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Genomic predictions can accelerate
selection for resistance against
Piscirickettsia salmonis in Atlantic salmon
(Salmo salar)
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Abstract

Background: Salmon Rickettsial Syndrome (SRS) caused by Piscirickettsia salmonis is a major disease affecting the
Chilean salmon industry. Genomic selection (GS) is a method wherein genome-wide markers and phenotype
information of full-sibs are used to predict genomic EBV (GEBV) of selection candidates and is expected to have
increased accuracy and response to selection over traditional pedigree based Best Linear Unbiased Prediction
(PBLUP). Widely used GS methods such as genomic BLUP (GBLUP), SNPBLUP, Bayes C and Bayesian Lasso may
perform differently with respect to accuracy of GEBV prediction. Our aim was to compare the accuracy, in terms of
reliability of genome-enabled prediction, from different GS methods with PBLUP for resistance to SRS in an Atlantic
salmon breeding program. Number of days to death (DAYS), binary survival status (STATUS) phenotypes, and 50 K
SNP array genotypes were obtained from 2601 smolts challenged with P. salmonis. The reliability of different GS
methods at different SNP densities with and without pedigree were compared to PBLUP using a five-fold cross
validation scheme.

Results: Heritability estimated from GS methods was significantly higher than PBLUP. Pearson’s correlation between
predicted GEBV from PBLUP and GS models ranged from 0.79 to 0.91 and 0.79–0.95 for DAYS and STATUS, respectively.
The relative increase in reliability from different GS methods for DAYS and STATUS with 50 K SNP ranged from 8 to
25% and 27–30%, respectively. All GS methods outperformed PBLUP at all marker densities. DAYS and STATUS showed
superior reliability over PBLUP even at the lowest marker density of 3 K and 500 SNP, respectively. 20 K SNP showed
close to maximal reliability for both traits with little improvement using higher densities.

Conclusions: These results indicate that genomic predictions can accelerate genetic progress for SRS resistance in
Atlantic salmon and implementation of this approach will contribute to the control of SRS in Chile. We recommend
GBLUP for routine GS evaluation because this method is computationally faster and the results are very similar with
other GS methods. The use of lower density SNP or the combination of low density SNP and an imputation strategy
may help to reduce genotyping costs without compromising gain in reliability.
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Background
Salmon Rickettsial Syndrome (SRS) caused by an intra-
cellular bacterium Piscirickettsia salmonis is considered
one of the major diseases of the salmonid aquaculture
industry in Chile [1]. SRS outbreaks can lead to severe
economic losses to farmers because of the high mortality
associated with the disease during salt water production
[1, 2]. It has been estimated that in the Chilean Atlantic
salmon (Salmo salar) industry, P. salmonis is responsible
for up to 74% of infection-related mortality and eco-
nomic losses of up to US$100 million. Antibiotic treat-
ments may inhibit the growth of the pathogen, but have
been unsuccessful in stopping disease outbreaks and
pose serious health issues for fish and humans [3, 4].
Although there are more than 33 commercial vaccines
available against P. salmonis they have not proven to be
consistently effective under field conditions [1, 5].
Selective breeding for resistance against infectious dis-

eases represents a realistic and sustainable approach to
control disease outbreaks in livestock and aquaculture
species [6, 7]. Traditional aquaculture selection pro-
grams for disease traits involves sib-testing where sur-
vival phenotype information comes from experimental
infection of full-sib family groups of the selection candi-
dates with a specific pathogen [8]. However, this method
has limited reliability under classical selection schemes
because breeding candidates are selected based on mid-
parent (family) estimated breeding values (EBV) where
only a maximum of 50% of the total genetic variation is
exploited [9]. In addition, the use of only between-family
variation to make selection decisions leads to increased
co-selection among close relatives and imposes restric-
tions on inbreeding [9]. Nevertheless, previous studies in
the same commercial Atlantic salmon population used
in the present study estimated moderate to medium her-
itability (0.11 to 0.41) for resistance to P. salmonis, indi-
cating the potential for selective breeding for P. salmonis
resistance [10, 11].
Genetic markers associated with quantitative trait loci

(QTL) alleles for disease resistance can be used in
Marker Assisted Selection (MAS) of breeding candidates
with genotypes, even in the absence of phenotypes, to
accelerate genetic progress [12]. The carriers of favorable
QTL alleles and its effects are usually identified through
dense panels of Single Nucleotide Polymorphisms (SNP)
using linkage and association mapping [12–14]. In
Atlantic salmon, major QTLs explaining a considerable
proportion of the genetic variation for resistance to
infectious pancreatic necrosis [15, 16] have been suc-
cessfully used for MAS in breeding companies [6, 17].
Recently, a genome-wide association study (GWAS) by
Correa et al. [18] revealed that resistance to P.salmonis
in Atlantic salmon is under moderate polygenic control.
The same study identified five SNP significantly

associated with P.salmonis resistance traits in chromo-
somes Ssa01 and Ssa17. However, due to the small
amount of phenotypic variance explained by each
marker, it was suggested that resistance to P.salmonis
can be more efficiently improved with genetic evalua-
tions incorporating dense SNP genotype information
compared to MAS alone [18]. Genomic selection (GS) is
an alternative method to MAS where information from
genome-wide marker genotypes (e.g., SNP) are used in
genetic evaluations so that all QTL are in linkage dis-
equilibrium (LD) with at least one marker and selection
is based on predicted genomic EBV (GEBV) [19–21]. In
GS, sibs of the selection candidates with both phenotype
and genotype are used to estimate each marker effect
and are later used to predict GEBV for the selection
candidates using only genotypic information [20]. In
aquaculture, studies using simulated [22–25] and real
data [9, 26] have shown the superior performance of GS
methods in terms of increased genetic gain, accuracy of
selection and lower rate of inbreeding.
Several GS methodologies varying with respect to as-

