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Abstract

Background: Next generation sequencing methods are the gold standard for evaluating expression of the
transcriptome. When determining the biological implications of such studies, the assumption is often made that
transcript expression levels correspond to protein levels in a meaningful way. However, the strength of the overall
correlation between transcript and protein expression is inconsistent, particularly in brain samples.

Results: Following high-throughput transcriptomic (RNA-Seq) and proteomic (liquid chromatography coupled with
tandem mass spectrometry) analyses of adult human brain samples, we compared the correlation in the expression
of transcripts and proteins that support various biological processes, molecular functions, and that are located in
different areas of the cell. Although most categories of transcripts have extremely weak predictive value for the
expression of their associated proteins (R? values of < 10%), transcripts coding for protein kinases and membrane-
associated proteins, including those that are part of receptors or ion transporters, are among those that are most

predictive of downstream protein expression levels.

Conclusions: The predictive value of transcript expression for corresponding proteins is variable in human brain
samples, reflecting the complex regulation of protein expression. However, we found that transcriptomic analyses
are appropriate for assessing the expression levels of certain classes of proteins, including those that modify
proteins, such as kinases and phosphatases, regulate metabolic and synaptic activity, or are associated with a
cellular membrane. These findings can be used to guide the interpretation of gene expression results from primate

brain samples.
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Background

Next generation sequencing, including RNA-Seq, allows
researchers to investigate transcript expression using
label-free technology, and its relative ease of use has
made this method the dominant technology for assessing
molecular phenotype. When interpreting transcriptomic
results, the assumption is frequently made that the ex-
pression level of a transcript reflects that of the down-
stream protein, suggesting the equivalence of these two
molecules. However, the relationship between these two

* Correspondence: amybauernfeind@wustl.edu; cbabbitt@bio.umass.edu
'Department of Neuroscience, Washington University Medical School, St.
Louis, MO 63110, USA

*Department of Biology, University of Massachusetts Amherst, Amherst, MA
01003, USA

Full list of author information is available at the end of the article

( BioMed Central

aspects of molecular phenotype has yet to be fully
understood. In fact, the correlation between transcript
expression levels and their protein products have gener-
ally been found to be quite low and may vary across tis-
sues and cell types [1-5], calling into question what
biological significance can be drawn from transcriptomic
and proteomic results.

Our earlier study [6] explored transcript (RNA-Seq)
and protein (liquid chromatography with tandem mass
spectrometry [LC/MS/MS]), expression in the anterior
cingulate cortex (ACC) and caudate nucleus (CN) of
humans and chimpanzees in order to determine if differ-
ential expression analyses of these two molecules re-
sulted in different interspecific biological signals.
Importantly, we reported that both species display a
lower degree of correlation between transcript and
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protein expression levels (human R*=0.03; chimpanzee
R? = 0.04) than typically reported in other organisms and
tissues [1, 2]. The correlation between transcript and
protein expression in mammalian cells is generally mod-
est, ranging from 9% in human monocytes to 40% in
mouse fibroblasts [7, 8], but these and other inquiries
into the relationship between transcript and protein ex-
pression levels have done so using homogenous cell cul-
tures in an effort to limit confounding variables [9].
Many transcriptomic studies, however, must overcome
additional challenges imposed by longer postmortem in-
tervals (PMIs) and greater cellular heterogeneity than
these carefully controlled studies.

In the spirit of exploring the correlation between tran-
script and protein expression that should be expected
from non-model samples, our objective was to deter-
mine how transcript expression predicts protein expres-
sion within molecular categories that are specific to
brain tissue (eg. ‘synapse’) and with limitations that are
common in many studies of molecular expression (ie.
PMIs of up to 8 h and heterogenous cell populations).
We predict that molecules within the same Gene Ontol-
ogy (GO) attributes (i.e. biological process, molecular
function, or cellular component) may share regulatory
mechanisms associated with synthesis and degradation,
which may affect the degree of correlation between tran-
script and protein expression levels [10, 11]. Here, we
ask whether there are certain classes of transcripts that
are more predictive of protein expression levels than
others by using transcriptomic and proteomic expression
from our previously published dataset [6]. Specifically,
we examined expression levels of transcripts and pro-
teins by GO category to determine if different predictive
relationships (coefficients of determination, R* values)
exist between molecules that participate in certain func-
tions or are located in certain parts of the cell. Are there
molecular attributes that suggest a stronger predictive
relationship between transcripts and proteins than
others? Strong predictive relationships suggest that the
results of RNA-Seq would be informative of expression
levels of downstream proteins, while the expression
levels of classes of transcripts with weaker predictive re-
lationships offer little value in predicting downstream
protein abundance.

