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Abstract

Background: Computational identification of non-coding RNAs (ncRNAs) is a challenging problem. We describe a
genome-wide analysis using Bayesian segmentation to identify intronic elements highly conserved between three
evolutionarily distant vertebrate species: human, mouse and zebrafish. We investigate the extent to which these
elements include ncRNAs (or conserved domains of ncRNAs) and regulatory sequences.

Results: We identified 655 deeply conserved intronic sequences in a genome-wide analysis. We also performed a
pathway-focussed analysis on genes involved in muscle development, detecting 27 intronic elements, of which

22 were not detected in the genome-wide analysis. At least 87% of the genome-wide and 70% of the pathway-
focussed elements have existing annotations indicative of conserved RNA secondary structure. The expression of 26
of the pathway-focused elements was examined using RT-PCR, providing confirmation that they include expressed
ncRNAs. Consistent with previous studies, these elements are significantly over-represented in the introns of
transcription factors.

Conclusions: This study demonstrates a novel, highly effective, Bayesian approach to identifying conserved non-
coding sequences. Our results complement previous findings that these sequences are enriched in transcription
factors. However, in contrast to previous studies which suggest the majority of conserved sequences are regulatory
factor binding sites, the majority of conserved sequences identified using our approach contain evidence of
conserved RNA secondary structures, and our laboratory results suggest most are expressed.

Functional roles at DNA and RNA levels are not mutually exclusive, and many of our elements possess evidence of
both. Moreover, ncRNAs play roles in transcriptional and post-transcriptional regulation, and this may contribute to
the over-representation of these elements in introns of transcription factors. We attribute the higher sensitivity of
the pathway-focussed analysis compared to the genome-wide analysis to improved alignment quality, suggesting
that enhanced genomic alignments may reveal many more conserved intronic sequences.
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Background

Functional, non-coding, genomic sequences carry out
important cellular functions. These sequences can in-
clude enhancers and silencers, regulating gene expres-
sion, and non-coding RNAs (ncRNAs). ncRNAs have
been implicated in a variety of biological functions in-
cluding chromatin modification [1-3], transcription [4],
and RNA splicing [5, 6], editing [7], and translation [8].
Despite the increasing evidence of their importance the
tools available for the detection of functional non-coding
elements in a genome, in contrast to the array of tools
available to identify coding sequences, are limited. This
is largely due to the wide range of non-coding elements
and the lack of characteristic features to assist in their
identification.

Current computational methods to identify ncRNAs;
such as Mfold [9], RNAfold [10], and RNAz [11], rely on
formation of secondary structure, or combine this
approach with comparative sequence analysis (such as
EvoFold [12]). The formation of secondary structures is
a feature of many ncRNAs including; small nucleolar
RNAs, tRNAs, and microRNAs; but many ncRNAs and
non-coding regulatory sequences will be missed using
this approach.

Conservation of sequence between species is widely
used as an indicator of function. Conservation can be
identified using a sliding window analysis applied to
whole-genome alignments. This technique involves
counting the number of matches/mismatches in overlap-
ping windows of a predetermined length, to obtain a
profile of conservation level across the sequence. Many
previous studies have used such analyses to identify
conserved non-coding sequences in human and other
genomes [13-17]. Two key findings have emerged from
these studies. Firstly, there is strong evidence, both com-
putational and experimental, that conserved non-coding
sequences are highly enriched in regulatory sequences,
especially regulatory element binding sites [13, 18—20].
A second finding is that conserved non-coding se-
quence is selectively located near transcription factors
and genes involved in development and the nervous
system [15-17, 20, 21].

Sliding window analyses have several limitations. A
smaller window allows for more precise localisation of
changes in the property of interest but also allows for
noise within the sequence to more significantly affect
the output. Thus sliding window analysis is inherently a
compromise between these two factors [22]. The tech-
nique also fails to precisely localise boundaries in func-
tional elements, such as the boundaries between exons
and introns, the ends of transcription factor binding sites
(TFBSs), and the transcription start sites of expressed
RNAs, for which more sophisticated segmentation
methods are required [23, 24]. The second disadvantage
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is the common consideration of conservation as a
dichotomy (conserved or not-conserved), whereas in
reality the constraints on any given region will differ
resulting in multiple classes of conservation within a
genome. For example, analysis of genome alignments
from drosopholids and mammals identified 7 and 9
evolutionary rate classes respectively [25]. As a result it
is not possible to set threshold values for conserved
elements that will consistently identify non-coding func-
tional elements.

To overcome the above-mentioned disadvantages we
performed an analysis using changept, a Bayesian seg-
mentation model [26, 27]. Adopting a Bayesian approach
is beneficial as it provides quantification of the uncertain-
ties in parameter estimates in the form of probability distri-
butions. The changept model can be described as a
segmentation-classification model, which is capable of
simultaneously segmenting a genomic alignment and clas-
sifying segments into one of a predefined number of seg-
ment classes. Segments are classified according to multiple
sequence characteristics including level of evolutionary
conservation between species, GC content and transition/
transversion ratio, and precise boundaries for the segments
are identified.

Using changept, we carried out a genome-wide
analysis using an automated alignment of the zebrafish,
mouse, and human genomes. It is possible to apply
changept to an alignment of a large number of species,
using one of the alignment encodings introduced in [25].
However, these encodings focus on the conservation prop-
erties of the alignment only. Alignments contain additional
information indicative of function, including variations in
GC content and in transition/transversion ratio. Here we
consider an alignment of only three species, so that we can
use encodings that capture this additional information [28].
We chose zebrafish and mouse genomes as these are poten-
tially useful model organisms for future investigations of
functional significance.