sumptions about marker effects have been proposed for
the genome-enabled prediction of EBV [27, 28]. The
most widely used GS methods are the genomic best-
linear unbiased prediction (GBLUP) approach using real-
ized genomic relationship matrix calculated from the
dense genome-wide SNP markers and Bayesian methods
(e.g., Bayes A, Bayes B, Bayes C and Bayesian LASSO)
[20, 28–30]. The performance of each of these GS
methods varies according to the true underlying genetic
architecture among traits and model assumptions [20,
28, 30, 31]. Therefore, it is valuable to compare the per-
formance of different GS methodologies using real data
to identify the best methods, i.e., those which provide
accurate GEBV predictions over normal pedigree based
EBV predictions.
The objectives of this study were i) to compare the re-

liability of commonly used genomic prediction methods
for genomic selection under various underlying genetic
models and pedigree based BLUP for P. salmonis resist-
ance traits in Atlantic salmon and ii) to evaluate the ef-
fect of different marker densities on the reliability of
genomic predictions for different genomic prediction
models and pedigree based BLUP for P. salmonis resist-
ance traits in Atlantic salmon.

Methods
Fish material and challenge test
The breeding program for Atlantic salmon was started
by the company AquaChile (Puerto Montt, Chile) in the
year 1997 with the aim of improving economically im-
portant traits. The base population of the breeding
nucleus originated from the Irish strain Fanad-Mowi
(originally from Norway) [32, 33] and was introduced
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during the 1990s to Chile through commercial agree-
ments. At present, the breeding program is managed by
the breeding company Aquainnovo SA at Salmones
Chaicas (Puerto Montt, Chile). All fish material used in
this study was from the same breeding program and
corresponds to the year-class 2010, which has undergone
four generations of selection mainly for harvest weight
in Chilean farming conditions. The fish were hatched
during May 2010 with an approximate mating ratio of
one sire to two dams in most cases. A total of 118
families were produced as progeny of 40 sires and 118
dams and reared in separate tanks until tagging. The
required number of fish from all families were tagged in-
dividually at an average weight of 13.1 g (SD = 3.4 g)
using Passive Integrated Transponder-tag (PIT-tag), in
order to keep pedigree information. Tagged fish were
reared in a single communal tank for about 14 months
before transfer to the Aquainnovo’s Research Station lo-
cated in Lenca River, Xth Region, Chile. After a 29 day
acclimation period in salt water (31 ppt) a total of 2601
fish, an average of 22 (ranging between 9 and 24) fish
per family, weighing on average 274.8 g (SD = 90.6 g)
were experimentally challenged with P.salmonis as
described previously [10, 18]. In brief, prior to the chal-
lenge test, the fish tested negative for the presence of
Infectious Salmon Anaemia virus, Infectious Pancreatic
Necrosis virus, Renibacterium salmoninarum by RT-
PCR and negative for Flavobacterium spp. culture. To
induce infection, fish were injected with 0.2 ml of a
LD50 inoculum of P.salmonis through intra-peritoneal
(IP) injection. Post IP injection, infected fish were
distributed equally by family into three different tanks
with salt water (31 ppt) such that each of the 118 full-sib
families were represented in all three tanks. The chal-
lenge test continued for 40 days and mortalities were
recorded daily. The Kaplan-Meier curves of the survival
function was plotted for the test period to show the
cumulative mortality across the challenge (Additional
file 1: Figure S2). All surviving fish at day 40 were anes-
thetized and euthanized. Tissue samples (fin clips) for
genomic DNA isolation were taken from all fish and
preserved in 95% ethanol at −80 °C. The procedures for
challenge and sampling were approved by The Comite
de Bioetica Animal, Facultad de Ciencias Veterinarias y
Pecuarias, Universidad de Chile (Certificate N0 08–2015).

Genotype data
Genomic DNA was isolated from the stored fin clip sam-
ples of all 2601 challenge tested fish using a commercial
kit (DNeasy Blood & Tissue Kit, Qiagen), following manu-
facturer’s protocol. Genotyping was performed using a
50 K Affymetrix® Axiom® myDesign™ SNP Genotyping
array designed by the joint collaboration of AquaInnovo
SA and the University of Chile. The 50 K SNP array used

in this study was derived from a previously developed and
validated custom made 200 K SNP array [34] based on
several quality control criteria as described previously
[18]. Importantly, the 50 K SNP array had markers distrib-
uted equally across the genome with a distance of more
than 10Kb from its neighboring SNP [18]. Genotypes of
all fish samples were obtained following Best Practices
Analysis Workflow from Affymetrix [35] and selection of
Poly-high-resolution and the No-minor-homozygote SNPs
using SNPolisher [35]. To filter SNPs quality control of
the SNP genotype data was performed based on the Hardy
Weinberg equilibrium (p < 1 × 10−10), Minor Allele Fre-
quency (>0.001) and the call rate for SNPs and samples
(>0.95). The quality control step resulted in a total of 2392
individuals and 49,684 SNPs distributed across the
genome for further analysis.

Phenotypic records and trait definitions
Resistance to P. salmonis was considered to be chal-
lenge survival, defined as the time to death measured in
days (DAYS) with values ranging from 1 to 40 depend-
ing on the day the fish died; and as binary survival sta-
tus (STATUS), scored as 1 if the fish died during the
40-day challenge and 2 if the fish survived until the end
of the challenge. Thus, the fish with higher DAYS and a
STATUS of 2, were assumed to be more resistant ani-
mals. Test tank designation and final body weight on
the day of death or at the end of the challenge for sur-
vivors were recorded.

