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Abstract

Background: We recently identified 700 genes whose expression levels were predictive of chronic lymphocytic
leukemia (CLL) in a genome-wide gene expression analysis of prediagnostic blood from future cases and matched
controls. We hypothesized that a large fraction of these markers were likely related to early disease manifestations.
Here we aim to gain a better understanding of the natural history of the identified markers by comparing results
from our prediagnostic analysis, the only prediagnostic analysis to date, to results obtained from a meta-analysis of
a series of publically available transcriptomics profiles obtained in incident CLL cases and controls.

Results: We observed considerable overlap between the results from our prediagnostic study and the clinical CLL
signals (p-value for overlap Bonferroni significant markers 0.01; p-value for overlap nominal significant markers < 2.
20e-16). We observed similar patterns with time to diagnosis and similar functional annotations for the markers that
were identified in both settings compared to the markers that were only identified in the prediagnostic study.
These results suggest that both gene sets operate in similar pathways.

Conclusion: An overlap exists between expression levels of genes predictive of CLL identified in prediagnostic
blood and expression levels of genes associated to CLL at the clinical stage. Our analysis provides insight in a set of
genes for which expression levels can be used to follow the time-course of the disease; providing an opportunity

to study CLL progression in more detail in future studies.
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Background

Recently, Chadeau-Hyam et al. [1], performed the first
large-scale prediagnostic analysis of blood-derived
genome-wide gene expression profiles in relation to
future risk of B-cell lymphomas from 263 cases and 439
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controls. Over 700 genes - mostly involved in B-cell sig-
naling and the regulation of the immune system - were
found to be differentially expressed in blood samples of
participants who were later in life (between 1 and
17 vyears; median 6.9 years) diagnosed with chronic
lymphocytic leukemia (CLL). Logistic models including
20 genes from the originally 700 identified genes indi-
cated excellent predictive performances with areas under
the curve ranging between 89 and 96% [1].

When studying the relation between gene expression
and subsequent disease in a prediagnostic setting,
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observed signals can reflect altered disease risk (i.e.,
markers of susceptibility/vulnerability), reflect etiological
pathways leading to disease (i.e., markers of early bio-
logic effect) or, when the latency period of the disease
surpasses the time to diagnosis (from blood sampling to
clinical diagnosis), can be a result of the disease itself
(i.e., markers of disease) [2]. In the study of Chadeau-
Hyam et al, it was suggested that the differential gene
expression in CLL was (at least partly) caused by the
presence of early disease, because the results for CLL
agreed with several studies on differential gene expres-
sion in CLL using tumor material. Determining whether
signals are markers of susceptibility, markers of early
biological effect or markers of disease itself would
require additional information, such as prior knowledge
of the underlying pathways or, ideally, transcriptomic
profiles at multiple time points along pathogenesis. The
latter could aid in understanding the underlying
etiological and pathophysiological pathways as this could
enable observation of relevant temporal transcription
regulation [3]. In the absence of such longitudinal
biological samples, the elucidation of individual tran-
scriptomic trajectories driving future disease risk cannot
be directly addressed. However, owing to the wealth of
publically available data from established repositories
such as Gene Expression Omnibus (GEO) of the Na-
tional Center for Biotechnology Information (NCBI) [4]
and ArrayExpress of the European Bioinformatics Insti-
tute (EBI) [5], many data sets from clinical case—control
and, to a lesser extent, prediagnostic studies are now
available and commonly used for research that goes
beyond the scope of their original context [6].

In the current study, we compare results from our ini-
tial blood-based prediagnostic genome-wide gene
expression study, to those obtained from transcriptomic
profiles from clinical cases (i.e., patients whose samples
were collected after diagnosis) of CLL and healthy con-
trols. These transcriptomic profiles arose from several
studies that used both blood and tumor samples. In
order to combine the information from this heteroge-
neous data set, we used a meta-analytic framework,
which eased the comparison with the results from our
prediagnostic study. The identification of markers that
are specific to clinical and/or prediagnostic studies has
the potential to inform on their prediagnostic nature.
For instance, markers that are present in both prediag-
nostic and clinical samples may indicate early disease
biomarkers, while markers exclusively found in prediag-
nostic samples may either indicate susceptibility to
disease or biological imprints of disease progression
(e.g., monoclonal B cell lymphocytosis), and conversely,
exclusive clinical markers may reflect disease manifest-
ation. Pooling sources of prediagnostic and clinical
transcriptomic data therefore has the potential to inform
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on the natural history of the gene expression trajectories
involved in the development and progression of CLL
and other diseases.