We identified 655 intronic putative functional ele-
ments (PFEs) distributed among 193 zebrafish genes and
compared these to predictions from other approaches
and to sequence databases. Using analysis of sequence
conservation we identified many elements that had
previously been identified using secondary structure
analysis, and some novel elements. We also identified
that the PFEs were highly enriched in transcription
factors. To examine if there were conserved elements
between different members of the same pathway and the
effects of optimised local alignments, we performed a
pathway-focussed analysis on 24 genes involved in
muscle development, identifying a similar enrichment in
transcription factors and that conservation rates not only
vary across the genome but also within a single gene.
We identified 27 PFEs in genes in the myogenesis
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pathway that belong to the class of most highly
conserved segments. We validated our findings experi-
mentally, confirming the expression of these intronic
elements in zebrafish embryos.

Results

To identify putative functional non-coding elements
conserved between human, mouse and zebrafish, we
performed a genome-wide analysis using the readily
available multiz 8-way alignment. For each zebrafish
chromosome, a zebrafish-referenced 3-way alignment
was extracted, giving 25 alignments in total. Approxi-
mately 4-5% of each chromosome was aligned, however
this captured 50% of the Ensembl genes.

Identification of conserved non-coding elements

To search for the most conserved elements in each gene,
changept was applied to each chromosome alignment
independently. Alignments were segmented into classes,
based on conservation rates, and with the number of clas-
ses determined set to be the minimum number that could
be fitted to the data. For each class the posterior probabil-
ity that each sequence position belongs to the class was
determined and visualised in context using BED files
uploaded to the UCSC genome browser.

We identified significant variation between genes on
the same chromosome in the levels of conservation. We
therefore used a gene-specific approach, identifying for
each gene the class or classes containing exons and
examining these, and more highly conserved classes, for
intronic elements. Notably, there are regions within the
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introns that show equally distinct boundaries and
probabilities of belonging to the highly conserved classes
as exons, and some intronic regions that are more
conserved than coding regions (Fig. 1).

Conserved intronic elements are widespread in the
human, mouse, and zebrafish genomes

Some of the intronic conservation blocks identified
were very short, or their assignment to the highly
conserved class had a low probability. Therefore, we
filtered the results for intronic segments of at least
100 nt in length, such that each position in the re-
gion had >0.9 probability of belonging to the highly
conserved class/classes of each gene in question. Re-
gions that passed this filtering were referred to as pu-
tative functional elements (PFEs).

We identified 655 PFEs distributed among 193 zeb-
rafish genes with a median length of 168 nt and with
33% of the PFEs longer than 200 nt (Additional file 1:
Table S1). Where the zebrafish genome contained
multiple homologues for the human gene we fre-
quently observed the conservation of the PFE in mul-
tiple zebrafish genes with 47 PFEs located in zebrafish
paralogues corresponding to 23 PFEs in human. All other
PFEs were in one-to-one correspondence between
zebrafish and human. PFEs were found throughout
the genome (Fig. 2), but were not evenly distributed,
with 20 genes containing 5-9 PFEs, 17 genes contain-
ing 10 or more, and 34 PFEs identified in foxp2
(ENSDARGO00000005453) alone.
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Fig. 1 a Most conserved segment classes of Irba gene. Two BED files uploaded to UCSC genome browser correspond to Class 0 (conservation - 71%)
and Class 9 (conservation - 75%) segments of zebrafish chromosome 1. The segments in each of Class 0 and Class 9 overlap annotated exons
(wide bars) of Irba (ENSDARG00000031108). b An intronic region more conserved than exons. The annotated exon (wide bars) of dachc
(ENSDARG00000003142) coincides with the segment in Class 0. The 261 nt long segment at the right end belongs to Class 9, hence is more
conserved than the marked exon
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Fig. 2 Number of intronic PFEs identified in each zebrafish chromosome. 655 intronic PFEs were identified in 25 zebrafish chromosomes in total. The
highest number of PFEs (98) was detected in zebrafish chromosome 17. 34 PFEs were identified in foxp2 (ENSDARG00000005453) in chromosome 4
and this is the highest number of PFEs found in a single gene followed by 28 PFEs in npas3 (ENSDARG00000079182 — chromosome 17)

Number of PFEs

Identified elements correspond to novel, predicted, and
known functional sequences
To determine if PFEs represent functional elements, and
to compare our results to those incorporating secondary
structure, we compared PFEs with regions identified by
EvoFold, RNAz, DNase I footprinting, and to entries in
the functional RNA database. Of the 655 PFEs, 616
(94%) were also identified by other methods (Fig. 3).
Note that all of these methods except DNase I footprint-
ing are suggestive of function at the RNA level. In
contrast DNase I footprinting suggests the presence of
regulatory element binding sites. If we exclude DNase I
footprinting, 570 (87%) intronic PFEs have existing
annotations suggestive of RNA-level function. EvoFold
shared the greatest overlap with changept, 558 PFEs
(85%) overlapping with EvoFold predictions, including
174 PFEs containing multiple EvoFold predictions. Only
92 PFEs (15%) were identified by the other predictive tool
examined, RNAz (Additional file 2: Table S2).
Comparison to experimental data for DNasel foot-
prints suggested 342 PFEs (56%) were in protein binding
regions. Comparing with fRNAdb, 47 PFEs matched
with experimentally identified ncRNA transcripts in the
database (Fig. 3 and Additional file 2: Table S2). Of
these, 45 mapped to ncRNAs identified in an analysis of
the mouse transcriptome [29, 30]. The remaining 2 PFEs
were contained in human ncRNA transcripts [31].
Except for one of the human ncRNA transcripts
(fRNAdb  reference FR407542/FR407474), all other
transcripts were substantially longer than the PFEs they
matched. This suggests that regions identified as PFEs rep-
resent functional domains within longer RNA transcripts.