Breeding value estimation
The two resistance traits DAYS and STATUS were ana-
lyzed separately as a linear trait and threshold trait, re-
spectively in univariate models. The EBV were estimated
using polygenic pedigree based BLUP (PBLUP) [36]. The
SNP effects and GEBV were estimated using polygenic
pedigree and/or SNP genotype information on the basis
of genomic BLUP (GBLUP) [36], SNPBLUP [37], Bayes
C [38, 39] and Bayesian LASSO [30, 40].

Pedigree based BLUP
The conventional pedigree-based variance components
and EBV were estimated using PBLUP:

y ¼ Xβþ Tμþe ðM1Þ

where β is a vector of fixed overall mean and age of
fish at challenge (AGE) as co-variate, μ is a vector of
random additive genetic polygenic effects with a distri-
bution eN 0;Aσ2u

� �
, e is the vector of random error

effects with a distribution eN 0; Iσ2
e

� �
, X and T are the

incidence matrices, A is the pedigree-based additive gen-
etic relationship matrix [41] and I is the identity matrix.
The trait DAYS was analyzed as a linear trait using
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AIREMLF90 and GIBBS1F90, whereas, the trait STATUS
was analyzed as a threshold-linear trait in THRGIBBS1F90
in BLUPF90 family programs [36]. Briefly, AIREMLF90
uses Average-Information REML for estimating variance
components for linear traits, GIBBS1F90 is for the
Bayesian analysis of linear traits and THRGIBBS1F90 is
for the Bayesian analysis of threshold categorical traits
[36]. For Bayesian analysis, the Gibbs sampler was run
for 120 000 iterations with a burn in of 20 000 itera-
tions, and samples from every 100th sample were saved.

Genomic BLUP
The SNP based variance components and GEBV were
estimated using GBLUP, similar to the PBLUP model
(M1) described above. However, in GBLUP, μ is a vector
of random additive genetic polygenic effects with a dis-
tribution eN 0;Gσ2u

� �
. Here, G is the genomic relation-

ship matrix, created as described by VanRaden [42]. All
other parameters and details of the analysis for trait
DAYS and STATUS are the same as PBLUP (M1).

SNP based BLUP method
The SNP based BLUP method used to estimate marker
effects and to predict GEBV was similar to GBLUP,
where a priori distribution of additive marker locus ef-
fects was considered to be normal [20, 42]. The model
used, PSNPBLUP, combined both marker effects as well
as polygenic effect (infinitesimal effect with pedigree) for
all genotyped fish:

y ¼ Xβþ Zaþ Tμþe ðM2Þ

where a is the additive marker locus effect, Z is the inci-
dence matrix relating to marker genotype and all other
parameters are the same as PBLUP (M1). It was as-
sumed that a follows a priori a normal distribution eN
0; Iσ2a
� �

, where I is an identity matrix. This model is
often called ridge-regression best linear unbiased predic-
tion with a normal distribution of marker effects [20,
42]. The trait DAYS was analyzed as a linear-mixed
model in the context of Henderson’s BLUP [43] with
known variances for all random effects using the key-
word BLUP in the GS3 software [37]. The trait STATUS
was analyzed as a threshold (probit) model assuming
known variances. Random effects were estimated via
Gibbs sampler using the keyword MCMCBLUP in GS3
software [37]. For both traits, the initial genetic variance
σ2u and residual variance σ2e estimated from the model
PBLUP were used to estimate additive marker variance
σ2a = σ2u =2

P
piqi . Breeding values for both traits were

estimated using marker effects only (without pedigree-
based polygenic effect) using the model SNPBLUP:

y ¼ Xβþ Zaþ e ðM3Þ
All model parameters are as described above. The

BLUP was run for 10 000 iterations with convergence
criteria of 10−12 (1d-12) and correction every 100 itera-
tions. For MCMCBLUP, a single chain with a length of
150 000 iterations was run. The burn-in period and the
thinning interval used was 50 000 and 100 iterations,
respectively.

Bayesian estimation method: Bayes C
The Bayes C method is a mixture model for SNP effects
with an assumption that there is a large group of SNPs
with zero or near zero effects and a second smaller
group of SNPs with larger effect [39, 44]. The Bayes C
method was fitted using the same model equations as in
PSNPBLUP (M2) and SNPBLUP (M3), hereafter referred
to as PBAYESC and BAYESC, respectively. All model
parameters are defined as above, except the elements of
vector a which was calculated for each fish as:

XN
i¼1

ziaiδið Þ

where zi is the genotype of ith marker, ai is the effect
marker i, and δi is an indicator variable that explains if
the ith marker has an effect or not. In turn, variables δ
have a binomial (Bernoulli) distribution with a probabil-
ity of π being 0 (marker has zero effect on the trait) and
with a probability of 1� π being 1 (marker has non-zero
effect on the trait). An informative beta distribution
(with α and β parameters) was assumed for π (α = 1 and
β = 1, implying uniform distribution of this parameter)
and inverted chi-squared distributions for the different
variances σ2a , σ

2
u and σ2

e .

Bayesian estimation method: Bayesian LASSO
The Bayesian LASSO method was implemented in the
context of a linear mixed model assuming an exponen-
tial prior distribution for variances of SNP marker ef-
fects [37, 45]. An alternative Bayesian implementation of
the LASSO procedure [40], similar to the model equa-
tions PSNPBLUP (M2) and SNPBLUP (M3) as proposed
by Legarra et al. [30], PBLASSO and BLASSO, respect-
ively, were used. All model parameters are defined as
above, except the a priori distributions of individual
SNP effects (ai) which was calculated as:

Pr aijτ2
� � ¼ N 1; τ2i

� �
and Pr τ2i

� � ¼ λ2

2
exp −λ2 τ2i

�� ��� �
:

Individual variances for each SNP (i.e., τ2i ) are esti-
mated conditionally on a regularization parameter λ,
which was estimated by using an a priori gamma distri-
bution bounded between 0 and 107. Initial value for
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parameter λ as λ2 ¼ 2=σ2a was used and flat priors were
assumed for σ2a, σ

2
u and σ2e .

