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Evolutionary acquisition of promoter-
associated non-coding RNA (pancRNA)
repertoires diversifies species-dependent
gene activation mechanisms in mammals

Masahiro Uesaka'**, Kiyokazu Agata®”, Takao Oishi®, Kinichi Nakashima' and Takuya Imamura'*"

Abstract

Background: Recent transcriptome analyses have shown that long non-coding RNAs (ncRNAs) play extensive roles
in transcriptional regulation. In particular, we have reported that promoter-associated ncRNAs (pancRNAs) activate
the partner gene expression via local epigenetic changes.

Results: Here, we identify thousands of genes under pancRNA-mediated transcriptional activation in five
mammalian species in common. In the mouse, 1) pancRNA-partnered genes confined their expression pattern to
certain tissues compared to pancRNA-lacking genes, 2) expression of pancRNAs was significantly correlated with the
enrichment of active chromatin marks, H3K4 trimethylation and H3K27 acetylation, at the promoter regions of the
partner genes, 3) H3K4me1 marked the pancRNA-partnered genes regardless of their expression level, and 4) C- or
G-skewed motifs were exclusively overrepresented between—200 and—1 bp relative to the transcription start sites of

the pancRNA-partnered genes. More importantly, the comparative transcriptome analysis among five different
mammalian species using a total of 25 counterpart tissues showed that the overall pancRNA expression profile
exhibited extremely high species-specificity compared to that of total mRNA, suggesting that interspecies difference
in pancRNA repertoires might lead to the diversification of mRNA expression profiles.

Conclusions: The present study raises the interesting possibility that the gain and/or loss of gene-activation-
associated pancRNA repertoires, caused by formation or disruption of the genomic GC-skewed structure in the
course of evolution, finely shape the tissue-specific pattern of gene expression according to a given species.
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Background

Comparative genomics enables one to identify highly
conserved genomic sequences over the course of evolu-
tion. The majority of such sequences, frequently located
within protein-coding regions accounting for a few per-
cent of the mammalian genome, have been thoroughly
studied, resulting in the identification of functional pro-
tein domains that are important for the living organisms
[1]. Similarly, it has been shown that highly conserved

* Correspondence: imamura@sch.med kyushu-u.acjp

'Department of Stem Cell Biology and Medicine, Graduate School of Medical
Sciences, Kyushu University, Fukuoka 812-8582, Japan

’Department of Biophysics and Global COE Program, Graduate School of
Science, Kyoto University, Kyoto 606-8502, Japan

Full list of author information is available at the end of the article

( BioMed Central

genomic sequences are also located in a set of regulatory
sequences that activate or repress gene transcritions in a
wide range of animals [2, 3]. However, it remains largely
unknown how protein structure and gene expression
pattern is differentiated according to a given species.

At present, phenotypic diversity is thought to be more
likely to result from the changes in transcriptional regula-
tion than from those in protein function. Over the course
of evolution, protein-coding sequences are better con-
served among species in comparison to the sequences of
non-coding regions [4]. Changes in protein-coding regions
can alter amino acid sequences, frequently leading to
alteration of the functional properties of proteins. Since
such mutated proteins are frequently deleterious to a wide
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range of cell types, the corresponding mutations, if any,
are somehow removed by negative selection in a popula-
tion. In contrast, changes in the bulk non-coding genomic
regions are much less harmful to the organisms except for
some ultraconserved regions that can not tolerate changes
of their sequences [5]. Unlike protein-coding regions, gene
regulatory regions, such as cell-type specific enhancers,
tend to show much more diversified sequences according
to the species. This is presumably because mutations in
these gene regulatory regions are deleterious to only a
limited number of cells, but not to all cell types. In fact,
several gene regulatory elements responsible for the
expression of phenotypic differences among species have
been identified [6—11]. For example, human-specific loss
of the enhancer at the promoter regions of the androgen
receptor gene is implicated in the loss of sensory vibrissae
and penile spines [12]. Taken together, it is likely that
alterations in the DNA sequences at cell-type-specific
regulatory elements allow evolutionary changes to adapt a
given species according to its environment.

Recent transcriptome analyses have found that the
non-coding genomic regions provide templates for gen-
erating thousands of long non-coding RNAs (IncRNAs):
transcription occurs at more than 60% of the mamma-
lian genomic DNA [13, 14]. Accumulating evidence
shows that IncRNAs play a key role in transcriptional or
posttranscriptional regulation in a genome-wide fashion
[15-18]. For example, HOTAIR induces repressive chro-
matin formation with polycomb repressive complex 2
and Lysine specific demethylase 1, leading to decreases
in the expression level of hundreds of protein-coding
genes [19, 20].