As an added check to determine if PFEs correspond to
ncRNAs, we compared the locations of PFEs with
long non-coding RNAs (IncRNAs) identified in zebra-
fish [32-34]. There were 8 PFEs overlapping with
known IncRNAs (Additional file 2: Table S2). Of 655
PFEs, 39 were not identified by the other methods
used for comparisons, and thus can be classified as
new predictions.

DNasel
RNAz
EvoFold fRNAdD

Fig. 3 Venn diagram showing the number of genome-wide intronic
PFEs supported by other methods. 94% of the PFEs found in the
genome-wide analysis overlapped with the functional elements
(predicted or experimentally validated) identified in 4 other databases,
EvoFold, fRNAdb, RNAz and DNase | footprints. Most of the PFEs
overlapped with entries in EvoFold and there were 47 matches with

experimentally identified ncRNA transcripts in fRNAdb
.
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Characterizing genes containing PFEs
Transcription factors are known to be enriched in in-
tronic ncRNAs [35]. To find if transcription factors were
overrepresented in the 193 PFE containing genes we
compared the proportion in these genes to that in the
genome wide alignments. Results indicated that 40.9% of
genes with PFEs (79/193) are transcription factors and
4.7% (9/193) are transcription co-factors (Additional file
3: Table S3) compared to 10.6% (1733/16296) and 1.5%
(240/16296) respectively in the genome wide alignment.
Therefore PFEs are highly enriched in transcription fac-
tors (p-value: 1.2e-56, Z-test for comparing proportions).
As an additional analysis, we examined the distribution
of Gene Ontology (GO) terms (http://geneontology.org
[36]) in the 193 genes with PFEs. GO terms associated
with transcription factors (eg: sequence-specific DNA
binding transcription factor activity, sequence-specific
DNA binding RNA polymerase II transcription factor
activity, regulation of transcription DNA-templated,
transcription from RNA polymerase II promoter, nu-
cleic acid-templated transcription) were significantly
overrepresented in genes containing PFEs (Additional
file 4: Table S4).

Identification of intergenic PFEs

In the genome-wide analysis we also identified 352 inter-
genic regions that satisfy the PFE selection criteria. Of
these, 340 intergenic PFEs (97%) were found to overlap
with regions identified by other methods (EvoFold, RNAz,
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DNase I footprints, or fRNAdb entries, Additional file 5:
Table S5). This includes 12 intergenic PFEs that were in
ncRNA transcripts according to fRNAdb entries and 11
intergenic PFEs that overlapped with intergenic IncRNAs
identified in Pauli et al. 2012. There were 12 highly con-
served intergenic regions only identified by program
changept.

Examination of non-coding sequences in a specific pathway
The second part of our study was a pathway-focussed
analysis allowing optimisation of the sequence alignment
for each gene, and the potential to identify common
elements within a pathway. Pathway-focussed analysis
was performed on 11 genes encoding transcription
factors known to play important roles in myogenesis,
and 13 genes encoding muscle proteins. For each gene,
human-referenced 3-way alignments were generated
independently using LAGAN alignment tool [37].

Identification of putative functional elements (PFEs)

To search for the most conserved elements in each gene
we applied changept to the 3-way alignments corre-
sponding to each of the 24 genes. The profiles were
visualised in context using WIG files uploaded to the
UCSC genome browser. Fig. 4 demonstrates the effect-
iveness with which the distinct boundaries of functional
elements can be identified. Class 1 is the most conserved
class, and sharp changes (from low to high probabilities) in
the WIG profile for Class 1 coincide closely with the

UCSC Genome Browser on Human Feb. 2009 (GRCh37/hg19) Assembly
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Fig. 4 WIG profile of the eyal. The top three profiles show, for each sequence position in the human eyal DNA sequence (UCSC genomic coordinates
chr8: 72,127,000 - 72,130,000), the probability that any base at that position belongs to Class 0 (50% conservation), Class 1 (65% conservation), Class 2
(45% conservation) respectively. At any position, the sum of the three profiles is 1. The two rows below the Class 2 profile display the exons (wide
bars) and the introns (thin lines) of eyal recorded in the UCSC and RefSeq collections respectively. Exon boundaries are indicated with red vertical lines.
Class 1 corresponds mainly to the mapped exons of eyal, and covers regions of high conservation between human, mouse and zebrafish
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annotated positions of exons. Intronic regions, not previ-
ously reported as functional, are confidently predicted as be-
longing to the same conservation class that includes all the
other exons. These regions were considered for PFE analysis
using the same criteria used in the genome-wide analysis
(segment length >100 nt; profile > 0.9).

We identified 27 PFEs in total, all in introns of 7 of the
transcription factors with the majority distributed among
eyal, pax3a and pax7 (Additional file 6: Table S6). In con-
trast, no PFEs were identified in the other muscle genes
examined. Of the 27 PFEs, only 5 (3 of pax3a and 2 of
eyal PFEs) were identified in our genome-wide analysis
suggesting the optimised alignments had a significant
impact on the ability to detect PFEs. The median
length of PFEs was 222 nt (based on zebrafish sequences)
with 15/27 longer than 200 nt, suggesting the length of the
elements detected may also be affected by the alignments.

Comparing PFEs with other supporting evidence

We analysed the pathway-focussed PFEs using the same
methods used in the genome-wide analysis (EvoFold,
RNAz, DNase I footprints, and fRNAdb entries). An
example WIG profile of a 169 nt long PFE identified in
the 3-way alignment of eyal is shown in Fig. 5. Three
possible translation phases (top) indicate a lack of open
reading frame within the region. The overlap of the PFE
with a sequence protected in DNA footprinting assays
indicates protein binding in this region. Furthermore,
the PFE is also predicted by EvoFold.