In general, we found that most transcripts have fairly
low predictive value for determining protein expression
levels, falling within one standard deviation of the mean
for randomly associated transcript/protein pairs. How-
ever, we found that transcripts that coded for
membrane-bound proteins, in particular those that have
oxidoreductase and synaptic functions, and protein ki-
nases and phosphatases were most predictive of protein
expression. Our results indicate that the predictive value
of transcripts is not uniform across all functions or

Page 2 of 11

cellular locations, and we explore possible causes of this
variation by investigating correlations between categor-
ical R? value and category size, molecular abundance,
gene length, and previously published rates of molecular
synthesis and degradation [8]. Understanding implicit
biases in transcriptomic and proteomic data is funda-
mental to answering questions pertaining to the molecu-
lar phenotype of the brain or any other biological tissue.

Results
Overall, we report R* values of 0.07 in the expression
levels of 815 transcript/protein pairs in the human ACC.
This result is higher than we had reported previously [6]
because of the inclusion of more transcript/protein pairs
in this expanded dataset that is not limited to homolo-
gous proteins between humans and chimpanzees. Not-
ably, the coefficient of determination is similar to that
reported by Wei and colleagues in adult human and
Rhesus macaque brain tissue [12]. We performed ordin-
ary least squares (OLS) regressions on the transcript and
protein expression levels within each GO category of
biological process, molecular function, and cellular com-
ponent. In human ACC, 306 categories of biological pro-
cesses, 125 categories of molecular functions, and 104
categories of cellular components were represented by
10 or more transcript/protein pairs. A complete ordered
list of the transcript and protein expression levels in hu-
man ACC and the OLS regression results including the
predictive natures (R%) of GO categories can be found in
Additional file 1. When appropriate, transcripts are asso-
ciated with more than one category, which accounts for
the similarities between functional groupings (eg. “or-
ganelle outer membrane” and “outer membrane”).
Descriptive statistics were performed to summarize the
R? values across GO categories that contained a minimum
of 10 transcript/protein pairs. Because the analyses were
dependent upon the categories included and some tran-
script/protein pairs were represented in more than one
category, we used the descriptive statistics as a way of de-
scribing what R? results may be expected from specific
GO categories, while acknowledging these limitations.
Categories that contained the same molecules and had
identical R* values as another category, including 45
categories of biological process, 10 categories of molecular
function, and 10 categories of cellular component, were
deleted from the dataset. Categories of biological process
yielded R* values between < 0.01 to 0.51 (mean =0.15+
0.11, median = 0.12). For molecular function, categories pro-
duced R* values that ranged from <001 to 047 (mean =
0.14 £ 0.10, median =0.11). Categories of cellular compo-
nent yielded R* values between <0.01 to 0.66 (mean =
0.12 +0.11, median =0.08). The central tendency of R
values for categories of biological process was statistically
higher than that of cellular components (Mann Whitney
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U =13,941, p < 0.05), but comparisons revealed that those
of the other annotations were statistically equivalent. For
each GO annotation, the distributions of categories had
positive skews (biological process Shapiro-Wilk = 0.92, p
<0.001, skewness=0.98; molecular function Shapiro-
Wilk =0.95, p <0.001, skewness = 0.71; cellular compart-
ment Shapiro-Wilk = 0.83, p <0.001, skewness = 1.87, re-
spectively), suggesting that while most R* values fall near
the median for the annotation other categories have much
higher R? values. These categories contain transcripts with
greater predictive value. Interestingly, cellular component
revealed the largest positive skew, a result largely driven
by the highly predictive relationship between transcripts
and proteins associated with the cellular ‘outer membrane’
(R* = 0.66) (Fig. 1).

We listed the biological processes, molecular func-
tions, and cellular locations of transcripts that were most
predictive of the expression levels of their associated
proteins (Table 1). Proteins involved in the addition (ki-
nases) or removal (phosphatases) of a phosphate group
and transmembrane proteins, including those that are
components of receptors or ion channels and have those
that have oxidoreductase functions, are among the mole-
cules that display the highest correlation in their expres-
sion to their parent transcript (Fig. 2). However, the
slopes display a fairly wide range of confidence intervals,
reflecting the fact that the relationship between tran-
script and protein expression can be quite variable
within a GO category. The interpretation of our results
rely on coefficients of determination, R* values, which
are a similar measure of how closely the data are fitted
to the regression line, and we interpret this value as a
measure of how predictable protein expression levels are
from the expression levels of their parent transcripts.
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Permutation tests