In addition to the example of functional IncRNAs, we
have shown that a set of IncRNAs transcribed from bi-
directional promoters, promoter-associated non-coding
RNAs (pancRNAs), could activate the expression of the
partner genes through sequence-specific alterations in
the epigenetic status at their promoter regions [21-23].
For instance, pancVim, which is transcribed from the
promoter region of the vimentin gene (Vim), could
induce sequence-specific DNA demethylation, demethyl-
ation of lysine 9 of histone 3 (H3K9) and methylation of
lysine 4 of histone 3 (H3K4), leading to the activation of
Vim expression in a cell-type-specific manner in rat
PC12 cells [22]. Khpsl, a pancRNA for sphingosine kin-
ase 1 (Sphkl), could also induce the formation of active
chromatin structure in a tissue-specific manner [21].
Later on, other groups confirmed the occurrence of
similar phenomena in the human VIM [24] and SPHKI
[25] loci. Temporal regulation of the expression of
pancRNAs also plays an essential role in mammalian
development. For example, panclll7d, a pancRNA for
interleukin 17d, is essential for embryonic survival and
for maintaining stem cell pluripotency by mediating
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sequence-specific DNA demethylation together with
ten-eleven translocation 3 and poly (ADP-ribose)
polymerase [23]. Furthermore, several gene-activating
pancRNAs play essential roles in terminal differentiation
processes of rat PC12 cells [26]. Thus, spatiotemporal
transcriptional regulation mediated by pancRNA seems
to function throughout life.

Widely occurring but context-dependent expressions of
pancRNAs are observed not only in rodent tissues but also
in primate tissues, raising the possibility that the pancRNA-
mediated regulatory mechanism is utilized in common
across mammalian species [27]. In order to examine
this possibility, we have started to perform comparative
transcriptome analysis with directional RNA sequen-
cing (RNA-seq) data of five tissues (cerebral cortex,
cerebellum, heart, kidney and liver) form five species
(chimpanzee, macaque, marmoset, mouse and rat).

Methods

Tissue preparation

C57BL/6 mice (Mus musculus; Japan SLC) were kept
under a lighting regime of 14 h illumination and 10 h
darkness (lights on between 05:00 and 19:00) and were
allowed free access to food and water. Tissue samples
for directional RNA-seq preparation from C57BL/6
mice (16 weeks of age; male) were collected and imme-
diately frozen in liquid nitrogen and stored at-80 °C
until use. Thanks to the Great Ape Information Net-
work (GAIN) and Kumamoto Sanctuary, Wildlife Re-
search Center, Kyoto University, the Brodmann area 10
and the heart were collected from a chimpanzee (Pan
troglodytes; 28-year-old female) and the cerebral cortex
and the cerebellum were collected from a macaque
(Macaca mulatta; about 1-year-old male). The total
RNAs were isolated from the mouse heart, the macaque
cerebral cortex and cerebellum, and the chimpanzee
cerebral cortex and heart.

Directional RNA sequencing

Directional RNA-seq samples were prepared according to
a slight modification of the protocol provided by Illumina.
Briefly, cDNA libraries were prepared starting from 5 pg
of total RNA from one individual as follows. We previ-
ously showed that poly A+ pancRNA overexpression
upregulates the partner mRNA expression [23, 26, 27].
First, total RNA was selected twice with Sera-Mag
Magnetic Oligo dT Beads (Thermo Scientific) to isolate
polyA+ RNA. The fraction of rRNA was found to be less
than 2% in each polyA+ RNA sample by using a Total
RNA Pico Bioanalyzer chip (Agilent Technologies).
polyA+ RNA was fragmented by heating at 94 °C for
3 min in fragmentation buffer (Affymetrix), followed by
ethanol precipitation. Fragmented RNA was decapped
with Tobacco Acid Pyrophosphatase (Nippongene),
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followed by extraction with PCI and ethanol precipitation.
Fragmented and decapped RNA was 3'-dephosphorylated
using Antarctic phosphatase (New England Biolabs). The
RNA was 5'-phosphorylated using T4 polynucleotide
kinase (New England Biolabs). The modified RNA was
cleaned up with an RNeasy MinElute kit (QIAGEN). The
RNA was ligated to 1 xv1.5 sRNA 3’ adaptor (Illumina)
with T4 RNA ligase 2, truncated K277Q (New England
Biolabs) at 4 °C overnight. This RNA was ligated to SRA
5" adaptor (Illumina) with T4 RNA ligase (Illumina) at
20 °C for 1 h. cDNA was synthesized with specific RT
primer and the SuperScriptIIl First-Strand Synthesis Sys-
tem (Life Technologies). After the amplification of cDNA
libraries, the PCR product was purified twice with
AMPure XP (Beckman Coulter) to generate a library
and analyzed on a DNA1000 Bioanalyzer chip (Agilent
Technologies) for precise quantification of molarity.
After confirmation of the high quality of the cDNA li-
brary samples, [llumina HiSeq 2000 was used to per-
form single-end sequencing with the small RNA
sequencing primer (Illumina) according to the manufac-
turer’s instructions. Our RNA-seq data have been depos-
ited in the DDBJ Sequence Read Archive (DRA000861,
DRA003227, DRA003228).