The Venn diagram in Fig. 6 depicts the number of
PFEs supported by other evidence and summarised in
Table 1 (full details in Additional file 7: Table S7). Of 27
PFEs, 24 were also identified by other methods. (This
number reduces to 19 (70%) if DNase I footprinting is

not considered.) Out of those 24, the majority of PFEs
were identified by either EvoFold (67%) or DNase I foot-
print regions (75%). Three PFEs overlapped with multiple
EvoFold regions (PFE #1 of pax7b, #3 and #4 of pax3a).
In all cases where PFEs overlap with EvoFold regions, the
PFEs are longer; this suggests that our analysis has identi-
fied extended functional regions.

Three PFEs matched with two experimentally identified
ncRNA transcripts in mouse (Table 2). Both transcripts
that mapped to the corresponding region in the mouse

DNasel
EvoFold

fRNAdb

Fig. 6 VVenn diagram showing the number of pathway-focussed
PFEs supported by other methods. 88% of the PFEs found in the
pathway-focussed analysis overlapped with the functional elements
(predicted or experimentally validated) identified in 4 other databases,
EvoFold, fRNAdb, RNAz and DNase | footprints. Most of the PFEs
overlapped with entries in either EvoFold or DNase | footprints and
there were 3 matches with experimentally identified ncRNA transcripts
in fRNAdb
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Table 1 Pathway-focussed results: Number of PFEs supported
by other methods suggestive of function

Gene No. of No. of PFEs contained
PFEs EvoFold DNasel  RNAz  ncRNA
identified footprints transcripts
(fRNAdb)
eyal 6 5 6 0 1
eya4 2 1 1 0 0
pax3(ZFa)* 7 5 4 0 1
pax3(ZFb) 2 1 1 0 1
pax7(ZFb) 6 4 3 3 0
shh(ZFa) 2 0 1 0 0
myf5 1 0 1 1 0
six4.3 1 0 1 0 0
Total 27 16 18 4 3

“Note human and mouse DNA sequences of pax3 are aligned with zebrafish
paralog a. Similarly, corresponding zebrafish paralog is mentioned within
brackets for other genes if any

genome were substantially longer than the PFEs that they
matched. This is consistent with our earlier observation
that regions identified as PFEs in the genome-wide
analysis, where they overlap with known ncRNAs, are typ-
ically shorter than those ncRNAs, and thus may represent
functional domains within longer RNA transcripts. The
remaining 3 PFEs (PFE 2 of shha, PFE 1 of pax3a and PFE
6 of pax7b) were not identified by any of the 4 other
methods used.

One of the reasons for performing a pathway-focussed
analysis was to investigate whether genes in the same
pathway contain PFEs with matching sequences. How-
ever, we did not find any such matches amongst the 27
PFEs identified in our pathway-focussed analysis.

Comparing PFEs with CNSs

Another recent list of conserved non-coding sequences
(CNSs) was published by Babarinde and Saitou [17].
This list is based on a comparison of mammals using
BLASTN. Of the 655 intronic PFEs identified by our
criteria, only 195 overlap with these CNSs. However, of
the 352 intergenic PFEs we identified, 324 overlapped
with CNSs.

Intronic PFE sequences are expressed in the zebrafish
To investigate whether the intronic PFEs identified are
transcribed, RT-PCR analysis was performed using RNA
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extracted from 24 hours post-fertilisation (hpf) zebrafish
embryos (Fig. 7). Reverse transcription was carried out
with a polydT primer to restrict amplification to mature,
polyadenylated, mRNA and exclude pre-mRNA. 96%
(25/26) of the PFEs showed a positive PCR result
indicating transcription of the PFE region (it was not
possible to design primers for pax3b PFE2). The positive
control in each case confirmed that the gene of interest,
from which the intronic PFE is derived, is also expressed
at 24hpf. Intronic regions within the gene of interest that
were not identified as PFEs were used as controls. The
expected result was that there would be no PCR product
as is seen for eyal and eya4. Contrary to expectations,
six of the other intronic regions showed a positive PCR
result indicating that these intronic regions are also
being transcribed. This supports the suggestion that
PFEs may be regions within larger transcripts.

Given the detection of intronic transcripts for 6 out of
8 of the PFE containing genes we wanted to determine if
intronic transcripts were found more frequently in PFE
containing genes. We examined the expression of 20
additional muscle genes via RT-PCR (Fig. 8). Fifteen of
the 20 genes were expressed at the stage examined and
for only one of these, wnt7aa, was expression of an
intronic sequence detectable.

Discussion

One clue to the possible functions of PFEs is their preva-
lence in the introns of transcription factors. This was
strikingly demonstrated by the pathway-focussed analysis:
all PFEs were found in introns of transcription factors,
and none in other muscle proteins. Genome-wide, 49.6%
of the genes containing PFEs are transcription factors
(p-value: 1.2e-56, Z-test for comparing proportions).
PFEs are found in genes that are not transcription
factors, but given that the defining criteria for PFEs
are based only on conservation level and length, a
mixture of functional types is expected.

PFEs found in the introns of transcription factors
could contribute to regulatory interactions in various
ways, including: containing binding sites for other tran-
scription factors, containing auto-regulatory binding
sites, folding into ncRNAs that interact or form com-
plexes with the host gene, or folding into ncRNAs that
interact or form complexes with other genes in a man-
ner that coordinates their expression levels and activity
with that of the containing gene.