We performed permutation tests in which random tran-
scripts and proteins were classified into categories to
mimic our observed data. The category sizes were sam-
pled and replaced from the actual sizes of our observed
categories for molecular function and cellular compo-
nent to ensure that the range of possible category sizes
represented our dataset. The resampling occurred over
1000 iterations. In the permutation test to mimic the an-
notation of biological process, randomly paired tran-
scripts and proteins yielded R? values that ranged from
<0.01 to 0.60 (mean = 0.05 + 0.08, median = 0.02). As ex-
pected, the central tendency of the observed data was
higher than that of the permutation test (Mann Whitney
U =207,103, p < 0.001). For molecular function, categor-
ies of random transcripts and proteins produced R*
values that ranged from <0.01 to 0.65 (mean=0.05+
0.07, median = 0.02). The R? values for molecular func-
tion permutation test compared to the observed data
were inequivalent (Mann Whitney U = 94,099, p < 0.001)
with the median of the observed data greater than that
of the permutation test. The permutation test of cellular
component categories yielded R* values between < 0.01
and 0.64 (mean = 0.05 + 0.08, median = 0.01). For cellular
component, the central tendency of the observed R
values was higher than that of the permutation test
(Mann Whitney U = 74,470, p < 0.001).

Like the observed data, the distributions of the R* values
for all three permutation tests deviated from normality
with a rightward skew (biological process Shapiro-Wilk =
0.67, p<0.001, skewness=2.63; molecular function
Shapiro-Wilk = 0.63, p<0.001, skewness=3.19; cellular
component Shapiro-Wilk =0.62, p<0.001, skewness =
2.76). As expected, the permutation tests revealed strong
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Fig. 1 Cumulative percentages of R’ values. GO categories of biological process (green), molecular function (red) and cellular component (blue)
are plotted together. The lighter green, red, and blue lines represent the results of permutation tests that produced 1000 OLS regressions from
randomly sampled transcripts and proteins of equivalent categorical sizes of biological process, molecular function, and cellular component,
respectively. The observed data from all three GO annotations have distributions with a positive skew, displaying how there are categories of
both molecular function and cellular components that are more predictive of protein expression than randomly associated transcripts and
proteins. The data is plotted with a bin width is 0.05, and the representative line is Gaussian smoothed. Duplicate categories that contain the
same molecules and have the same R? value as another category are not represented
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Table 1 GO categories with the highest predictive value between transcript/protein pairs

Category n R? p Slope Slope Cl Intercept Intercept Cl

Biological process
regulation of protein modification process 10 0.51 0.0211 0.38 0.07-068 4.06 337-475
positive regulation of cell communication 11 0.50 0.0145 047 0.12-0.82 386 3.05-4.68
membrane lipid metabolic process 11 047 0.0192 0.75 0.15-1.35 2.99 1.52-4.46
regulation of phosphate metabolic process 10 047 0.0290 0.38 005-0.7 408 334-482
regulation of synaptic plasticity 10 046 0.0317 0.73 0.08-1.38 3.58 1.88-529
regulation of kinase activity 15 044 0.0070 0.76 025-127 3.16 1.85-4.46
protein amino acid phosphorylation 34 043 0.0000 0.56 033-079 38 327-433
phosphate metabolic process 55 040 0.0000 0.57 0.38-0.76 375 331-4.19
cellular protein complex assembly 16 040 0.0089 067 02-1.15 402 287-517
phosphorylation 41 038 0.0000 0.56 033-0.79 3.82 33-435
endocytosis 19 037 0.0055 0.57 0.19-0.95 4.07 32-493
calcium ion transport 11 037 0.0483 0.65 001-13 3.72 2.04-539
DNA metabolic process 11 0.35 0.0548 06 -002-121 377 248-5.05
negative regulation of protein metabolic process 19 0.35 0.0081 045 0.13-0.76 4.08 323-492
cell cycle 14 0.35 0.0272 05 0.07-0.93 3.7 277 -4.62
positive regulation of cell proliferation 20 034 0.0068 041 0.13-0.69 402 350-4.54
regulation of hydrolase activity 18 034 0.0110 0.53 0.14-092 391 298 -4.84
regulation of actin filament length 12 034 0.0477 048 0.01-096 418 287-549
cell projection organization 14 033 0.0306 067 007-126 3.64 200-528
regulation of growth 12 033 0.0499 0.51 0-1.02 393 267-5.18
regulation of cell growth 10 033 0.0824 048 -0.08-1.04 3.89 255-524
positive regulation of cellular process 64 0.31 0.0000 044 0.27-061 4.16 3.77-454
protein modification process 65 0.30 0.0000 046 0.28 - 0.64 3.96 355-438