Directional RNA-seq data processing

The directional RNA-seq dataset used in this study
consists of 12 new and 63 publicly available samples
(Additional file 1: Table S1) [27-31]. In order to
process all directional RNA-seq data in the same way,
only reads corresponding to the upstream side of the
original transcript were extracted from paired-end
reads and treated as single-end reads. Reads of all
directional RNA-seq data were assessed with the FASTX
toolkit (http://hannonlab.cshl.edu/fastx_toolkit/index.html)
to eliminate low quality (quality score less than 20) nucleo-
tides and the adaptor sequence from the 3'-end of reads,
followed by removal of short (less than 20 nt) reads. Pre-
processed reads were mapped to the reference genome of
the corresponding species using TopHat v2.0.8 [32] and
Bowtie v1.0.0 [33]. The reference genome sequences of
chimpanzee (panTro4), macaque (rheMac3), marmoset
(calJac3), mouse (mm10) and rat (rn5) were retrieved from
the UCSC Genome Browser database [34]. In order to ver-
ify the strandedness of directional RNA-seq data, whether
the strandedness of reads mapped to the known protein-
coding regions was concordant with the strandedness of
reference genes was verified using RSeQC v2.3.6 [35].

Normalization and estimation of mRNA and pancRNA
expression levels

For quantification of mRNA expression, the reads uniquely
mapped to each protein-coding gene were counted using
HTSeq v0.6.0 [36]. The protein-coding gene models of the
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genome of each species were obtained from the Ensembl
Gene track in the UCSC Genome Browser database. Be-
cause there is no Ensembl Gene track available from the
UCSC Genome Annotation database for the rheMac3
genome, the positions of protein-coding gene models of the
rheMac2 genome were converted to the rheMac3 genome
assembly by using the UCSC LiftOver tool [34] because
there are no one-to-one ortholog data between rheMac2
and other species in the Ensemble Compara database
utilized for cross-species transcriptome analysis. In order to
quantify pancRNA expression, the reads uniquely mapped
to the antisense sequences of the promoter regions (-2000
to-1 bp from the transcription start sites (TSSs)) of
protein-coding genes were counted using HTSeq v0.6.0.
When a promoter region overlapped with another gene
or another promoter region, or was close to another
promoter region (<500 bp), the most distal promoter
was used in our analysis after removing the distal
promoters which overlapped with another gene or pro-
moter region to avoid contamination of the pancRNA
pool by protein-coding genes. In order to calculate the
gene expression levels, the read counts for the data of
each species were normalized by the DEGES-based
normalization method implemented in TCC [37].

In this study, the definition of a pancRNA-partnered
gene is a protein-coding gene whose expression level is
positively correlated with those of the corresponding
pancRNA across the five tissues (Pearson correlation
coefficient > 0.7). The definition of a pancRNA-lacking
gene is a protein-coding genes whose expression level
is not positively correlated with those of the corre-
sponding pancRNA across the five tissues (Pearson
correlation coefficient < 0.4). The correlation coeffi-
cients were calculated using the cor function in R
(http://www.R-project.org/).

Quantification of the tissue specificity of the gene
expression pattern

The tissue specificity of the gene expression pattern
was quantified with tissue-specificity index (TSI) [38],
which varies between zero and one. Values close to one
represent high tissue specificity. The Steel-Dwass
method was used for comparisons among four groups.
Graphical representations were done with the ggplot2
package (http://ggplot2.org).

Visualization of mouse ChIP-seq data

Ngsplot v.2.47. software [39] was used to visualize the
enrichment pattern of each histone modification.
Bam-formatted data of chromatin immunoprecipita-
tion together with DNA sequencing (ChIP-seq) used
in this study were obtained from Mouse ENCODE
Downloads in the UCSC Genome Browser database
(Additional file 2: Table S2).
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De novo motif discovering

For discovering continuous motifs, the-200 to-1 bp
sequences (relative to the TSS) of each group of genes
were examined using MEME v.4.10.0 [40]. In the ana-
lysis with MEME, we set the -mod option to zoops and
the -nmotifs option to 4. We calculated the average
observed frequency of sequences showing 70% or more
identity to each motif in genomic regions around TSSs
(-2,000 to +2,000 bp relative to the TSS) with a sliding
window of width 50 bp using the matchPWM program
in the Biostrings package v.2.30.1 (http://www.biocon
ductor.org/packages/2.11/bioc/html/Biostrings.html).