Table 2 Pathway-focussed results: PFEs matching with experimentally identified ncRNAs in fRNAdb

Gene UCSC coordinates of human DNA PFE length (nt) fRNAdb reference Length of mapped mouse transcript (nt)
eyal chr8:72,267,639 - 72,267,809 169 FR127136 3697
pax3(ZFa) chr2:223,153,695 - 223,153,821 126 FR205645 1521
pax3(ZFb) chr2:223,153,529 - 223,153,656 113 FR205645 1521




Algama et al. BMC Genomics (2017) 18:259

Page 8 of 14

putative functional element #
1.2 3 4 5 6 7

negative

5 2
2 =2
s 8
8 o

pax3a
pax7
eyat

eya4

o
myf5 5 i%
3 3 g 2
pax3b E A X 2
Six4.3
o 3
2 g putative functional element #
0w oD
g 2 1 2 3 4 5 6 7
pax3a
pax7
eyat
eya4
shha
myf5 present
pax3b present (faint) | +
Six4.3 absent | —
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has between 1 and 7 PFEs. Exon lane contains an exonic region,
spanning an intron, of the gene of interest. Intron lane represents a
randomly selected intronic region that was not identified as a PFE.
Primers were designed to amplify products with sizes ranging 57-274
bp. The ladder bands shown are 100, 200 and 300 bp. The gels with
the two bands of the ladder showing are the 100 and 200 bp bands.
The panel insert is a cDNA control. 3-actin (exonic spanning an intron)
and RNA (RNA used as a template) lanes demonstrate there is no
genomic contamination. No template lane rules out contamination of
other PCR reagents
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Fig. 8 RT-PCR of muscle expressed genes not containing PFEs.
Exonic sequence amplification is evident for 15 of the genes but
only 1 (wnt7aa) has amplification of an intronic sequence. Primers
were designed to amplify products with sizes ranging 100-638 bp.
Lane 1 for each gel contains a 100 bp ladder. The negative lanes are

no template controls to rule out genomic DNA contamination

Our RT-PCR results showed that PFEs from the in-
trons of muscle-related genes are expressed and suggest
that they may play a functional role at the RNA level.
The identification of the expression of non-PFE
sequences also suggests the PFEs are elements within
larger intronic transcripts rather than defining the
boundary of an intronic ncRNA element. This is
supported by the 47 PFEs that matched experimentally
verified ncRNAs in human and mouse: all but one of
these were from ncRNAs substantially longer than the
PFE.

One surprising finding is that only 5 of the 27 PFEs
identified in the pathway-focussed analysis were found
in the genome-wide analysis. We attribute this to the
superior quality of the alignments used in the pathway-
focussed analysis, due not only to the use of LAGAN,
but also to manual interventions to improve alignment
quality. This suggests that the genome-wide analysis
may be finding only a fraction of the intronic elements
conserved between human and zebrafish, and that im-
proving the quality of genome wide alignments would
greatly enhance available methods to detect functional
non-coding sequences.

To determine if PFEs correspond to ncRNAs or other
regulatory sequences, we compared them to other
bioinformatics resources (EvoFold, RNAz, DNase-seq
footprints and fRNAdb entries). The majority (85%) of
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our PFEs identified in the genome-wide study contain
EvoFold predicted regions. EvoFold has identified 1445
intronic regions longer than 100 nt in the human gen-
ome with the potential to form RNA structures. How-
ever a large number of these regions were absent from
the alignment we used. This could be due in part to
using different alignments with different assemblies and
even different species. Our analysis was performed using
a more recent alignment including the human 2009 as-
sembly, whereas EvoFold findings are based on an earlier
8-way alignment including the human 2004 assembly.
The alignments contain only 4 species in common: hu-
man, mouse, zebrafish and fugu. On the other hand, we
failed to detect 559 EvoFold predictions that were
present in our alignment. This could be due to: (1) fail-
ing to satisfy the PFE gap criteria (we rejected segments
with a gap of>20 alignment columns or if the total
length of gaps within the segment was >10% the length
of the segment); or (2) the segments may not be as
highly conserved as exons.

This situation was reversed in the pathway-focussed
analysis, where we identified 27 PFEs and EvoFold only
found 4 regions > 100 nt in the same human genes. This
could be attributed to the success of our Bayesian
method applied to an improved alignment used in the
pathway-focussed analysis.

Ninety-seven (15%) of the PFEs identified in the
genome-wide analysis do not contain EvoFold regions
and are not within 30 nt of an EvoFold region. Of these,
61% (59) overlap with either RNAz, DNase I footprints,
or fRNAdb entries. Moreover, 11 PFEs identified in the
pathway-focussed analysis do not contain EvoFold
predictions but were all found to be expressed in our
RT-PCR results. In addition to identifying putative
ncRNAs not identified by EvoFold, our method typically
extends the length of the predicted functional regions,
so much so that many of our PFEs contain two or more
EvoFold predictions. In particular, in the pathway-
focussed results, PFEs that contain an EvoFold prediction
are substantially longer than that Evofold prediction.

The intronic PFEs we have identified differ substantially
from the CNSs of Babarinde and Saitou [17], with ap-
proximately 70% of intronic PFEs not overlapping CNSs.
In contrast, almost all of our intergenic PFEs overlap with
CNSs. One reason for differences between PFEs and CNSs
is that they are based on different species comparisons:
human, mouse and zebrafish in the former case and
human, mouse, dog, cattle and chicken in the latter. How-
ever, the novel intronic PFEs we detected may be due at
least in part to our Bayesian change-point methodology,
which uses information about sequence composition and
mutation frequency in addition to conservation to identify
segmental structure. Another distinctive feature of our
methodology is that the criteria for identifying PFEs
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depends on the local characteristics of the sequence. In
particular, we identify which segment classes contain the
exons of the containing gene, and extract PFEs from these
classes and more highly conserved classes. This may
explain why our method identified many novel PFEs in in-
trons, where the conservation level of the adjacent exons
provides a benchmark for the local level of similarity of
conserved sequences.