Molecular function
phosphatase activity 16 047 0.0036 097 037-156 267 1.24-411
phosphoprotein phosphatase activity 12 041 0.0241 0.72 0.11-132 329 1.83-4.74
protein kinase activity 33 037 0.0002 0.55 0.28-0.81 3.76 32-433
protein domain specific binding 18 037 0.0079 0.55 0.16-0.93 374 2.82-465
phosphotransferase activity alcohol group as acceptor 45 0.35 0.0000 0.56 0.33-0.79 38 331-43
manganese ion binding 12 0.34 0.0451 -0.39 -0.76 --0.01 525 452-598
ATPase activity coupled to transmembrane movement of ions 17 034 0.0135 039 0.09-0.69 4.74 4.04-544
phosphorylative mechanism
GTPase activity 52 033 0.0000 048 0.29-0.68 4.28 38-4.75
calmodulin binding 31 033 0.0008 052 0.24-081 41 34-483
ligase activity 20 0.31 0.0102 042 0.11-0.72 385 3.11-4.58

Cellular component
outer membrane 10 0.66 0.0043 0.88 0.37-140 34 230-4.51
membrane coat 13 046 0.0107 0.76 0.21-1.30 3.58 2.25-4.90
extracellular matrix 11 038 0.0435 067 002-132 371 216-525
organelle lumen 10 037 0.0612 -0.38 -0.79-0.02 593 498-6.89
mitochondrial membrane part 21 0.36 0.0043 0.84 0.30-139 323 1.94-452
cell surface 12 0.30 0.0630 0.35 -0.02-0.72 4.35 343-527
membrane-enclosed lumen 12 0.30 0.0638 -037 -0.77-0.03 6.01 5.07-6.94

Data in bold are the subcategories
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Fig. 2 Coefficients of determination for GO categories of molecular
function and cellular component. R? values are typically quite low
but certain categories (labeled) display greater predictive value than
others. These categories have R? values that exceed the mean of the
1000 resampled categories by approximately four standard deviations
(two standard deviations above the means for the respective
annotations)

negative correlations between R* values and category sizes
(biological process Spearman’s p =-0.48, p<0.001; mo-
lecular function Spearman’sp =-0.41, p<0.001; cellular
component Spearman’s p =-0.55, p<0.001), indicating
that the inclusion of more randomly associated transcripts
and proteins has a negative impact on the predictive rela-
tionship of transcript and protein expression within a
category.
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Correlation with category size

We were interested as to whether GO category size had
an affect on the overall predictive nature of transcripts
and proteins within a given annotation of our observed
data. We found Spearman’s correlation coefficients be-
tween the categorical R* value and the number of genes
per GO category in our dataset. The overall correlation
between R* value and number of genes was negative for
biological process, molecular function, and cellular com-
ponent (Table 2), however this relationship was only sig-
nificant for cellular compartment. The strongly negative
relationship between R? value and category size in cellu-
lar compartment may be due to an increase in diversity
in functional processes represented within a category as
the categorical size increases. The same effect was ob-
served under the annotation of molecular function when
categories were limited to those with more than 20 tran-
script/protein pairs. By definition, the GO annotation of
“biological process” must have more than one distinct
step [13] and therefore, the annotation contains genes
with a greater diversity compared to the molecular func-
tion annotation regardless of the size of the category.
This observation may account for the fact that no correl-
ation is observed between R value and category size
within the annotation of biological functions.

Correlation with molecular abundance

Because low molecular expression may affect the accur-
acy of abundance estimates, we examined the correlation
between average transcript and protein abundances and
the R? values for individual GO categories. We found no
significant correlations between mean gene or protein
expression and categorical R? value, indicating molecular
abundance has no bearing on the predictability of the
transcript/protein relationship (Table 2).

Correlation with gene length

Spearman correlation coefficients were found between
gene length and R value. Biological process, molecular
function, and cellular component categories did not pro-
duce significant relationships between these measures
(Table 2).