Quantification of the sequence conservation

For quantification of the sequence conservation, the
phastCons score for multiple alignments of 45 Euarchon-
toglires’ genomes with mouse available from the UCSC
Genome Browser database was utilized. In this analysis,
the promoter region is defined as the region from-2,000
to—1 bp relative to the TSS. In order to quantify the
sequence conservation of protein-coding regions, the
average phastCons score for all exonic regions coding for
amino acids was calculated. The Steel-Dwass method was
used for comparisons among four groups (coding
sequence regions (CDS), promoter regions of total genes,
those of pancRNA-partnered genes, and those of
pancRNA-lacking genes). Graphical representations were
done with the ggplot2 package (http://ggplot2.org).

Comparative transcriptome analysis

The list of one-to-one orthologous genes for each pair
of the five species was retrieved from the Ensembl
Compara database, release 78 [41]. Hierarchical cluster-
ing of sequenced samples based on the gene expression
level was carried out using the hclust function in R
(http://www.R-project.org/). The distance between
samples was computed as 1 - p, where p is the Spear-
man correlation coefficient. Symmetrical heatmaps of
Spearman correlations from the mean of the average
gene expression profiles of replicates were drawn using the
heatmap.2 function in the gplots package (http://cran.r-pro
ject.org/web/packages/gplots/index.html). For the inter-
species comparison of the pancRNA expression profile, the
expression levels of transcripts from the promoter
regions whose orthologous regions encode the pancR-
NAs in any species were calculated. In this heatmap,
dendrograms were drawn based on hierarchical clus-
tering of pairwise Spearman correlations. In this study,
a species-specific pancRNA-partnered gene was de-
fined as a pancRNA-partnered gene in one species of
which all orthologous genes in the other species are
pancRNA-lacking genes.
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Results

Identification of thousands of pancRNA-partnered genes
in five different mammalian species

In order to understand the pancRNA expression profile
in mammals, we used directional RNA-seq data of five
types of tissues (cerebral cortex, cerebellum, heart, kid-
ney and liver) from five species (chimpanzee, macaque,
marmoset, mouse and rat; Additional file 1: Table S1;
see the Methods section). This transcriptome dataset
from 25 samples consists of a total of approximately 6
billion directional RNA-seq reads. We mapped these
reads to the relevant genomes (for example, data for
chimpanzee to the panTro4 genome). We next verified
the strandedness of these RNA-seq data and found that,
on average, about 97.5% of the reads from each sample
were mapped to the correct strand of the known
protein-coding genes (Additional file 1: Table S1). RNA-
seq data utilized in this study showed robust reproduci-
bility of mRNA expression levels among replicates of
each tissue samples from each species (Spearman correl-
ation coefficient, p > 0.9; Additional file 3: Figure S1).

To identify the pancRNA-partnered genes in each
species, we calculated the Pearson correlation coeffi-
cients between the pancRNA candidate and the cog-
nate mRNA expression levels in the five tissues. In
this study, we defined pancRNA-partnered genes as
the protein-coding genes whose expression level is
positively correlated with those of the corresponding
pancRNA across the five tissues (Pearson correlation
coefficient > 0.7). While 157, 83, 74, 102 and 75
pancRNA-mRNA pairs showed negative correlation of
their expression levels, 2013, 1293, 1588, 3229 and
1835 pancRNA-mRNA pairs showed positive correl-
ation of their expression levels in chimpanzee,
macaque, marmoset, mouse, and rat, respectively
(Table 1), indicating that the majority of pancRNA-
mRNA pairs show positive correlation between their
expression levels This is consistent with previous
reports [23, 27, 42, 43], supporting the validity of our
transcriptome analysis in this study. In this way, we
identified thousands of pancRNA-partnered genes in
each species (Table 1). This result suggests that the
pancRNA-mediated transcriptional activation mechan-
ism exists in common across the five mammalian
species. The number of pancRNA-partnered genes
varied among the five species, possibly because of the
difference in sequencing depth of RNA-seq and in
enrichment of gene annotations among the five spe-
cies. For example, in the mouse transcriptome ana-
lysis, we identified 3.2 thousand pancRNA-partnered
genes with about 2.1 billion mapped reads. On the
other hand, in the marmoset analysis, we identified
only 1.6 thousand pancRNA-partnered genes with
about 232 million mapped reads.
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Table 1 The pancRNA-partnered genes in the five species
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Species Total protein-coding genes® Positive correlation® (pancRNA-partnered genes) (%)° Negative correlation® (%)¢
Chimp 15036 2013 13.4% 157 1.0%
Macaque 11745 1293 11.0% 83 0.7%
Marmoset 15125 1588 10.5% 74 0.5%
Mouse 17193 3229 18.8% 102 0.6%
Rat 18715 1835 9.8% 75 0.4%