Conclusions

Our study provides a systematic process centred on a
Bayesian segmentation method to identify putative in-
tronic functional elements in genomes that may contain
ncRNAs and other regulatory sequences. We carried out
independent genome-wide and pathway-focussed ana-
lyses identifying conserved non-coding sequences that
we termed Putative Functional Elements (PFEs) in
human, mouse and zebrafish. Comparison of PFEs to
other databases indicative of non-protein-coding func-
tion revealed further evidence of function for most of
our PFEs, with many of our PFEs substantially increasing
the sequence length of other predictions. PFEs identified
in our pathway-focussed analyses were shown to be
expressed in 24hpf zebrafish embryos, with evidence that
expressed elements are longer even than our PFEs,
suggesting that computational methods of detecting
functional elements, including our own, are finding
conserved domains within longer elements of currently
unknown extent. PFEs are significantly enriched in the
introns of transcription factors, suggesting many of them
play roles in the regulatory networks of the containing
TE.

Methods

Genome-wide PFE analysis

Multiz 8-way alignment was downloaded from UCSC
genome browser (http://hgdownload.soe.ucsc.edu/
goldenPath/danRer7/multiz8way/). The assemblies used
in the alignments were: zebrafish: Zv9/ danRer7; human:
hgl9/GRCh37 and mouse: GRCM38/ mm9. For each
zebrafish chromosome, the 3-way alignment (zebrafish-ref-
erenced) was extracted using program mafExtractor
(https://github.com/dentear]l/mafTools/tree/master/mafEx-
tractor) giving 25 alignments in total, one for each zebra-
fish chromosome.

Pathway-focussed PFE analysis

Transcription factors of the myogenesis pathway: eyal,
eyad, pax3, pax7, six4.3, myfs, shh, sixl, myodl, myog,
myf6 and other muscle expressed proteins: wntl, wnt7a,
actal, actcl, actn2, actn3, bag3, des, flnc, tpm3, myh?,
tnntl, nebulin were analysed. Human, mouse and
zebrafish DNA sequences for each of 24 genes were
downloaded from Ensembl genome browser (http://
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www.ensembl.org/index.html; zebrafish: Zv9; human:
GRCh37 and mouse: NCBIM37). For 10 of these 24
genes (pax3, shh, sixl, wnt7a, acta, actc, actn3, desm,
flnc, tpm3), there are 2 paralogues in zebrafish and for
myh7 there are 3 paralogues. Thus a separate 3-way
alignment was generated for each of these, giving a total
of 36 alignments (For pax7, only pax7b was used as we
couldn’t identify the complete sequence of pax7a). We
used LAGAN [37] to perform the 3-way alignments
(human-referenced) using default parameters. For two
cases where we noticed mis-alignments of exons (myf6,
wnt7aa), those sequences were aligned separately using
ClustalW2  (http://www.ebi.ac.uk/Tools/msa/clustalw2/)
effectively forcing exons to align. We then combined the
ClustalW2 results (partial alignments) with the original
LAGAN alignments. For example, we performed the fol-
lowing steps to align the sequences of myf6: 1. We ob-
tained the 3-way LAGAN alignment of myf6 using 3
FASTA files containing human, mouse and zebrafish
DNA sequences. 2. We inspected the 3-way alignment
to determine whether exons of myf6 were correctly
aligned. Here we noticed that zebrafish exon 2 was not
aligned to the corresponding exons in human or mouse.
3. We provided the exon 2 sequences of the three
species to ClustalW2 to align separately. 4. We replaced
myf6 zebrafish exon 2 sequence with the human exon 2
sequence in the original zebrafish FASTA file. 5. We
used LAGAN to realign the human and mouse myf6
sequences with the modified zebrafish myf6 sequence.
LAGAN aligned all copies of exon 2. 6. Finally, we re-
placed the exon 2 aligned section of the new 3-way
alignment file (output obtained from step 5) with the
alignment of exon 2 obtained using the ClustalW2
program (output obtained from step 3).

Transformation of alignments

Each of the 3-way alignments was transformed into a
single 32-character sequence (A = {a,b,c,d,e.f, g, h,i,
j ok, m,n0,p,q,r,s, tou,v,wx,y,z, UV, W, X, Y Z})
using the following encoding. This sequence was used as
the input for program changept. Alignment columns
with complementary bases were also encoded using the
same characters: for example, an alignment column contain-
ing G, A and T for zebrafish, mouse and human respectively
would be encoded using the same character as an alignment
column containing the equivalent complementary bases C, T
and A, namely n. Thus the coding of an alignment is the
same regardless of the strand analysed.

Zebrafish: ACGTACGTACGTACGTACGTACGTACGTACGT
Mouse: AAAACCCCGGGGTTTTAAAACCCCGGGGTTTT
Human: AAAAAAAAAAAAAAAACCCCCCCCCCCCCCee
Symbol: abcdefghijklmnopgrstuvwxyzUVIWXYZ
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The insertions and deletions in the alignment were ex-
cluded from analysis. In the genome-wide analysis, discon-
tinuous alignment blocks with respect to each species
were also separated by using a ‘#’ symbol. The ‘# symbol is
considered as a fixed change-point in the model.

Occasionally changept identified only one class of
segments in segmenting the 3-way alignments of relatively
short genes (for example shh, myog sixl, six4.3 in path-
way-focussed analysis). This problem was overcome by con-
catenating the 32-character sequences of such genes, thus
providing changept a larger sample to segment.

Change-point analysis

A full description of the change-point model can be
found in previous papers [26, 27, 38]. In summary, the
sequences generated for 3-way alignments for each of
the genes/chromosomes were separately run through
changept to find positions (change-points) in the
sequences that delineate homogeneous segments.
Character frequencies within each segment are modelled as a
multinomial distribution with parameter 0 =
(64,,0p,...,,0y,,07), where 0 is drawn from one of T
Dirichlet distributions. As the number of classes (T) is un-
known a priori, independent runs with different numbers
of classes were performed. The generalized Gibbs sampler
[38] was used to sample from the varying dimensional
space: it allows the number of change-points to vary.
Each model was run with varying values of T for
1,000 iterations. Information criteria were then used
to select the value of T.