Methods
Meta-analysis of clinical studies
Public repositories GEO and ArrayExpress were

searched using the terms ‘chronic lymphocytic leukemia,
‘CLL, and a series of B-cell lymphoma related search
terms: ‘diffuse large B-cell lymphoma, ‘DLBCL, ‘follicular
lymphoma;, ‘FL, ‘multiple myeloma’ or ‘MM’. Expression
profiling studies on human samples were scanned for
relevancy. Studies were considered eligible for inclusion
in the meta-analysis if they quantified genome-wide gene
expression levels in biological samples of CLL patients
(or human lymphomatic cell lines) and healthy controls.
Studies that stimulated sampled cells before quantifying
expression levels were excluded, as were studies that se-
lected patients based on specific genetic alterations (e.g.,
gain or deletion of chromosomes or specific mutations).
Nine unique clinical studies (i.e., with prevalent cases)
were selected for inclusion in the meta-analysis (Add-
itional file 1: Table S1 and Figure S1) [7-13]. Out of
these nine studies, most studies (N = 6) included periph-
eral blood samples; the remaining studies sampled bone
marrow or lymph nodes.

The GEOquery package for R was used to download
raw expression and phenotype data for studies that were
included in our analysis [14]. Because various (some-
times unknown) preprocessing methods were performed
on the data, expression levels were normalized using a
rank-based inverse normal transformation. Because dif-
ferent platforms were used, expression data were shrunk
such that only one probe per gene was retained. In case
of several probes assaying the same gene, we used the
median expression levels across all probes as a summary
statistic to optimize comparability across the datasets.

A random effects meta-analysis was performed on
the downloaded raw data to identify differentially
expressed genes. For this, the MAMA (Meta-Analysis
of MicroArray) package for R was used, which com-
bined standardized effect sizes per gene over the
included studies into overall estimates of the average
effect size [15, 16]. A Cochran Q-value was also
calculated as a measure of heterogeneity in effect size
between the included studies. Only genes that were
measured in all clinical studies were included in the
meta-analysis (N=11,904). To examine the effect of
the varying sampling tissues between the studies on
the average effect size we performed a sensitivity ana-
lysis in which the meta-analysis only included studies
that used peripheral blood samples, which was also
used in the prediagnostic study.
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Prediagnostic study

We used participant and gene expression level data from
the EnviroGenomarkers project (http://www.envirogen-
omarkers.net). This project aims to discover biomarkers
predictive of increased risks of cancer, using data from the
Visterbotten Intervention Project (VIP), which is a part of
the Northern Sweden Health & Disease Study (NSHDS),
and EPIC-Italy cohorts, both described in detail elsewhere
[17, 18]. In short, VIP includes approximately 95,000 indi-
viduals from the general population of the Vésterbotten
county (Sweden). Since 1985, all inhabitants aged 40, 50
and 60 are invited for screening. Included participants
provided questionnaire data, anthropometric measure-
ments and blood samples and are followed-up for disease
outcomes through regional health registries. The EPIC-
Italy study is the Italian contribution to the larger Euro-
pean Prospective Investigation into Cancer and Nutrition
(EPIC) study, including over 47,000 participants (aged 35—
70 years) from five different areas in the country (Flor-
ence, Naples, Ragusa, Turin, Varese). At baseline (1993—
1998), biological samples were obtained from participants
in addition to anthropometric measurements and ques-
tionnaire information on diet and lifestyle. Participants
were followed-up for diseases through local registries. In a
previous paper we demonstrated that high quality RNA
expression profiles could be obtained from these prospect-
ive collections if blood samples were cold stored (-80, or
-196C) within two hours after collection [19].