Production and degradation rates

Published mRNA and protein molecular half-lives and
transcription and translation rates for mouse fibroblasts
[8] allowed us to assess whether our observed R? values
were due to known differences in the molecular stability
of mammalian cells. We observed strong correlations
between R? values and mean transcription rates, transla-
tion rates, and mRNA half-lives, respectively for categor-
ies of molecular function and cellular compartment. The
same trend was not observed for biological processes,
likely due to the diversity of functions included in the
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Table 2 Spearman rank correlation coefficients (p) between the transcript/protein categorical R? values and possible sources of

variation

Biological Process Molecular Function Cellular Compartment

Category Size All categories

Categories with < 20 transcript/protein pairs
Categories with 2 20 transcript/protein pairs
Abundance Mean gene expression
Mean protein expression
Gene Length All categories
Synthesis/degradation Transcription rate
Translation rate
mMRNA half-life

Protein half-life

-0.08 —-0.05 —0.25**
-0.05 —-0.05 -0.26
003 -0.22% -0.19
-0.09 =017 0.10
-0.07 0.15 0.04
0.05 -0.03 0.1
0.17% —0.31** —-0.29*
0.13 0.29%* —-0.30**
-0.10 -0.36** 0.26*
0.12 0.05 =024

*p value of < 0.05
**p value of < 0.01

category as previously mentioned. The correlation be-
tween R? value and transcription rate is strongly negative
for both molecular function and cellular compartment,
indicating that transcripts with high rates of synthesis do
not have strong predictive value for downstream protein
abundance.

Multiple regression analyses were performed to deter-
mine how R* values were related to four variables: rates
of transcript and protein synthesis and their respective
degradation rates. Table 3 summarizes the results. In the
multiple regressions associated with all three GO anno-
tations, translation rate is observed to have a positive
weight on R* value when controlling for other variables.
However, this relationship is not significant for any GO
annotation. For both molecular function and cellular
compartment, mRNA half-life has a larger positive
weight than translation rate and is significant for both
annotations.

Interspecific and interregional comparisons

We previously reported the expression levels of tran-
script/protein pairs that are expressed in both humans
and chimpanzees [6]. We used this previously published
dataset of homologous transcript/protein pairs to deter-
mine whether the predictive relationship of transcripts
and proteins is similar between the two species and in
two different regions of the brain. Using well-
represented GO categories (=10 transcript/protein pairs)
in the ACC, we found 215 annotations representing
biological processes, 100 for molecular functions, and 78
for cellular components. For CN, 195, 90, and 69 anno-
tations were found for biological processes, molecular
functions, and cellular components, respectively. The
confidence interval for each OLS slope was compared
between humans and chimpanzees to determine if the
relationship between average transcript and protein
expression differed between species. We found that none

of the categorical regression lines were different between
species, and the ranked correlation coefficients between
humans and chimpanzees were similar (biological
process in ACC: Spearman’s p =0.79, p < 0.001; CN: p =
0.61, p<0.001; molecular function in ACC: p=0.82,
p<0.001; CN: p=0.71, p <0.001; cellular component in
ACC: p=0.77, p<0.001; CN: p=0.60, p<0.001). The

Table 3 Results of multiple regression analyses of R? value
(dependent variable) against transcription and translation rates
and mRNA and protein half-lives (independent variables)

Estimate Std. error t-value p
Biological process
Intercept 4.23E-02 8.07E-02 0.52 0.60
Transcription rate 1.09E-02 4.06E-03 269 <0.01
Translation rate 8.86E-05 5.11E-05 1.73 0.08
MRNA half-life -4.32E-03 5.60E-03 -0.77 044
Protein half-life 561E-04 1.97E-04 284 <001
R?=0.08, F(4, 207) = 4315, p-value = 0.002
Molecular function
Intercept 341E-01 1.02E-01 335 <0.01
Transcription rate -8.63E-03 5.74E-03 -15 0.14
Translation rate 4.12E-05 2.89E-05 143 0.16
mRNA half-life -1.38E-02 6.71E-03 -2.06 <0.05
Protein half-life -2.58E-04 1.97E-04 -1.31 0.19
R?=0.13, F(4, 87) = 3.125, p-value = 0.02
Cellular compartment
Intercept -1.89E-01 1.05E-01 -1.80 0.08
Transcription rate -2.99E-02 8.26E-03 -3.62 <0.01
Translation rate 8.71E-05 6.15E-05 142 0.16
mMRNA half-life 3.63E-02 6.71E-03 540 <0.01
Protein half-life -821E-04 2.79E-04 -294 <0.01

R?=0.40, F(4, 63) = 1041, p-value < 0.001

Data in bold are the subcategories
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predictive relationships between transcripts and proteins
were fairly similar in both ACC and CN (biological
process: p = 0.43, p <0.001; molecular function: p = 0.43,
p <0.001; cellular component: p = 0.75, p < 0.001).