*Total protein-coding genes excluding genes containing parts of other genes within their promoters
PThe protein-coding genes whose expression level is positively correlated with those of the corresponding pancRNA (P < 0.05)
“The percentage of the protein-coding genes whose expression level is positively correlated with those of the corresponding pancRNA in total

protein-coding genes

%The protein-coding genes whose expression level is negatively correlated with those of the corresponding pancRNA (P < 0.05)
°The percentage of the protein-coding genes whose expression level is negatively correlated with those of the corresponding pancRNA in total

protein-coding genes

pancRNA-partnered genes show highly tissue-specific
expression patterns

To examine whether the pancRNA-partnered genes tend
to be tissue-specifically expressed using the genome-
wide approach, we evaluated the tissue-specificity of
gene expression by calculating the TSI [38] as described
in Methods. We compared the TSI of four subclasses of
protein-coding genes among the five species: I) total
protein-coding genes, II) protein-coding genes contain-
ing parts of other protein-coding genes within their pro-
moter regions, III) pancRNA-partnered genes and IV)
pancRNA-lacking genes. The TSI for class III was
significantly higher than that for other classes (Fig. 1a).
In particular, it is interesting to note that the TSI for
class II was significantly lower than that for class IIL
This suggests that bidirectional promoter activity itself
does not increase the TSI; rather, the expression of
pancRNA might restrict the partner gene expression to
only limited tissues. In fact, the tissue-specificity of
pancRNA itself is also high, as is that of pancRNA-
partnered genes (Additional file 4: Figure S2). To further
investigate the characteristics of the pancRNA-partnered
gene expression pattern, we next examined if the group
of the pancRNA-partnered genes were expressed prefer-
entially in a tissue, and found no tissue bias (Fig. 1b).
The fact that this tendency was commonly shared in the
five species (Fig. 1b) implies that various tissues have
comparable capacity to express pancRNA repertoires for
the partner gene expression.

H3K4me1 enrichment marks the template regions of
pancRNAs regardless of their expression

We next investigated whether the expression of pancR-
NAs was associated with the establishment of the his-
tone modification pattern. Using ChIP-seq data in the
mouse ENCODE database (Additional file 2: Table S2)
[44], we examined the enrichment of the histone modifi-
cations at the regions around TSSs of protein-coding
genes, pancRNA-partnered genes and pancRNA-lacking

genes that represent the tissue-specific expression pat-
tern (TSI > 0.9). Because pancRNAs have been shown to
be involved in the active chromatin modification, we
focused on mono-methylated H3K4 (H3K4mel), tri-
methylated H3K4 (H3K4me3) and acetylated lysine 27
of histone H3 (H3K27ac). At the regions around TSSs of
the protein-coding genes, both H3K4me3 and H3K27ac
were frequently observed in the tissue where the genes
show the maximum expression level in comparison to the
other four tissues (Fig. 2, Additional file 5: Figure S3).
Intriguingly, in the tissue where the genes show the max-
imum expression level, H3K4me3 and H3K27ac were
more frequently observed at the regions around TSSs of
the pancRNA-partnered genes than at those of protein-
coding genes and pancRNA-lacking genes (Fig. 2,
Additional file 5: Figure S3). These results indicate
that the expression of pancRNA is strongly associated
with the enrichment of the active chromatin modifica-
tion, and suggest that the establishment of H3K4me3
and H3K27ac marks might play a key role in triggering
expression of pancRNA-partnered genes in a tissue-
specific manner. However, considering the expression
levels of pancRNA-partnered tissue-specific genes, we
cannot completely exclude the possibility that the
enrichment of active chromatin marks at these
promoters might simply be a sign that pancRNA-
partnered genes are more highly expressed than other
protein-coding genes (Additional file 6: Figure S4). At
the regions around TSSs of pancRNA-partnered genes,
H3K4mel was more frequently observed regardless of
the tissue than at the TSSs of protein-coding genes
and pancRNA-lacking genes (Fig. 2, Additional file 5:
Figure S3). This tendency of H3K4mel enrichment in
the promoter regions of pancRNA-partnered genes
raised the possibility that the promoter regions of
pancRNA-partnered genes were epigenetically marked
as a result of particular sequence features that had
enabled them to acquire pancRNA-coding regions in
the genomic DNA.
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Genomic characteristics of the promoter regions of
pancRNA-partnered genes