In total, 39 participants diagnosed with CLL during
follow-up were included and matched to 39 controls on
sex, age, center, fasting status and date of blood collec-
tion in two analytical phases. In addition, 442 blood
samples from the same study population of healthy indi-
viduals at the time of blood draw, were added as un-
matched controls to maximize statistical. RNA was
obtained from peripheral blood mononuclear cells
(PBMC). Only samples placed in cold storage within two
hours after blood collection were included in this study.
Genome-wide gene expression was obtained using an
Agilent 4 x 44 K human whole genome microarray plat-
form. In total, samples of 39 future CLL cases and 438
controls were successfully analyzed. For the current
study, data was collapsed by gene (29,662 probes repre-
senting 15,613 genes), using the median level of expres-
sion if multiple probes correspond to the same gene, for
comparison with the data sets from public repositories.
The per-gene data were analyzed using mixed models as
used for the original per-probe analyses. In short, the
expression level of a gene was modeled as dependent
variable and case status, age, gender, country, experi-
mental phase, BMI, education, physical activity, smoking
status and alcohol consumption were included as fixed
factors. Random intercepts were included for the dates
of RNA isolation, hybridization and dye labeling.
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Comparing clinical with prediagnostic markers

Based on the overlap between the prediagnostic study
and clinical studies, four main categories were defined:
consistently upregulated (++), consistently downregu-
lated (--), dissimilar (+-, +0, —0, 0-, 0+, —+), or consist-
ently non-significant (0o). The first and second symbols
relate to clinical and prediagnostic data respectively, and
‘+” indicates a positive association, -’ an inverse associ-
ation, and ‘o’ a non-significant association. A gene was
considered differentially expressed in both sections (‘++’
or ‘~’) if it reached Bonferroni-corrected 5% statistical
significance in at least one of the two types of studies,
and reached nominal 5% statistical significance in the
other study type (p <0.05). Any gene not reaching Bon-
ferroni 5% statistical significance in either type of study
was considered as a null finding (‘00’). A graphical rep-
resentation of this approach is displayed in Fig. 1.

We used Venn diagrams to show the overlap between
clinical and prediagnostic markers. The Venn diagrams
consist of two concentric semi-circles with the darker
shaded outer layer indicating the number of markers
that reached Bonferroni significance and the lighter
shaded inner layer indicating markers that only reached
nominal statistical significance. The red shaded upper
semi-circle reflects upregulated markers and the green
shaded lower semi-circle reflects downregulated markers.

Further insight was gained by plotting signed p values
from the prediagnostic study (i.e., significance of case
status in the linear mixed model) against those of the
meta-analysis (i.e., significance of the combined effect
size). The sign of the p-value distinguishes under- from
overexpression.

We assessed the probability that the overlap between
significant signals from the prediagnostic study and the
meta-analysis of clinical studies was due to chance using
a Fisher’s exact test (analysis conducted for both the
overlap in Bonferroni significant signals and nominal
significant signals).

Functional analyses and bioinformatics

We conducted principal components analysis on the
similarly differentially expressed genes (“++" and ‘-’) and
on the genes exclusively seen prediagnostically (‘o+” and
‘0-"). We used principle components that explained more
than 5% of the total variance in further analyses. We
investigated pairwise correlation between principal com-
ponents to identify potential common latent structures
and we examined the association of principal compo-
nents with time to diagnosis using the linear regression
model that was used in the prediagnostic study.

We assessed enrichment of KEGG pathways in our data
using gene enrichment analyses on all genes that reached
Bonferroni significance in either the prediagnostic or
clinical studies. We defined a Bonferroni corrected
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Fig. 1 Graphical representation of the approach followed to assess the overlap of gene-expression markers identified in the prediagnostic study
with gene-expression markers identified in the clinical study. Based on the overlap between the prediagnostic study and clinical studies, four main
categories were defined: consistently upregulated (++), consistently downregulated (=), dissimilar (+—, +0, —0, o-, o+, —+), or consistently non-
significant (o). The first and second symbols relate to clinical and prediagnostic data respectively, and ‘+" indicates a positive association, - an
inverse association, and ‘0" a non-significant association. A gene was considered differentially expressed in both sections (++' or ‘=) if it reached
Bonferroni-corrected 5% statistical significance in at least one of the two types of studies, and reached nominal 0.05 significance in the other
study type. Any gene not reaching Bonferroni 5% statistical significance in either type of study is considered as a null finding ('00’)

J

Fisher’s exact p value < 0.05 as cut-off for enrichment.
For KEGG pathways that were enriched we compared
the proportion of genes included in a pathway across
four gene categories defined in our study: similarly
differentially expressed genes (‘++ or ‘-’), genes
exclusively seen prediagnostically (‘o+’ or ‘o-’), genes
exclusively seen in clinical studies (‘+o’ or ‘-0’) and
dissimilarly differentially expressed genes (‘+-" or ‘-
+’), using a Fisher’s exact test. Gene set enrichment
analyses was conducted using the KEGGREST R pack-
age [20].