We found the absolute value of the change in rank
order of the R? values of GO categories between humans
and chimpanzees and between regions of the brain
(Additional file 1). These scores represent differing rela-
tionships between transcripts and proteins and higher
values would suggest different regulatory measures act-
ing on molecular expression [7, 14]. It is noteworthy that
“cell death” and “nervous system development” are
among those categories with the greatest change in R*
rank order between humans and chimpanzees. We note
that categories such as “synapse” and “integral to plasma
membrane” and those listed in Table 1 as having particu-
larly high R* values, display concordant R? values across
species and regions of the brain.

Discussion

In an earlier manuscript, we reported a very low correl-
ation between transcript and protein expression in two
brain regions, ACC and CN, of both humans and chim-
panzees [6]. Coefficients of determination (R?) were
roughly 0.03 for both species and brain regions, indicat-
ing that transcript expression predicts 3% protein ex-
pression. The current study extends those initial findings
by asking whether grouping transcript/protein pairs by
similar attributes produces better predictive outcomes.
Although we found a higher overall R* value in the
current study (0.07), this result must be due to the greater
number of transcript/protein pairs included in the dataset.
Previously, other authors have theorized that transcripts/
proteins that contribute to a cell’s structure may offer a
higher predictive value than those that are functionally
modulated [7]. Similarly, neuronal compartmentalization
may impose region-specific rates of translation in dispar-
ate areas of the cell [14]. Both of these hypotheses would
favor higher predictive values across specific transcript/
protein pairs compared to others as categorized by GO
annotations.

We report a large degree of diversity in R* values when
transcripts/proteins are categorized by their function or
location in the cell. We find several trends in assessing the
R? values of transcript and protein abundance across GO
categories. First, perhaps by nature of the diverse func-
tions and locations of the molecules contained within the
categories, the annotation of biological process contains a
large range of predictive values that cannot be explained
by category size, molecular abundance, or molecular
stability. This result may be the result of the large diversity
of functions represented within each category of biological
process. Under any annotation, the expression levels of
transcripts grouped by GO category are capable of
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accounting for a maximum of 66% of the variation
observed in mean categorical protein abundance. Most
categories are not better or are not significantly different
from random in their predictive values.

We explored possible sources of variability in R* value
by examining its correlation with category size, average
transcript and protein expression, and gene length. We
had predicted that hydrolases and other enzymes, which
are typically short in length, may be particularly poor
predictors of protein abundance due to their relatively
fast RNA degradation [15, 16]. It is well understood that
it is biologically beneficial for molecules with such func-
tion to have carefully regulated half-lives [8, 17]. More-
over, short proteins are notoriously problematic to
quantify [18], making it difficult to assess whether this
finding is due to technological limitations or true bio-
logical differences. We report no correlation with regard
to average expression levels or gene length at the level of
GO category, but these factors may contribute to variation
at the level of the individual transcript/protein pair. How-
ever, the number of transcript/protein pairs within a GO
category likely has an affect on the R* value as evidence by
the differing correlations that are apparent when GO an-
notations of varying sizes are considered. Specifically, the
inclusion of more transcript/protein pairs may have a
negative effect on the overall predictive nature of the GO
category since larger categories are by their very nature
less specific than small categories (ie. between 10 and 20
transcript/protein pairs). Due to the negative association
between R* value and category size among the largest
groupings of transcripts/proteins by function and location,
it may be concluded that smaller, more specific categories
of transcripts may be the most predictive of their asso-
ciated proteins.

The discordance between transcript and protein ex-
pression levels may be caused by differential rates of
transcription and translation and/or in vivo and post-
mortem degradation rates of transcripts and proteins [8,
19-22]. While the stability of transcripts and proteins
vary according to their functional characteristics [8, 23],
the rate of translation has been found to be the most im-
portant factor in predicting protein expression [24]. At
the categorical level, translation rate weighs only slightly
positively on the predictive value of transcript to protein
abundance. Because mean molecular synthesis and deg-
radation rates influence the R* value but not in a con-
sistent manner across GO annotations. it is likely that
when considering transcripts and proteins by GO cat-
egories these features (synthesis and degradation rates)
that may otherwise help to explain molecular abundance
do not have sufficient resolution. Other attributes, such
as sequence features, may account for differences in pre-
dictive value [25], which are not possible to account for
at the categorical level.
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Despite the fact that the predictive values of many cat-
egories of transcripts and proteins are no better than ran-
dom, we wish to emphasize that several categories have
very high R? values considering the complex dynamics of
transcription rates and molecular degradation. We report
that transcripts coding for protein kinases, phosphatases,
and membrane-associated proteins, especially those that
participate in metabolic oxidoreductase activity or the
transport of ions, are among the transcripts that are most
predictive of their downstream protein expression levels.
It is noteworthy that many of these categories of proteins
are critical for aerobic metabolism. In short, molecules
supporting these specific processes may have a better cor-
relation between their transcripts and protein expression
levels than other categories.