It is possible that the epigenetic characteristics of the
pancRNA-partnered genes are further characterized by
enrichment of some specific DNA sequences. We and
another group previously reported that C-rich or G-rich
sequences exist biasedly around the TSS at the immedi-
ate upstream regions of the TSSs of pancRNA-partnered
genes [23, 27]. In agreement with these reports, we
found that the enrichment of CpG islands in the pro-
moter regions of pancRNA-partnered genes (retrieved
from the UCSC Genome Browser database) was higher
than that in either the category of all protein-coding
genes or the category of pancRNA-lacking genes in the
five species (Additional file 7: Table S3), and we identi-
fied C- and G-skewed motifs, which showed biased en-
richment of cytosines and guanines, respectively, in the
immediate upstream regions of TSSs (-200 to-1 bp) of

pancRNA-partnered genes in the genome of all five spe-
cies examined here (Fig. 3a, Additional file 8: Figure S5).
Analysis of the distribution of these motifs at the regions
around TSSs confirmed that the C- and G-skewed
motifs were more frequently observed in the immediate
upstream regions of TSSs of pancRNA-partnered genes
than in those of pancRNA-lacking genes in all of the five
species (Fig. 3b). Of these C- and/or G-skewed motif-
bearing immediate upstream regions of TSSs of pancRNA-
partnered genes, about 16.4% harbored both of these two
motifs in all five species (Additional file 9: Table S4). Thus,
the presence of either C- or G-skewed motifs in the imme-
diate upstream regions of TSSs is a genomic feature of
pancRNA-partnered genes.

On the assumption that the C- or G-skewed motifs
are important for pancRNA transcription, such a motif
should have been conserved once acquired. In order to
evaluate the degree of the sequence conservation, we
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J

utilized the phastCons score for multiple alignments of
45 Euarchontoglires genomes [45]. It is logical that
protein-coding regions were much more strongly con-
served than promoter regions (Fig. 3c), since changes in
promoter regions are less deleterious to a wide range of
cell types than those in protein-coding regions. Next, we
examined the phastCons scores of two subclasses of pro-
moter regions: promoter regions of pancRNA-partnered
genes and those of pancRNA-lacking genes. Interest-
ingly, we found that the promoter regions of pancRNA-
partnered genes exhibited a higher level of sequence
conservation than those of pancRNA-lacking genes
(Fig. 3c). This difference in sequence conservation was
small but significant (P < 0.001), raising the possibility
that negative selection acted to conserve the promoter
sequence once pancRNAs started to participate in tran-
scriptional regulations in the course of evolution.

The expression profile of pancRNA exhibits extremely
high species-specificity

In order to assess the degree to which mRNA and
pancRNA expression profiles are diversified among
mammalian species, we calculated the correlation coeffi-
cients of the mRNA and pancRNA expression levels
across all pairs of samples. When samples were clustered
on the basis of mRNA expression profile, they were
segregated according to tissue type (Fig. 4a). Notably, on

the other hand, when samples were clustered on the
basis of pancRNA expression profile, they were segre-
gated by individual species (Fig. 4b). Close inspection of
the hierarchical clustering data revealed the values for
the cerebral cortex and cerebellum, for example, were
located next to each other in each species (Additional
file 10: Figure S6), and therefore, the segregation of the
pancRNA expression profile according to species did not
indicate low tissue diversity of the pancRNA expression
profile, but rather showed the extremely high species
diversity of the pancRNA expression profile. When the
expression profile of conserved pancRNAs was ex-
tracted for clustering analysis, the samples were con-
firmed to be segregated according to tissue type, as is
the case for the clustering data of the mRNA expres-
sion profile (Additional file 11: Figure S7), meaning
that the majority of the pancRNAs are not well
conserved over species in terms of their expression
pattern. [23, 27, 42, 43] Species-specific-pancRNA-
partnered genes exhibit similar features to the bulk of
pancRNA-partnered genes.