To gain mechanistic insight into the role of the genes
identified in this study in the natural history of CLL, we
assessed the occurrence in our results of 44 putative
CLL driver genes recently identified through whole-
exome sequencing of 538 CLL and matched germline
DNA samples [21].

Results

The meta-analysis of clinical CLL markers included nine
studies and a total of 11,904 genes. For 35% of the genes
we observed Bonferroni significant heterogeneity in
expression between studies, while 116 genes were
Bonferroni-significant ~ differentially expressed (See
Additional file 1: Table S2 for the top 25 hits from this
analysis). When we included only the six studies that
used peripheral blood samples in the meta-analysis, we
observed between-study heterogeneity in 0.7% of the

genes and 6 genes were Bonferroni-significant differen-
tially expressed.

Results of the per-gene replication of the prediagnostic
study were very similar to the results of the original per-
probe analyses. 535 genes were Bonferroni-significant
differentially expressed (See Additional file 1: Table S3
for the top 25 hits from this analysis).

In Fig. 2 we show the overlap between concurrently
up- and downregulated clinical and prediagnostic
markers. We observed clear overlap in differentially
expressed genes. One upregulated gene (COCH) and 8
downregulated genes (ARHGAP32, EFHC2, FAM134B,
KLF3, MAFB, RAB33A, SCML1, SMAD7) were
Bonferroni-significant differentially expressed in the
meta-analysis of clinical studies as well as in the prediag-
nostic study. Among concurrently upregulated genes,
106 were Bonferroni-significant in the prediagnostic
study and reached nominal significance in the meta-
analysis of clinical studies, while 6 genes were
Bonferroni-significant in the meta-analysis and reached
nominal significance in the prediagnostic study. 284
genes reached nominal significance (but not Bonferroni
significance) in both the prediagnostic study and the
meta-analysis of clinical studies. Among concurrently
downregulated genes, 62 were Bonferroni-significant in
the prediagnostic study and reached nominal signifi-
cance in the meta-analysis of clinical studies, while 55
genes were Bonferroni-significant in the meta-analysis of
clinical studies and reached nominal significance in the
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Upregulated
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Fig. 2 Venn diagram indicating the overlap between genome wide significant genes (darker shaded) and nominal significant genes (lighter
shaded) concurrently upregulated (red) or downregulated (green) in the prospective and clinical CLL study. Genes with a dissimilar direction of
effect between the prospective and clinical CLL study (regardless of the significance level of the association) are not included in this graph.

Symbols correspond to the four main categories as defined under Fig. 1

prediagnostic study. Five hundred sevety six genes
reached nominal significance (but not Bonferroni signifi-
cance) in both the prediagnostic study and the meta-
analysis of clinical studies. Results from a Fisher’s exact
test indicated that the overlap between markers that
were significant in the prediagnostic study and markers
that were significant in the meta-analysis of clinical stud-
ies was unlikely due to chance (p-value for overlap Bon-
ferroni significant markers 0.0123; p-value for overlap
nominal significant markers < 2.2e-16). We provide the
full list of concurrently up- or downregulated genes that
reached Bonferroni-significance in either the meta-
analysis or the prediagnostic study in Additional file 1:
Table S4.

Further insight is gained from Fig. 3. We observed a
Spearman rank correlation of 0.53 between signed
-logl0 p values from the prediagnostic study and the
meta-analysis of clinical studies (p-value <2.2e-16). For
192 genes that were Bonferroni-significant differentially
expressed in the prediagnostic study we observed a p
value above 0.05 in the clinical study (‘o+” or ‘o-’), and
41 genes vice versa (“+o’ or ‘-0’). Finally 7 genes that
were nominally significantly downregulated in the meta-
analysis of clinical studies were nominally significantly
upregulated in the prediagnostic study (of which none
Bonferroni-significant) and 25 genes that were nominally
significantly upregulated in the meta-analysis of clinical
studies were nominally significantly downregulated in
the prediagnostic study (of which none Bonferroni-
significant).