Assessing convergence

The convergence of the model was assessed by plotting
the log-likelihood of each of the 1000 iterations. The
burn-in phase is characterised by an upward trend in the
log-likelihood.

Model selection

To determine the optimal number of classes for each align-
ment, we calculated approximations to three information
criterion values- Akaike Information Criterion (AIC),
Bayesian Information Criterion (BIC), and Deviance
Information Criterion (DICV) - using post burn-in samples
(Additional file 8: Figure S1). These approximations are
discussed in [39]. The model with the smallest information
criterion value was considered optimal. However, model
selection was not purely based on this method. A subjec-
tive judgement was made on which model to choose by
investigating the mixture proportions; a model containing
classes with very low mixture proportions was considered
to be an over-fitted model and thus a model with a smaller
number of classes was selected. In combination with this
method, we also used an alternative model selection
method, by investigating the stability of segment classes
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[28]. Stability of classes was assessed based on time-series
plots of conservation levels versus sample number. Classes
which were highly variable in conservation levels were
deemed unstable (Additional file 9: Figure S2). The num-
ber of segment classes selected for each zebrafish chromo-
some, and the conservation level and GC content of each
class, is listed in Additional file 10: Table S8.

Quantifying the conservation level of segment classes
Changept employs Markov Chain Monte Carlo sampling.
The individual character frequencies within each class were
calculated at each iteration. To determine the conservation
level of each class for the selected model, the mean propor-
tion of alignment matches (E(6)) was calculated for each it-
eration of the sampler.

_0,+0,

D et

Here characters ‘a’ and ‘v’ represent conserved bases.
These values were plotted against each iteration number
(Additional file 9: Figure S2). These conservation plots
were also used to identify the ‘burn-in’ period as a second
method. For example, Additional file 9: Figure S2(A)
shows that convergence to the limiting distribution has
occurred rapidly, apparently within the first 50 iterations.

E(6)

Assignment of sequences to classes

We used the readcp program (part of the changept
package) to calculate profile values showing the probabil-
ity that each sequence position belongs to a given class of
the chosen model. These posterior probabilities are esti-
mated by Monte Carlo integration. A complete description
of how changept and readcp were applied can be found
in [40, 41].

Identifying putative functional elements

PFEs were identified for the 3-way alignments of each
gene using the following criteria: an intronic segment of at
least 100 nt in length, such that each position had > 0.9
probability of belonging to the most conserved segment
class or classes overlapping that gene. The most conserved
class or classes were determined by identifying those
classes that overlapped exons, or had higher levels of
conservation than classes that overlapped exons. Note this
criteria is gene-specific. As changept skips gaps in the
alignment, gaps were considered in the following manner:
a segment was not considered continuous if there was a
gap of>20 alignment columns or if the total length of
gaps within the segment was >10% the length of the
segment. In the genome-wide analysis, regions that sat-
isfy PFE criteria belonging to the most conserved class
of the selected model corresponding to each zebrafish
chromosome, but not located in genic regions were
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referred as ‘intergenic PFEs’. PFEs predicted in align-
ments between non-homologous genes were discarded
(10 PFEs located in 7 alignments, Additional file 11:
Table S9).

Creation of wiggle tracks and BED files

The readcp output was used to generate BED files or
wiggle tracks (one for each class in the final model) so
that results could be plotted as a profile alongside gene
tracks and other information in the UCSC browser.

In the genome-wide analysis we used the more
compact BED file format to handle the large amount of
data. The positions of segments matching PFE criterion
(minimum segment length of 100 nt with profile > 0.9
and same gap criterion as above) in each class and in
each model were recorded in BED format with genomic
coordinates relative to zebrafish. We used ‘intersect’
BEDtool (http://bedtools.readthedocs.org/en/latest/con-
tent/tools/intersect.html) to find the segment class (or
classes) that overlap with annotated exons (3’ untrans-
lated region (UTR) exons, 5 UTR exons and the coding
exons downloaded from UCSC table browser) of the
gene in question. Sometimes there was more than one
class corresponding to annotated exons of the gene
(Fig. 1) and occasionally segments satisfying PFE criteria
were found to be located in a class more highly
conserved than a class corresponding to marked exons
(for example, there is a PFE in Class 9 in Fig. 1b). Thus
in each gene, segments that were conserved at a level
comparable or higher than exons were considered for
PFE analysis. In our analysis we only reported PFEs with
conservation level > 50%.

Wiggle tracks were used in the pathway-focussed
analysis. The WIG profile for a selected class shows the
probability that the base at a particular position in the
sequence belongs to the class in question, thus every
position has an associated value between 0 and 1 (Fig. 4).
In this analysis, we examined the wiggle track of the
most conserved segment class (for example, Class 1 of
Fig. 4).

Comparison to alternative methods for identifying
functional non-coding sequences

EvoFold: Human genomic coordinates of EvoFold regions
were downloaded in BED format using UCSC table
browser. To check the overlap between PFEs and EvoFold
regions, we used BEDtool -intersect.

DNase I footprints: we used the database of DNase-seq
footprints identified by the ENCODE project [42] in their
large-scale analysis of 41 different human cell types.
The data (combined.fps.gz) was downloaded from link
ftp://ftp.ebi.ac.uk/pub/databases/ensembl/encode/inte-
gration_data_jan2011/byDataType/footprints/jan2011/.
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Once again BEDtool -intersect was used to check the
overlap between PFEs and DNase-seq footprints.

fRNAdD: The BLAST’ function of fRNAdb database
[43] was used to search for fRNAdb entries (ncRNA
transcripts and RNAz regions) with high sequence simi-
larity to human sequences of each PFE identified in our
analysis.