All model parameters and SNP effects estimated in a
Bayesian framework (PBAYESC, BAYESC, PBLASSO
and BLASSO) were estimated using the Gibbs sampling
algorithm implemented in GS3 software [37]. A single
chain with a length of 150 000 iterations was run. The
burn-in period and the thinning interval used was 50
000 and 100 iterations, respectively.

Genetic parameters and GEBV
The total additive genetic variance σu 2ð ) estimated in
PBLUP and GBLUP models was calculated using rela-
tionship matrix A and G , respectively. For both trait
(DAYS and STATUS), the heritabilities were computed
as:

h2 ¼ σu2

σu
2 þ σe2

:

In contrast, for Bayesian models, the total additive
genetic variance (V ′

A Þ was estimated as the sum of addi-
tive marker ( 2σ2

aπ
P

piqi ) and polygenic-pedigree ( σ2u )
based additive genetic variance; i.e., V ′

A ¼ 2σ2aπ
P

piqi
þσ2

u (σ2u ¼ 0; if pedigree was not used). Here, the herita-
bilities were computed as:

h2 ¼ V ′
A

V ′
A þ σe

2 :

Additionally, in SNP based BLUP and Bayesian GS
methods, the predicted GEBV were either generalized
genomic breeding values (i.e., the sum of polygenic pedi-
gree based EBV and SNP effects) or just SNP effects, de-
pending on whether pedigree and SNP information or
only SNP information was used.

Cross validation scheme for model comparison
Predictive abilities of the different models described
above (PBLUP, GBLUP, PSNPBLUP, SNPBLUP,
PBAYESC, BAYESC, PBLASSO and BLASSO) were
assessed through a five-fold cross validation (CV)
scheme. All the fish with both phenotypes and genotypes
were randomly sampled into five validation sets. The
GEBV of the validation data sets were predicted one at a
time where the phenotype of the validation fish (20% of
the population) was masked (set to missing) and all
remaining fish with phenotype and genotype (80% of the
population) were used as training data. To reduce the
stochastic effects, the CV analysis was replicated 10
times. Predictive ability was presented as reliability,
which was estimated as:

R2
EBV ;BV ¼ R2

EBV ;y

h2
;

where R2
EBV ;BV is the squared correlation between pre-

dicted (G)EBV for fish in the validation data in a given
model (predicted from the training data), the recorded
phenotype (y), and a “common” heritability (h2Þ of the
trait which was calculated using PBLUP with full-data
set and without marker information.
The Pearson’s correlation coefficients between the

(G)EBV obtained by the different models was used to
measure the degree of similarity between the rankings of
fish. Also, for all models, the slope of regression of ac-
tual phenotype (either DAYS or STATUS) on (G)EBV
were calculated and used as a measure to indicate the
bias of the (G)EBV [46]. A slope of regression coefficient
close to 1 indicates no bias in the model and breeding
values are equal in magnitude [47]. Whereas, a slope of
less than 1 or greater than 1 indicates a biased under-
estimation or overestimation in the (G)EBV prediction,
respectively [48]. The reliability, Spearman’s rank correl-
ation and slope of regression for each model, were
reported as the average of the CV schemes used.
In addition, the effect of marker densities on the esti-

mated reliabilities in different GS models was tested. For
this, a random sample of 500, 1 K, 3 K and 20 K SNPs
was used separately to predict GEBV for all GS models
under the CV scheme described above. Using the lowest
possible SNP density with higher or similar reliability of
the 50 K SNP could help reduce genotyping costs.

Results
Estimated variance components with full data
Estimates of variance components with the full data set
for PBLUP, GS models with combined polygenic pedi-
gree and the 49,684 markers (GBLUP, PBAYESC and
PBLASSO) and GS models with only markers (BAYESC
and BLASSO) are presented for DAYS and STATUS in
Table 1. The estimated residual variance (σ2

e Þ for DAYS
was slightly lower and additive genetic variance (V ′

A Þ for
both DAYS and STATUS was relatively higher in gen-
omic models compared to PBLUP. For both traits, the
estimated heritabilities were relatively higher in genomic
models ( h2 ¼ 0.210±0.031 to 0.271±0.041 and 0.269
±0.052 to 0.393±0.040 for DAYS and STATUS, respect-
ively) then with PBLUP (h2 = 0.185±0.038 and 0.260
±0.037 for DAYS and STATUS, respectively). When
comparing the PBLUP model (with A matrix) and
GBLUP (with G matrix), the relative increases in esti-
mated heritabilities were 46% for DAYS ( h2 ¼ 0.185
±0.038 and 0.271±0.041 for PBLUP and GBLUP, respect-
ively) and 84% for STATUS (h2 ¼0.260±0.037 and 0.393
±0.040 for PBLUP and GBLUP, respectively). Similar
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trends for increased estimated heritabilities compared to
PBLUP were observed in Bayesian GS models for both trait
DAYS (h2 ¼0.210±0.031 to 0.231±0.034) and STATUS (h2 ¼
0.269±0.052 to 0.303±0.054). However, between the GS
models, the h2 estimated from GBLUP was higher than Bayes-
ian models. Within the Bayesian models, the estimated herita-
bilities were slightly higher in the GS model with combined
marker and polygenic pedigree (PBLASSO) for DAYS and in
the marker-effect GS model (BLASSO) for STATUS (Table 1).