Considering the role of pancRNAs in transcriptional
regulation and the high diversity of pancRNA expression
profiles among mammals, we hypothesized that the
species-specific gain and loss of pancRNA expression
ability has diversified the mRNA expression profile
according to the mammalian species. Of the pancRNA-
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partnered genes in the five species, we identified
species-specific-pancRNA-partnered genes by the com-
parison of their orthologous gene expression profiles.
The number of genes that had a partner pancRNA in
only one species was 103, 79, 67, 220 and 55 in chim-
panzee, macaque, marmoset, mouse and rat, respectively

(Table 2, Additional file 12: Table S5). By contrast, the
number of genes that lacked pancRNA in a certain
species was 6, 10, 11, 5, and 18 in chimpanzee, macaque,
marmoset, mouse and rat, respectively, suggesting that a
gain of pancRNAs might have occurred more frequently
than a loss over the course of evolution. It should be
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noted that the variation in the number of species-
specific pancRNA-partnered genes might depend on the
depth of transcriptome data (Additional file 1: Table S1).

In order to confirm that the species-specific-pancRNA-
partnered genes show tissue-specific expression patterns,
we calculated TSIs of the expression of species-specific-
pancRNA-partnered genes and those of their pancRNA-
lacking orthologous genes in the other four species. We
found that the average TSI of species-specific pancRNA-
partnered genes’ expression was significantly higher than
that of their orthologous genes’ expression (P <0.001;
Fig. 5a). In the regions between—200 and-1 bp relative to
TSSs of genes that had a partner pancRNA only in one
species, these C- and G-skewed motifs were observed
more frequently than in those of their orthologous genes
(Fig. 5b). This agrees well with the discovery of the C- and
G-skewed motifs in the promoters of pancRNA-partnered
genes (Fig. 3). Therefore, species-specific-pancRNA-part-
nered genes share several common genomic features with
the bulk pancRNA-partnered genes.

Discussion
Using directional RNA-seq data of five types of tissues
from five mammalian species, we identified thousands of

Table 2 The number of species-specific pancRNA-partnered
genes in the five species

Species pancRNA-partnered genes®  Species-specific (%)P
(One-to-one orthologs) pancRNA-partnered
genes
Chimp 1427 103 7.2%
Macaque 890 79 8.9%
Marmoset 1134 67 5.9%
Mouse 2219 220 9.9%
Rat 1283 55 43%

“The singleton orthologous pancRNA-partnered genes present in all five species
P The percentage of the species-specific pancRNA-partnered genes in the
pancRNA-partnered genes

pancRNAs in every species. We found several common
features of the pancRNA-partnered genes: 1) pancRNA-
partnered genes showed highly tissue-specific patterns of
expression (Fig. la), 2) expression of pancRNAs was
significantly correlated with the enrichment of active
chromatin marks at the promoter regions of the partner
genes (Fig. 2), 3) H3K4mel marked the pancRNA-
partnered genes regardless of their expression level
(Fig. 2), and 4) C- or G-skewed motifs were preferen-
tially observed between —200 and -1 bp relative to TSSs
of the pancRNA-partnered genes (Fig. 3b). These results
suggest that pancRNA-partnered genes are genetically
and epigenetically regulated for their activation regardless
of the species.

Surprisingly, the comparative transcriptome analysis
showed that the expression profile of pancRNA exhib-
ited much higher species-specificity than that of mRNA
(Fig. 4), suggesting that a significant number of pancR-
NAs were differentially expressed among species for
enhancing expression of a set of partner genes in a
species-specific manner. Comparison of species-specific
pancRNA-partnered genes with their orthologous
pancRNA-lacking genes confirmed that species-specific
pancRNA-partnered genes showed more tissue-limited
patterns of expression, and that C- or G-skewed motifs
were enriched at the promoter regions of species-specific
pancRNA-partnered genes (Fig. 5). Thus, we believe that
the evolutionary acquisition of gene-activating pancRNA,
caused by the asymmetrical genomic structure due to an
increase in C- or G-skew at the bidirectional promoters,
enhances the tissue-specificity of the partnered gene
expression, as further discussed below.

General existence of gene activation mechanism
mediated by pancRNAs in mammals

Several pancRNAs have been shown to act to enhance
the expression level of the corresponding mRNAs in cis
[21-23, 27]. We found that the expression of pancRNA-
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partnered genes was strongly associated with H3K4me3
and H3K27ac enrichment (Fig. 2). In accordance with
this general tendency, we previously showed that knock-
down and over-expression of pancRNA for Vim induced
a decrease and increase of H3K4 methylation, respect-
ively, at the promoter region of the corresponding gene
[22]. Although we could not examine the DNA methyla-
tion status at the genome-wide level because of the lack
of an appropriate dataset, pancRNA-partnered genes
were associated with all of the active histone marks
examined. Therefore, the present data are in agreement
with our proposition that thousands of pancRNAs facul-
tatively induce the recruitment of active epigenetic
marks, leading to the transcriptional activation of the
partner genes.