Comparing our results to that of other studies suggests
differences in the predictive value of genes across tissues.
Guo and colleagues [7] found the predictive value of
mRNA to protein expression in human monocytes,
which were chosen for their relative homogeneity across
cell types. The authors found transcript expression was
poorly predictive of protein expression (R*=0.09), a re-
sult similar to our own. However, they report the highest
correspondence between transcript/protein pairs in the
extracellular region, whereas we found that those mole-
cules that were intrinsic to the cellular membrane dis-
played the strongest correlation in expression. The
extracellular categories in our dataset (“extracellular re-
gion” and “extracellular space”) are among the weaker
transcript/protein correlations in the brain. Comparing
the data from Guo and colleagues [7] with the current
study suggests that there is a strong tissue-specific com-
ponent to the relationship between transcripts and pro-
teins. Furthermore, future work may reveal that the vast
heterogeneity in neuronal transcript expression [24, 26]
may also affect cellular-specific protein expression and
may have profound implications for neuronal function.

We report our findings from fresh, frozen human
brain tissue with PMIs of less than 8 h. It is not
known how much stronger the relationship would be
in fresh brain tissue. Rather than affecting all tran-
scripts equally, postmortem degradation appears to
target different classes of transcripts at varying rates
[15]. Specifically, longer coding regions and 3" UTRs cor-
relate with more rapid degradation than the rest of the
transcriptome [15, 23, 27, 28]. The most severe postmor-
tem degradation occurs after 8 h and would not be a fac-
tor in our study [15]. It is not known how postmortem
degradation affects proteins of different functional classes.

Although the current work only considers adult tissue,
it is important to comment on the possibility of the rela-
tionship between transcripts and proteins changing
throughout the lifespan. A recent study in prefrontal
cortex of humans and Rhesus macaques found that the
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decoupling of transcript and protein expression in-
creases with age and may suggest an accretion of age-
dependent post-translational regulation in primate brain
[12]. Like the current study, concordance was found in
transcript and protein expression levels within categories
enriched for nucleotide and ATP binding. In the path-
ways that displayed an age-related discordance in tran-
script and protein levels, Wei et al. [12] found that
regulatory and signaling functions were enriched for
mTOR signaling and metabolic functions. The authors
suggest that the increasing discordance between tran-
script and protein expression as the lifespan progresses
may be the result of mRNA binding proteins or other
regulatory factors and contribute to aging and perhaps
Alzheimer’s disease.

In general, our results were similar between species
(humans and chimpanzees) and regions of the brain. It
is likely that the predictive relationships, particularly in
the categories with the highest R* values, outlined here
would hold true for other brain tissue in primates and
perhaps mammals as a whole. We focused our attention
on results from ACC in this study, but we note that our
findings in CN were very similar, suggesting that the
ability to predict protein expression levels from tran-
script expression probably do not change across different
regions of the brain. Additionally, it is worth noting that
the results of this study are category-specific and that
the correlation of individual transcript/protein pairs con-
tained within a category can vary.

Conclusions

In the ACC and CN of the human and chimpanzee
brain, we observe that the predictive nature of proteins
can range from no predictive value whatsoever to fairly
high. We find that transcripts that code for proteins that
are integral to the membrane and support protein kinase
and oxidoreductase activity are more predictive of pro-
tein expression than the vast majority of other categor-
ies. We conclude that it is important to consider the
predictive nature of transcript/protein pairs when deter-
mining the functional implications of gene expression
studies. It may be practical to consider transcript and
protein expression as two separate aspects of molecular
phenotype, each with its own contribution to biological
function. In the future, the challenge for molecular ex-
pression studies will be to integrate transcript and pro-
tein biology into a single unified message of tissue and
cell function.

