been shown
to play a critical protective role by increasing the expres-
sion and bacterial binding of complement C3 after
systemic bacterial translocation of potentially virulent
species. In addition to IL22 induction, C3a and C5a are
also known to recruit IL1β producing inflammatory cells
[46]. This inflammatory milieu may underpin other
observations such as elevations of nos2b (7.1 log2 FC).

Genes in the bile acid biosynthesis pathway are strongly
upregulated, with an elevation of cyp7a1a, which is more
usually identified in the liver
Hepatic cholestasis, cirrhosis and even liver failure are
often associated with SBS, and the main culprit for these
changes is usually identified as the intravenous feeding
that supports patients who do not gain enough intestinal
adaptation for enteral autonomy [47]. In brief, bile acids
are conserved in the intestine via enterohepatic recyc-
ling, and act on the nuclear farnesoid X receptor
(FXR) receptor to activate FGF19 expression. FGF19,
encoded by fgf19 (5.6 log2 FC) is atypical in that it
acts as a hormone, and after portal circulation to the
liver represses transcription of cyp7a1a (11 log2 FC),
which encodes cytochrome P450 family 7 subfamily A
member 1, also known as cholesterol 7-α-hydroxylase,
the rate limiting enzyme in bile acid synthesis from
cholesterol [48]. FGF19 transgenic mice remain lean
on an obesogenic diet and have an increased meta-
bolic rate [49], neither of which is desirable in SBS
patients who struggle to maintain or gain weight.
This, however, is just a sketch of the effects within
this pathway, and future work is required to fully
understand these identified changes in the transcrip-
tome in SBS.
Additionally, fgf21 (3.2 log2 FC) was increased in SBS

zebrafish intestine. In pediatric intestinal failure, an in-
crease in FGF21 in the serum is significantly associated
with hepatic steatosis, and correlated with the duration
of IV nutritional support. Liver steatosis was coupled

with the progression of fibrosis without accompanying
inflammation [50]. The zebrafish in this model do not
receive IV nutritional support and therefore may be use-
ful to further define what changes derive from SBS
alone.

Genes associated with maintenance of the intestinal
epithelial barrier were markedly changed
Expression of cldn1 (Claudin 1, 7.4 log2 FC), cldn2 (7.0
log2 FC), cldn7b (2.4 log2 FC) and cldn11a (2.3 log2 FC)
were all increased, as were several of the integrins. The
isolated SBS barrier function was found to be relatively
unchanged in regards to claudin-1, claudin-2 and
claudin-4 with a decrease in occludin expression when
compared to sham group [51]. Other treatments can
decrease the level of barrier function. Enteral nutrition
deprivation causes a decrease in occludin, ZO-1 and
claudin-4 with a marked increase in FITC-dextran
permeation [42].
We chose to investigate a 2-week time point because

it corresponded to an observation of statistically signifi-
cantly increased BrdU-positive cells in the intestine of
fish with SBS, and our long-term goal is to understand
the cellular and molecular mechanisms of intestinal
adaptation. However, in order to dissect these results
reported above, it will be necessary to investigate other
time points and to begin to assign gene expression
signals to particular cellular compartments or cell types
in future work. Additionally, the changes in the tran-
scriptome related to immune and barrier functions
immediately suggest a contribution of the microbiome,
the diversity and alteration of which must be
investigated.

Conclusions
Short bowel syndrome is a highly complex disease
process that is likely to have systemic effects including
immune system activation, inflammation, changes to the
coagulation and bile acid pathways, as well as altering
the cellular barrier. Genes associated with proliferation
and Wnt signaling are also notably increased. Given
these widespread effects, further evaluation of SBS in
vivo and the changes that SBS causes in the transcrip-
tome may assist the discovery and translation of future
human therapies.
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Additional file 2: Figure S1. Increased β –catenin is detected by
immunofluorescence in proximal SBS intestine compared to distal SBS
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identified more positive cells/hemivillus in SBS intestine compared to
both the distal limb and sham proximal controls (A–C). Increased
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β –catenin is noted in the proximal SBS intestine (C; E) compared to distal
SBS (D; E p= 0.001) and Sham proximal and SBS proximal intestine (A–C; E
p= 0.012). No significant difference in β –catenin is seen between Sham
proximal and distal intestine (A–B, E). A–D Scale 50 μm. (TIF 2151 kb)

Additional file 3: Table S2. GO enrichment analysis for biological
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Additional file 4: Table S3. GO enrichment analysis for biological
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