Correlation between predicted breeding values
The mean correlations between the predicted breeding
values estimated from PBLUP (EBV) and all seven GS

models (GEBV) based on five-fold cross validation are
shown in Table 2. The predicted GEBV from GS models
with combined polygenic pedigree and markers were
highly correlated with predicted EBV (from PBLUP) for
both traits DAYS (0.79 to 0.91) and STATUS (0.79 to
0.95). In addition, for both traits, the predicted GEBV
from the Bayesian GS models had the highest correlation
(0.84 to 0.95) followed by GBLUP (0.79). The GEBV pre-
dicted from marker-effect GS models alone had rela-
tively lower correlation (0.76 to 0.81) with the predicted
EBV for both traits. Among the GS models, the correla-
tions between the predicted GEBV were high for both
traits (0.90 to 1.0).

Reliability and bias of different models
Based on the five-fold cross validation, the reliability of
the PBLUP model was higher for DAYS (0.342±0.080)
than for STATUS (0.201±0.038) (Table 3). Depending on
whether the polygenic pedigree was used or not, the reli-
ability of GS models ranged from 0.368±0.069
(PSNPBLUP) to 0.429±0.069 (SNPBLUP) and 0.256
±0.031 (PBAYESC) to 0.262±0.026 (BLASSO) for DAYS
and STATUS, respectively (Table 3). The relative
increase in reliabilities for the different GS models com-
pared with PBLUP are presented in Fig. 1 for both DAYS
and STATUS. In general, all GS models outperformed
the PBLUP model, but there was considerable variation
between models and traits. For DAYS, the relative
increase in reliability was moderate, 8 to 21% with 50 K
SNP using GS models with combined polygenic pedigree
and the markers (GBLUP, PSNPBLUP, PBAYESC and
PBLASSO), and low (24 to 25% with 50 K SNP) for GS
models with only marker-effects (SNPBLUP, BAYESC
and BLASSO). In contrast, the relative increase in reli-
ability for all GS models for STATUS were moderate
and of similar magnitude (27 to 30% with 50 K).

Table 1 Estimates of residual variancea (σ2
e ), additive genetic

varianceb (V ′
A ) and heritabilityc (h2) with their standard errors

(±SE) for SRS resistance phenotypes DAYS and STATUS using
different modelsd

Model

Trait

Days Status

σ2
e V ′

A h2 � SE V ′
A h2 � SE

PBLUP 73.079 16.640 0.185 ± 0.038 0.358 0.260 ± 0.037

GBLUP 65.323 24.295 0.271 ± 0.041 0.661 0.393 ± 0.040

BAYESC 65.454 17.392 0.210 ± 0.031 0.442 0.303 ± 0.054

PBAYESC 65.348 19.318 0.228 ± 0.032 0.417 0.290 ± 0.053

BLASSO 64.963 18.037 0.217 ± 0.030 0.439 0.300 ± 0.063

PBLASSO 65.118 19.530 0.231 ± 0.034 0.374 0.269 ± 0.052
aResidual variance for binary survival STATUS was set to 1
b, cTotal additive genetic variance V ′

A : PBLUP and GBLUP was σ2
u ; BAYESC and

BLASSO was 2σ2
a π

P
piqi ; PBAYESC and PBLASSO was 2σ2a π

P
piqi þ σ2u

cHeritability h2 : PBLUP and GBLUP σu 2

σu 2þσ2e
; BAYESC, BLASSO, PBAYESC and

PBLASSO VA
′

VA
′þσ2edModels with pedigree: pedigree based BLUP (PBLUP), genomic BLUP (GBLUP)

and Bayesian estimation methods with additive SNP effects and polygenic
pedigree (PBAYESC and PBLASSO); Models with only additive SNP effects:
Bayesian estimation methods (BAYESC and BLASSO)

Table 2 Correlationa between breeding values for SRS resistance phenotypesb estimated with different modelsc using data from
50 K SNP genotypesd

Model PBLUP GBLUP SNPBLUP PSNPBLUP BAYESC PBAYESC BLASSO PBLASSO

PBLUP 0.79 0.81 0.95 0.77 0.85 0.77 0.84

ssGBLUP 0.79 0.95 0.91 1.00 0.99 1.00 1.00

BLUPSNP 0.78 1.00 0.94 0.96 0.96 0.96 0.96

PBLUPSNP 0.91 0.96 0.96 0.90 0.94 0.90 0.93

BAYESC 0.77 1.00 1.00 0.95 0.99 1.00 0.99

PBAYESC 0.90 0.97 0.97 1.00 0.96 0.99 1.00

BLASSO 0.76 1.00 1.00 0.95 1.00 0.96 0.99

PBLASSO 0.91 0.97 0.96 1.00 0.96 1.00 0.96
aAverage Pearson correlation between breeding values estimated with different models a from five-fold cross validation scheme
bSRS resistance phenotypes: Survival days (DAYS) below diagonal and binary survival (STATUS) above diagonal
cModels with pedigree: pedigree based BLUP (PBLUP), genomic BLUP (GBLUP), marker-effects BLUP with polygenic pedigree (PSNPBLUP) and Bayesian estimation
methods with marker-effects and polygenic pedigree (PBAYESC and PBLASSO); Models with only marker-effects: market-effects BLUP (SNPBLUP) and Bayesian
estimation methods (BAYESC and BLASSO)
dThe effective number of SNPs used was 49 684 from the 50 K SNP array
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The bias of predicted EBV for PBLUP for DAYS (0.960
±0.146) was lower than for STATUS (0.304±0.042)
(Table 3), meaning DAYS deviated less from unity than
STATUS. Across GS models, the bias of predicted GEBV
for DAYS ranged from 0.814±0.097 to 1.026±0.110 and
was similar to the PBLUP bias (Table 3). However, for
STATUS, the bias of predicted GEBV across different GS
models varied considerably from 0.276±0.026 (GBLUP)
to 1.365±0.096 (SNPBLUP). The bias of EBV for PBLUP
was 0.304±0.042 (Table 3).