Methods

This study used transcriptomic and proteomic expres-
sion data that are available through our previously pub-
lished work [6]. Briefly, frozen human brain samples
(aged 34 to 51 years) were obtained from the National



Bauernfeind and Babbitt BMC Genomics (2017) 18:322

Institute of Child Health and Human Development
Brain and Tissue Bank for Developmental Disorders at
the University of Maryland (Baltimore, MD) and were
free from neurological disorders. Frozen brain samples
from adult common chimpanzees, Pan troglodytes (aged
23 to 35 years), were obtained from the National Chim-
panzee Brain Resource (Washington, DC). The chim-
panzees had been cared for according to Federal and
Institutional Animal Care and Use guidelines and died
of natural causes. All brain tissue was collected with a
postmortem interval of less than 8 h and stored at -80 ° C.

Brain tissue was sampled from the ACC and CN from
adult humans (n=3) and chimpanzees (n=3). Each
sample was divided into two pieces: one for RNA-
sequencing and one for quantitative proteomics. Librar-
ies were constructed from poly-A-enriched RNA of 30
million 50-bp sequences. Orthologous gene models were
constructed for each species, and sequences were
mapped to species-specific genomes (hgl9 and panTro3)
[29, 30]. For the majority of the analyses, a dataset from
human ACC was used which contained 815 transcript/
protein pairs. However, to assess the variation observed
between species and brain regions the expression levels
of 522 transcript/protein pairs from human and chim-
panzee ACC and 499 from human and chimpanzee CN
were analyzed. Both transcriptomic and proteomic data
were normalized in edgeR [31].

To compare R* values between regions of the brain
and between species, we performed Spearman rank cor-
relations of the categories in each of the three GO anno-
tations. In order to assess which categories represented
the largest change in rank order, we found the absolute
value of the difference in rank order position. These
values were then scaled by dividing by the number of
categories in the annotation and multiplying by 100.

In the current study, we assigned each transcript/
protein pair to their GO categories for the annota-
tions of biological process, molecular function, and
cellular component. Categories contained a minimum
of 10 transcript/protein pairs. We used the species
mean log-transformed expression data to perform a
series of linear regressions for each category. We
performed OLS linear regressions rather than using
the reduced major axis (RMA) method. Although
RMA regressions attempt to diminish variance along
x- and y-axes [32], some authors have reported that
RMA can decreases variation along the x-axis that
may be biologically meaningful [33, 34]. OLS only
accounts for error along the y-axis [35]. We focus
our report on the coefficient of determination, R*
values, produced from OLS regressions of each GO
category individually. All statistics were performed in
R (version 3.1.3) [36], and the linear regressions were
performed in the SMATR package (version 3.4).
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To determine if the R? values of the GO categories
were better than a random sampling of transcripts and
proteins, we performed permutation tests in which ran-
dom transcripts and proteins were classified into cat-
egories to mimic our observed data. The category sizes
were sampled and replaced from the actual sizes of our
observed categories for biological process, molecular
function, and cellular component to ensure that the
range of possible category sizes represented our dataset.
The resampling occurred over 1000 iterations.

We were interested in determining whether category
size, abundance levels, or gene length had an affect on
the R? levels produced by GO categories. We found
Spearman correlation coefficients between category size
(number of transcript/protein pairs within our dataset)
and R> value across GO annotations of biological
process, molecular function, and cellular component.
Next, we found mean abundance levels of transcripts
and proteins and examined whether a correlation existed
between these values and the R Finally, we found gene
lengths by searching the RefSeq annotations for the lat-
est human genome build, hg38, from the University of
California Santa Cruz Table Browser [37]. Average gene
length per GO category was compared to R? value to de-
termine if length affected transcript/protein predictive
value.

We combined our transcript and protein expression
data with the molecular stability measures reported by
Schwanhiusser and colleagues [8]. Specifically, the au-
thors had found transcription (molecules/[cell*h]) and
translation (molecules/[mRNA*h]) rates in addition to
mRNA and protein half-life time (h). The merged data-
set contained molecular abundance and stability mea-
sures from 471 transcript/protein pairs. Consequently,
fewer GO categories contained 10 or more transcript/
protein pairs (biological process: 212 categories; molecu-
lar function: 92; cellular compartment: 68). Spearman
rank correlation coefficients were found between the
synthesis and degradation rates and mean categorical R*
value. A multiple regression was performed for each
gene annotation using the R* value as the dependent
and the synthesis and degradation rates as independent
variables.

Additional file

Additional file 1: Complete list gene and protein expression in human
ACC and the results of the OLS regressions. The file also contains the
rank order changes of categories when R? values are compared between
species or regions of the brain. (XLSX 9357 kb)
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