Intriguingly, we found that H3K4mel was more
enriched at the promoter regions of pancRNA-partnered
genes than at those of pancRNA-lacking genes and
protein-coding genes. In other words, the template
regions of pancRNA were characterized by constitutive
H3K4mel enrichment regardless of their transcriptional
activity, unlike H3K4me3 and H3K27ac (Fig. 2). It is
known that active and poised promoters could be
distinguished by the presence or absence of H3K27ac,
respectively, and that H3K4mel is enriched at enhancer

regions for the target genes regardless of their expression
[46, 47]. Taking this general information into account, the
uniform enrichment of H3K4mel at the promoter regions
of pancRNA-partnered genes suggests that pancRNA-
expressing promoter regions could act not only as typical
promoters for triggering the transcription of mRNAs but
also as enhancers for further increasing the expression
level of the partner genes.

Interspecies diversity of the pancRNA expression profile
for the evolutionary fine tuning of tissue-specific gene
expression

It is known that transcriptional regulation of regulatory
genes, such as transcription factors, tends to be well
conserved among species via conservation of the respon-
sible DNA sequences [48]. Some IncRNAs also show
high sequence conservation. For example, Tuna, which
is involved in the transcriptional regulation of thousands
of genes, is the conserved IncRNA indispensable for
maintenance of pluripotency and neural differentiation
of mouse embryonic stem cells [49]. In contrast, high
diversity in the promoter sequences suggests that the
promoter regions are tolerant to changes at the genomic
DNA-level, ultimately leading to the gain or loss of
pancRNA-partnered genes. It is interesting to note that
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non-conservation of ncRNAs does not mean that such
ncRNAs are not functional. Since the gain of pancRNA
has occurred more frequently than the loss (Table 2,
Additional file 12: Table S5), the species-specific changes
of pancRNA expression might not impose natural selec-
tion over the course of evolution; rather, these changes
might have been utilized for the diversification of
transcriptional regulation of their cognate genes. Our
comparative transcriptome analysis showed that the
diversity of the pancRNA expression profile was higher
than that of the mRNA expression profile (Fig. 4). The
validity of this result is supported by recent reports
showing that expression patterns of IncRNAs have
evolved at a more rapid rate than those of mRNAs [50].
Here, we propose the necessity of focusing on the non-
conserved ncRNAs, such as pancRNA, to understand
the evolutionary diversification of the transcriptome.

Gain of pancRNAs, caused by formation of the genomic
GC-skewed structure, finely specifies the cognate gene
expression pattern in tissues

We propose that, once pancRNAs have participated in
transcriptional regulations of the partner genes, negative
selection has acted to maintain the pancRNA expression.
This proposition is supported by our finding here that
the promoter regions of pancRNA-partnered genes
exhibit a higher level of sequence conservation than
those of pancRNA-lacking genes (Fig. 3c). We also
showed the higher enrichment of C- or G-skewed motifs
in the promoter regions of pancRNA-partnered genes
than in those of pancRNA-lacking genes. Taken together,
these findings support an evolutionary scenario in which
increases in the frequencies of C- or G-skewed motifs in
promoter regions contribute to pancRNA expression,
and thereafter, such sequences becomes conserved at the
promoter regions.

Species-specific pancRNA-partnered genes show
DNA-level and transcription-level characteristics that
are similar to the bulk of pancRNA-partnered genes
(Fig. 5). The highly organized expression patterns of
species-specific pancRNA-partnered genes suggests that
a certain species might gain pancRNA expression for the
adaptation of tissue function through the cognate gene
regulation. The frequent occurrence of C- and G-skewed
motifs between-200 and-1 bp relative to TSSs of
pancRNA-partnered genes raises the possibility that the
expression of pancRNAs has been acquired at various
gene loci in a species-dependent manner partly due to
the increase of the C or G frequency at the immediate
upstream regions of TSSs. Considering the bidirectional
promoter activity of regions with high GC content, such
as CpG islands [51, 52], we propose that the appearance
of bidirectional promoter activity at the GC-rich pro-
moter regions plays an important role in the process of
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pancRNA acquisition for the cognate gene to be more
tissue-specifically expressed. We do not yet know
whether occasional pancRNA expression at the CpG
island-type promoters has been fixed later at the DNA-
level. Nonetheless, it would be interesting to test the
idea that ncRNA-mediated epigenetic changes are the
driver for the genetic alteration to adapt gene-expression
patterns according to the mammalian species.

Conclusions

The present study raises the interesting possibility that
the changes of gene-activation-associated pancRNA
repertoires, partly caused by formation of a genomic
GC-skewed structure, finely shape tissue-specific pat-
terns of gene expression according to a given species.
pancRNA should constitute a new layer of species-
dependent gene activation mechanism for the generation
and adaptation of a species.
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