Reliability of different models at varying marker density
The relative increase in reliability for DAYS and STATUS
from different GS models was always high with higher
marker densities (Fig. 2 and Additional file 2). Between
different marker densities, the increase in reliability for
DAYS and STATUS was 36 and 34%, respectively when

going from 3 K to 20 K SNP density (Fig. 2). For both
traits, the relative increase in reliability at 20 K and 50 K
SNP density were of similar magnitude, suggesting that
SNP density beyond 20 K would have marginal gain in se-
lection accuracy. Nevertheless, the relative increase in pre-
dicted GEBV were superior to EBV from PBLUP even at
the lowest marker density of 3 K for DAYS across GS
models and marker density of 500 SNP for STATUS for
GS model with pedigree and marker-effect (GBLUP,
PBAYESC and PBLASSO) (Fig. 2).

Discussion
In this study, a high density 50 K SNP array was utilized
to estimate genetic parameters and to estimate predict-
ive ability of GS models, which was then compared to
traditional PBLUP for two SRS resistance traits; DAYS
and STATUS in Atlantic salmon.

Table 3 Mean reliability and bias of estimated breeding value (EBV) and genomic EBV (GEBV) for SRS survival DAYS and STATUS
with their standard errors (±SE) using pedigree based and genomic models

Modelsa
Trait

Days Status

Reliability ± SEb Bias ± SEc Reliability ± SE Bias ± SE

PBLUP 0.342 ± 0.080 0.960 ± 0.146 0.201 ± 0.038 0.304 ± 0.042

GBLUP 0.414 ± 0.065 0.949 ± 0.097 0.256 ± 0.026 0.276 ± 0.026

SNPBLUP 0.429 ± 0.069 1.026 ± 0.110 0.256 ± 0.032 1.365 ± 0.096

PSNPBLUP 0.368 ± 0.069 0.814 ± 0.097 0.256 ± 0.039 0.798 ± 0.073

BAYESC 0.424 ± 0.066 0.961 ± 0.098 0.261 ± 0.026 0.287 ± 0.028

PBAYESC 0.389 ± 0.071 0.916 ± 0.106 0.256 ± 0.031 0.294 ± 0.029

BLASSO 0.424 ± 0.066 0.955 ± 0.097 0.262 ± 0.026 0.287 ± 0.026

PBLASSO 0.390 ± 0.072 0.937 ± 0.112 0.256 ± 0.029 0.285 ± 0.033
aModels with pedigree: pedigree based BLUP (PBLUP), genomic BLUP (GBLUP), marker-effects BLUP with polygenic pedigree (PSNPBLUP) and Bayesian estimation
methods with marker-effects and polygenic pedigree (PBAYESC and PBLASSO); Models with only marker-effects: market-effects BLUP (SNPBLUP) and Bayesian
estimation methods (BAYESC and BLASSO)
bThe effective number of SNPs used was 49 684 from the 50 K SNP array

Fig. 1 Relative increase in reliability1 of different genomic selection models2 for trait DAYS and STATUS compared with classic pedigree-based
model (PBLUP). 1 Reliability of DAYS and STATUS using the PBLUP was 0.34 and 0.20, respectively. 2 Genomic selection models with pedigree and
marker: genomic BLUP (GBLUP), marker-effects BLUP (PSNPBLUP) and Bayesian estimation methods (PBAYESC and PBLASSO); GS models with only
marker-effects: marker-effects BLUP (SNPBLUP) and Bayesian estimation methods (BAYESC and BLASSO)
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Genetic parameter estimates: pedigree based and
genomic heritability
The genetic variance and heritabilities estimated for this
population with the PBLUP linear model for DAYS (0.185
±0.038) and threshold model for STATUS (0.260±0.037)
(Table 1) were consistent with the previously reported her-
itability estimates for SRS phenotypes, 0.18±0.03 and 0.24
±0.04 for DAYS and STATUS, respectively [10, 11]. A re-
cent study in coho salmon (Oncorhynchus kisutch) also
reported a similar heritability estimate (0.16±0.04) for SRS
resistance trait DAYS [49]. Several studies in other fish spe-
cies also reported a similar range of heritability estimates
for resistance to different bacterial diseases [8, 50–52]. In
all these studies, genetic parameters were estimated
using pedigree based relationship matrices (PBLUP as
in our study).
Heritability is the central breeding program parameter

used to estimate response to selection and explain the pro-
portion of phenotypic variance due to genetics [41, 53].
The use of genomic information is expected to improve es-
timates of additive genetic relationships of individuals,
reduce the potential confounding of additive genetic vari-
ance with residual variance, and lead to better estimates of

additive genetic variance and heritability [54]. We report an
increase in heritability estimates of as much as 46 and 86%
for DAYS and STATUS, respectively, using genomic-
relationship matrix GBLUP (Table 1). It is interesting to
note that these heritability estimates are higher than esti-
mated by Correa et al. [18] for DAYS (0.19) and STATUS
(0.20) with linear and binary threshold models using gen-
omic information from the same data set used in this study.
These differences may be explained by the use of different
methods to estimate heritability values from genotype data.
In the present study, we used the genomic relationship
matrix as described by VanRaden [42]. Correa et al. [18]
used the rapid method for genome-wide pedigree-based
association analysis [55, 56]. The increase in heritability es-
timates in our study can be attributed to better estimates of
additive genetic relationship and genetic variance through
the use of SNP information. The heritability estimated
(from posterior means of variances) using Bayesian GS
models were also higher compared to PBLUP, but lower
than GBLUP (Table 1). These differences are mostly due to
the fact that for Bayesian models, the total additive genetic
variance was estimated as the sum of pedigree-based gen-
etic variance (if pedigree used) and additive marker genetic