Both for markers that were overlapping in the prediag-
nostic study and in the meta-analysis of clinical studies
(based on direction of effect and nominal significance)
and for markers that reached only nominal significance

in the prediagnostic study, the first two principal com-
ponents were inversely associated with time to diagnosis,
while principal components 3 and 4 were not signifi-
cantly associated (Fig. 4 and Additional file 1: Figure S2).
We observed high pairwise correlations between all four
principal components derived in these gene sets
(Additional file 1: Figure S3).

We studied 291 KEGG pathways for enrichment. KEGG
pathway “hematopoietic cell lineage” was enriched within
the genes that reached Bonferroni-significance in either
the prediagnostic study or in the meta-analysis of the
clinical studies (p value for enrichment: 5.07 x 107°).

Chronic Lymphocytic Leukemia

T

80

60

20

Signed -log10Pvalues prediagnostic study
0 40

Signed -log10Pvalues clinical studies

Fig. 3 Comparison of differential gene expression observed in the
prediagnostic study and the results of the meta-analysis of clinical
studies. Solid lines are placed at p values of significance threshold
after Bonferroni correction. Dashed lines correspond to p value =
0.05. Solid red circles represent significant genes after Bonferroni
correction in both the prediagnostic study and meta-analysis on
clinical studies. Spearman rank correlation between signed —log 10
p values was 0.53

.
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Fig. 4 The association between follow-up time and principal components in similarly differentially expressed genes. Controls are shown in black,
cases in red. Follow-up time in cases represents the time to diagnosis in days. Included genes are similarly differentially expressed in the prediagnostic
study and the meta-analysis of clinical studies (groups ++ and '=). The first four principal components explained respectively 26.9, 16.5, 6.0 and 5.6%.
When components were included in a linear model as the dependent variable, the time to diagnosis (in cases) showed a statistically significant
association for PC1 (=155 x 10-3) and PC2 (=145 x 10-3) with respective p values of 0.023 and 0.007. Associations for PC3 and PC4 were not
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Associations observed in the prediagnostic study and the
meta-analysis for the 68 genes included in our study that are
part of this pathway are listed in Additional file 1: Table S5.
Eight genes were similarly differentially expressed (3 =‘++;
5=""), 5 genes were exclusively seen prediagnostically (all
‘0+’). No genes were exclusively seen in the meta-analysis of
clinical studies (either ‘+o’ or ‘-0’) or were dissimilarly
differentially expressed genes (‘+-" or ‘—+). 55 genes were
consistently non-significant between study types.

We assessed the overlap between our results and 44
putative CLL driver genes recently identified through
whole-exome sequencing of 538 CLL and matched
germline DNA samples [21] (Additional file 1: Table S6).
Among the 41 genes that were also included in our ana-
lysis (genes SF3B1, CARD11, CHD2 were not), none
achieved Bonferroni significance in either the prediagnos-
tic or the meta-analysis of clinical studies. One gene
(SAMHD1) was concurrently downregulated and achieved
nominal significance in both the clinical and the prediag-
nostic study. Fourteen driver genes in the prediagnostic
study and seven driver genes in the meta-analysis of clin-
ical studies achieved nominal significance.

Discussion
We assessed the concordance between gene-expression
markers identified years before diagnosis with gene-

expression markers of CLL identified at the clinical stage
of the disease. By comparing these signals we aimed to
elucidate the natural history of transcriptomic markers
of CLL.

To our knowledge, this study was the first to combine
transcriptomics data from clinical CLL studies in a
meta-analytical framework. This method proved useful
in identifying differentially expressed genes in clinical
samples, with 116 differentially expressed genes
observed. The variety in sampling tissue has probably
increased the heterogeneity in signals which is likely to
cause some attenuation. When only studies using
peripheral blood samples were included in the meta-
analyses the number of differentially expressed genes
generally decreased, probably due to the lower number
of subjects included.

The large overlap between markers identified in the
meta-analysis of clinical studies and the prediagnostic
study (60% of the genes identified in the meta-analysis)
suggests that a differential gene expression pattern specific
of disease can be detected in blood years before CLL diag-
nosis. This supports the assumption that differential
expression observed before diagnosis is caused primarily
by the presence of early disease at low concentration.