Zebrafish maintenance and cDNA synthesis

Zebrafish were maintained as previously described [44].
RNA was collected from 24hpf wild-type embryos using
TRI-Reagent® (Sigma-Aldrich) and treated with DNAse
(Promega) to remove genomic DNA. cDNA was synthe-
sised using the ProtoScript® II First Strand cDNA Syn-
thesis Kit (NEB) using polydT primers only to prevent
transcription of pre-mRNA prior to removal of introns
and polyadenylation.

Polymerase chain reaction and gel electrophoresis
Reverse transcriptase PCR was performed using GoTaq
Green Master Mix (Promega). Samples were amplified
for 30 cycles with an annealing temperature of 57 °C.
15 pl of each sample was run on a 3% TBE gel, supple-
mented with GelRed (Biotium), at 60V for 3 h. Positive
control sequences were obtained using Ensembl Genome
Browser (http://www.ensembl.org/index.html) and regions
spanning introns of the genes of interest were selected.
PFE and negative control sequences were obtained after
analysis with changept and primers were designed using
the online software Primer3 (http://bioinfo.ut.ee/primer3).

Analysis of GO terms

To examine the proportion of genes containing PFEs that
are either transcription factors, transcription co-factors or
chromatin remodelling factors, we first downloaded the
Ensembl gene list associated with each category. In total,
there were 2345 transcription factors, 315 transcription
co-factors and 100 chromatin remodelling factors in the
database. Next we used BEDtool-intersect to check how
many genes were represented in genome-wide 3 way
alignments. 16296 genes (from total 32475 Ensembl
genes) overlapped with the segments recorded in our BED
files. The final step was to examine the proportion of tran-
scription factors, transcription co-factors and chromatin
remodelling factors in aligned 16296 genes using 3 corre-
sponding lists downloaded from AnimalTFDB (http://
bioinfo life.hust.edu.cn/Animal TFDB/index.shtml; Zhang
et al. 2012).

To perform GO enrichment analysis, we used AmiGO’
web interface accessible at http://amigo.geneontolo-
gy.org/amigo [45]. We obtained significant GO terms
(with p-value <0.05) in each of three sub-ontologies: Bio-
logical Process, Molecular Function, and Cellular Com-
ponent using 193 zebrafish genes containing PFEs.
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Further, we manually filtered GO terms associated
with ‘DNA binding, ‘regulation of gene expression, ‘se-
quence-specific DNA binding’ and ‘nucleic acid bind-
ing’ to check if any of the genes in the sample were
classified as transcription factors using existing
evidence.

Additional files

Additional file 1: Table S1. UCSC genomic coordinates and zebrafish
gene IDs (Ensembl) of intronic PFEs identified in genome-wide analysis.
This table provides the location of the PFEs identified in both the
zebrafish and human genomes. Where multiple PFEs in zebrafish map to
the same location in the human genome these are highlighted in yellow.
(XLSX 48 kb)

Additional file 2: Table S2. Supporting evidence for intronic PFEs
identified in genome-wide analysis. For each intronic PFE overlap with
Evofold or RNAZ predictions, DNasel footprint data, entry in the fRNAdb,
or previous INCRNA publications is presented. (XLSX 63 kb)

Additional file 3: Table S3. Genes with PFEs classified as transcription
factors. The Ensembl ID for all gene containing PFEs that have been
classified as transcription factors or transcription co-factors is provided as
identified by AnimalTFDB (http://bioinfo.lifehust.edu.cn/AnimalTFDB/
index.shtml; Zhang et al. 2012). Eight extra genes containing PFEs not
identified by AnimalTFDB were found to be enriched with GO terms
associated transcription factors. (XLSX 10 kb)

Additional file 4: Table S4. GO terms related to Transcription Factors.
The frequency of GO terms relating to transcription factors in gene
containing PFEs, compared to all zebrafish genomes. (XLSX 10 kb)

Additional file 5: Table S5. Intergenic PFEs identified in genome-wide
analysis. For each intergenic PFE overlap with Evofold or RNAz predictions,

DNasel footprint data, entry in the fRNAdb, or previous IncRNA publications
is presented. (XLSX 41 kb)

Additional file 6: Table S6. UCSC genomic coordinates of PFEs
identified in pathway-focussed analysis. The genomic coordinates in both
the zebrafish and human genomes are provided for each of the PFEs
identified in the pathway focussed analysis. (XLSX 10 kb)

Additional file 7: Table S7. Supporting evidence for PFEs identified in
pathway-focussed analysis. For each PFE identified in the pathway
focussed analysis overlap with Evofold or RNAz predictions, DNasel
footprint data, or entry in the fRNAdb is presented (XLSX 11 kb)

Additional file 8: Figure S1. Model selection for eyal. Approximations
to well-known information criteria AIC, BIC and DICV for 1-12 classes.
Generally, a lower value of the information criteria indicates a better
model. BIC clearly suggests a 3-class model. The first local minimum of
AIC and DICV has also occurred at the 3-class model. Therefore we
selected a 3-class model for this data. (TIFF 48 kb)

Additional file 9: Figure S2. Model selection of chromosome 1
alignment. Figure shows the time series plots of conservation level versus
iteration number for each class of (A) 19-class model; and (B) 20-class
model. In (A), all classes have stable conservation levels and in (B), one of
the classes has a widely varying conservation level. Thus the 19-class
model was selected for chromosome 1 alignment. Figure (A) also shows
that the model has converged rapidly. (TIFF 145 kb)

Additional file 10: Table S8. Optimal number of classes selected for
each model of each zebrafish chromosome. The number of segment
classes selected for each zebrafish chromosome and the conservation
level and GC content of each class. (XLSX 63 kb)

Additional file 11: Table S9. PFEs discarded from the genome-wide
analysis. PFEs identified in non-homologous genes in the human and
zebrafish genomes, removed from the genome-wide analysis. (XLSX 9 kb)
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