Fig. 2 Relative increase in reliabilitya of different genomic selection modelsb for trait DAYS and STATUS at different SNP densitiesc compared with
classic pedigree-based model (PBLUP). a Reliability of DAYS and STATUS using the PBLUP was 0.34 and 0.20, respectively. b Genomic selection
models with pedigree and marker: genomic BLUP (GBLUP), marker-effects BLUP (PSNPBLUP) and Bayesian estimation methods (PBAYESC and
PBLASSO); GS models with only marker-effects: marker-effects BLUP (SNPBLUP) and Bayesian estimation methods (BAYESC and BLASSO). c SNP
densities: 500, 1 000 (1 K), 3 000 (3 K), 10 000 (10 K), 20 000 (20 K) and 49 684 (50 K) SNP
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variance. For instance, the BAYESC method assumes there
is a large group of SNPs with zero or near zero effects and
a second smaller group of SNPs with larger effect [39, 44],
the BLASSO method assumes an exponential prior distri-
bution for variances of SNP marker effects [37, 40, 45] and
the GBLUP method assumes all the genotyped markers
have an effect and their variance is assumed to be normal
[20, 42].
For trait DAYS, the Bayesian GS models with both pedi-

gree and SNP information (PBAYESC and PBLASSO) lead
to slightly higher heritability estimates possibly because
the pedigree information was useful in capturing
unmarked loci that are also involved in the genetic control
of this trait. In contrast, the heritability estimates were
slightly lower from PBAYESC and PBLASSO for STATUS
which was probably due to the scaling parameters in the
model as well as the binary nature of the trait.
There is always debate about the minimum number of

SNP markers required and whether causative SNPs are
needed to obtain robust estimates of heritability. The
low proportion of phenotypic variance in the population
used in this study was previously explained to be the re-
sult of primarily polygenic control of SRS resistance with
few QTLs [18]. In human studies, ~290 K common fre-
quency SNPs explained as much as ~45% of the pheno-
typic variance for height [54]. Simulation studies have
shown that a few thousand markers are enough to ac-
curately estimate heritability [57], and inclusion of
causative SNPs has little effect on prediction accuracy
[58]. Moreover, it is not necessary to know causative
SNPs or SNPs that are closely linked to the causative
SNPs to obtain reliable estimates of heritability [59].
Therefore, the heritabilities estimated using 49,684 SNPs
in the current study can safely be considered reliable.

Ranking of EBV and GEBV
The GEBV predicted from the genomic relationship
based GBLUP and marker-effect based GS models
(SNPBLUP, BAYESC and BLASSO) for both SRS resist-
ance traits were moderately correlated (0.76 to 0.81)
with the predicted EBV (Table 2). These results suggest
that predicted EBV (with A matrix) and GEBV (with G
matrix or marker-effect alone) are somewhat different
predictors of genetic merit of fish, for these two SRS
traits, in this population. However, the predicted GEBV
for both traits with the combined pedigree and marker-
effect GS models (PSNPBLUP, PBAYESC and PBLASSO)
showed high correlation (0.90 to 0.95) with the predicted
EBV. In contrast, for resistance to bacterial cold water
disease (BCWD) a low correlation (~0.60) between pre-
dicted EBV from PBLUP and GEBV from marker-effect
based Bayesian models was reported [50]. The predicted
GEBV between all GS models were highly correlated
(Table 2) which is in agreement with results from Vallejo

et al. [50]. These high correlations indicate similar rank-
ing of full-families between PBLUP and GS methods,
and within different GS methods.

Reliability of PBLUP and GS models
The accuracy of breeding values estimated in terms of re-
liability for DAYS (0.342±0.080) was similar to the previ-
ously reported reliabilities for fillet color (0.36) and lice
resistance (0.34) in Atlantic salmon using the PBLUP
model [9]. However, the trait STATUS was bit lower
(0.201±0.038) (Table 3). The reliabilities of EBV and GBEV
were relatively higher for DAYS compared to STATUS,
possibly due to the better fit of linear trait DAYS with the
linear models than the binary trait STATUS with the
threshold models (Table 3). This is in agreement with the
predictive abilities (the correlation between mid-parent
EBV or GEBV and the mean progeny phenotype) reported
for BCWD which were comparatively higher for DAYS
(0.50 for EBV and 0.37 to 0.49 for EBV and GEBV, respect-
ively) than STATUS (0.41 and 0.26 to 0.46 for EBV and
GEBV, respectively) [50].
All GS models outperformed the PBLUP model with

respect to estimated reliabilities for both the traits
(Table 3 and Fig. 1). In other simulation studies, different
GS methods also showed significantly higher accuracy
compared to PBLUP in the typical half/full-sibling family
structure of a salmon breeding program [22, 25, 60]. A
study by Ødegård et al. [9] showed an improvement in
accuracies (reliabilities) of 32 to 51% for sea lice resistance
and, up to 22% for fillet color. For traits such as weight
and length in juvenile salmon as much as a 20% improve-
ment of accuracies can be obtained by applying GBLUP
compared to PBLUP [26].
It was interesting to note that reliability of GEBV esti-

mated from combined pedigree and marker effect based
GS models (PSNPBLUP, PBAYESC and PBLASSO) were
lower than the models with only marker-effects for the
trait DAYS (SNPBLUP, BAYESC and BLASSO) (Table 3
and Fig. 1). The GEBV from combined pedigree and
marker-effect GS models were expressed as “generalized”
GEBV, i.e., the sum of “polygenic” and the SNP effects
[37]. Whereas, the GEBV from marker-effect GS models
were just the sum of SNP effects which showed high
correlation with GEBV from GBLUP (Table 2). There-
fore, the presence of the polygenic EBV component in
the GEBV (from PSNPBLUP, PBAYESC and PBLASSO)
showed high correlation with EBV from PBLUP (Table 2)
and reliabilities were closer to that of EBV. Interestingly,
GS models with pedigree and marker-effects for DAYS
showed reliabilities closer to that of PBLUP, possibly
because the GEBV predicted in these models had over-
representation of polygenic EBV (Table 3 and Fig. 1).
The reliabilities of predicted GEBV from different GS