Further support for this assumption is provided by the
inverse associations between principal components for
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levels of similarly differentially expressed genes (‘++” and
‘~’) and time to diagnosis in cases. This association indi-
cates that the underlying sources of variation become
more apparent when approaching the time of diagnosis,
which supports the hypothesis that this category
includes genes for which differential expression is related
to presence of diseased cells and/or etiological pathways
leading to disease, and these are accumulating while
approaching clinical onset. An association with time to
diagnosis was also apparent for genes exclusively seen
prediagnostically (‘o+’ and ‘o-’), which suggests that
these genes were not functionally different from the
similarly differentially expressed genes.

We hypothesize that the genes that were identified
exclusively in the prediagnostic study operate in similar
pathways as the genes that were identified in both the
prediagnostic study and the meta-analysis of clinical
studies. Support for this hypothesis was provided by the
high pairwise correlations between principal compo-
nents derived in these two sets of markers and by path-
way enrichment analysis, in which genes exclusively
identified in the prediagnostic study were not overrepre-
sented compared to genes that were identified in both
the prediagnostic study and the meta-analysis of clinical
studies in the pathway that was enriched in our results
(“hematopoietic cell lineage”).

Further support for the lack of functionally distinct
groups of genes within the prediagnostic signals was
provided by a post-hoc correlation analysis of gene ex-
pression in the prediagnostic study. The correlation ana-
lyses showed no apparent clusters between genes
differentially expressed in the meta-analysis of clinical
studies (groups ‘++" and ‘~’) and genes that were not
(groups ‘o+ and ‘o-) (Additional file 1: Figure S4).
Under our hypothesis that gene groups ‘o+” and ‘o-" are
not functionally different from gene groups ‘++" and ‘-,
the lack of signal for the groups ‘o+” and ‘o-’ gene groups
in the meta-analysis of clinical studies is potentially ex-
plained by a lack of statistical power.

Detection of differential gene expression years before
clinical diagnosis may be attributed to the presence of
monoclonal B lymphocytosis (MBL). Although, in the ab-
sence of data describing the MBL status in each partici-
pant in our baseline data it was not possible to formally
assess this assumption, in this light, it is interesting to
contrast the prediagnostic signal we observed for CLL to
the modest signal we observed for other types of B-cell
lymphoma in the prediagnostic study, for which the con-
tribution of a pre-lymphoma condition is less evident [1].
For multiple myeloma only two genes were found to be
differentially expressed in future cases, whereas for diffuse
large B cell lymphoma and follicular lymphoma no genes
were differentially expressed. Multiple myeloma is pre-
ceded by premalignant monoclonal gammopathy of
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undetermined significance (MGUS). Where MBL has a
very similar gene expression pattern to early-stage CLL
[22] and progression depends on the number of CLL-type
lymphocytes in the blood, [23] the progression of MGUS
into MM is thought to require a more fundamental trans-
formation of serum mlg levels and the bone-marrow
plasma cell content induced by genetic alterations [24].
We are unaware of pre-lymphoma conditions preceding
diffuse large B cell lymphoma and follicular lymphoma.
However, the possibility that the overlapping signals for
CLL were markers of susceptibility or markers of early
biologic effect which remained present throughout the
course of the disease cannot be excluded based on our
analysis. Although we observed limited overlap between
our results and 44 previously reported putative CLL driver
genes, it is important to realize that this analysis pertained
only to trans-acting relationships.

Conclusions

We report concordance between gene expression signals
observed in patients diagnosed with CLL and gene ex-
pression signals observed in future patients, years before
they were diagnosed with CLL. This suggests that differ-
entially expressed genes reflecting disease occurrence
can be observed years before diagnosis and that these
signals are retained throughout the disease course. No
difference in association with time to diagnosis or func-
tional annotation was observed between genes that were
differentially expressed prediagnostically only and genes
that were differentially expressed prediagnostically as
well as clinically. This suggests that these signals may be
involved in similar pathways, possible resulting from the
presence of early disease. Although, there is no apparent
clinical utility for early biomarkers of CLL, e.g. for
screening purposes, the markers identified in this study
could be used to follow the time-course of the disease,
facilitating future deeper understanding of disease onset
and factors that affect the disease. Furthermore our find-
ings provide an opportunity to study CLL progression in
more detail in future studies. Studies based on repeated
sample collections before disease diagnosis should be
performed to see if the identified markers here could be
used for individual markers of disease progression.

Additional file

Additional file 1: This file contains the supplementary tables and
figures for this paper, including Tables S1-S6, and Figures S1-54.
(DOCX 1257 kb)
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