models were very close and the differences between GS
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models were negligible for both traits (Table 3 and
Fig. 1). On the contrary, Vallejo et.al. [50] reported a
relatively higher predictive ability of GBLUP compared
to Bayesian GS methods using a different GS design and
a much smaller number of genotyped samples. Recently,
we have shown that, resistance to SRS is primarily con-
trolled by polygenic inheritance (i.e., many loci explain-
ing very small effects of the trait) [18]. The GEBV
predicted with GBLUP utilizes a more accurate genetic
relationship calculated from shared SNP genotype data
and pedigree information rather than just the expected
average relationship used in PBLUP [61–63]. Therefore,
GBLUP may perform better when we have close family
relationships in the data as in an aquaculture breeding
program. The SNP based BLUP (PSNPBLUP and
SNPBLUP) GS models do not use a genomic relation-
ship matrix and fits SNP information as random effects.
The Bayesian variable selection GS models usually fit
markers with only moderate to large effect [64], and are
time consuming for routine genetic evaluations. Similar
to our findings, it has been shown that GBLUP and
Bayesian methods (Bayes B) achieve very similar accuracies
in dairy cattle data GS analysis for most traits [19, 65].
Therefore, considering the high correlation of GEBV be-
tween GBLUP and Bayesian GS methods and negligible dif-
ferences between reliabilities, the GBLUP method may be
an attractive approach for the routine application of GS to
select for SRS resistance in Atlantic salmon.

Effect of marker density on reliability
There is always a debate around the effect of marker dens-
ity on GS prediction accuracy. The use of a low marker
density panel may represent a cost-effective approach for
GS prediction especially for aquaculture where thousands
of potential breeders need to be genotyped. However, high
density marker panels are expected to be more accurate
and whole genome sequencing data or targeted causative
variants genotyping are expected to give higher accuracies
[66]. The choice of number of markers for accurate GEBV
prediction also depends on the LD between the markers
and the QTLs [12]. The use of a low density SNP panel
with low LD between the markers may result in inaccurate
prediction of genetic values for human height as suggested
by Yang et.al. [54]. The Atlantic salmon reference assem-
bly genome is up to 2.97 gigabases [67] with roughly 2970
centiMorgans (cM). The total SNP data set with 49,684
SNPs analyzed in the present study represented an average
genome coverage of ~16.70 SNPs per cM. A simulation
study by Vela-Avitúa et al. [60] showed that an identical-
by-descent relationship based GS applied to a typical
aquaculture breeding program across traits with different
heritabilities (h2 ~0.1, 0.3 and 0.8) even using sparse
markers (10–20 SNPs/M) showed higher prediction
accuracies than PBLUP.

In our study, a marker density less than 3 K gave con-
siderably lower reliability of GEBV, which was likely due
to insufficient LD between the markers caused by the
large distance between the randomly selected markers
(Fig. 2). In addition, there was considerable gain in reli-
ability observed from a marker density of 3 K to 20 K.
As discussed by Ødegård et.al. [9], the salmon breeding
population used in this study historically originated from
admixture of several distinct wild strains with expected
long-range LD. This might explain the increased reliabil-
ity of GS models with sparse marker densities as low as
3 K and up to 20 K.
The choice of exact marker density for genotyping a

large number of potential breeders would largely depend
on the added cost of genotyping and the economic bene-
fit obtained by the extra gain in accuracy of the trait
under selection. The cost-benefit is also likely to be most
favorable for traits that cannot be measured on potential
breeders (e.g., disease resistance, meat quality traits) and
traits with high economic value (e.g., SRS in Chilean
salmon industry.). Also, the marker density of 20 K gave
a reliability close to that of highest marker density
(50 K) showing that the LD between markers at 20 K
and 50 K are similar and no additional gain would be
obtained using a marker density beyond 20 K (Fig. 2).
This is in agreement with the findings of Ødegård et.al.
[9] that little increase in accuracy was observed with a
marker density above 22 K for fillet color or lice resist-
ance in a commercial salmon population.

Conclusions
Our results show that different genomic selection models
applying a 50 K SNP array showed higher accuracy of
breeding value prediction in terms of reliability than the
model using only pedigree based relationship, PBLUP, for
both DAYS and STATUS with an improvement of approxi-
mately 25 and 29%, respectively. In the current population,
~20,000 high quality informative SNPs was enough to
achieve a similar increase in prediction accuracy. A marker
density as low as 3 K and 500 SNP performed better than
PBLUP for DAYS and STATUS, respectively. Therefore,
using a lower SNP density (e.g., 20 K SNP) or the combin-
ation of low SNP density (e.g., 500 SNP) and an imputation
strategy may help reduce genotyping cost without com-
promising the gain in reliability. We are currently working
on an imputation strategy to explore the possibility of redu-
cing the genotyping cost. The BLUP model which uses gen-
omic relationship calculated from pedigree as well as SNP
information (GBLUP) performed similar to the SNP based
BLUP GS models and Bayesian variable selection GS
models (Bayes C and Bayesian Lasso). The relative advan-
tage of using SNP data to improve disease resistance de-
pends on the cost of the disease challenge test to collect
SRS phenotypes, genotyping thousands of training
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candidates (candidates with phenotype) and validation
(potential breeders without phenotypes) which are expen-
sive. The added economic impact of the extra improvement
in SRS resistance needs to be evaluated carefully.
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Additional file 2: Reliability from five-fold cross validation steps for PBLUP
and different GS models for DAYS and STATUS at different marker densities;
Mean reliability table for BLUP and all GS models for DAYS and STATUS at
different marker densities and corresponding plots; Increase in reliability (in
percentage) for all GS models for DAYS and STATUS at different marker
densities compared to PBLUP and corresponding plots. (XLSX 74 kb)
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