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Abstract

Background: The phenomenon of immune priming, i.e. enhanced protection following a secondary exposure to a
pathogen, has now been demonstrated in a wide range of invertebrate species. Despite accumulating phenotypic
evidence, knowledge of its mechanistic underpinnings is currently very limited. Here we used the system of the
red flour beetle, Tribolium castaneum and the insect pathogen Bacillus thuringiensis (Bt) to further our molecular
understanding of the oral immune priming phenomenon. We addressed how ingestion of bacterial cues (derived
from spore supernatants) of an orally pathogenic and non-pathogenic Bt strain affects gene expression upon
later challenge exposure, using a whole-transcriptome sequencing approach.

Results: Whereas gene expression of individuals primed with the orally non-pathogenic strain showed minor
changes to controls, we found that priming with the pathogenic strain induced regulation of a large set of
distinct genes, many of which are known immune candidates. Intriguingly, the immune repertoire activated upon
priming and subsequent challenge qualitatively differed from the one mounted upon infection with Bt without
previous priming. Moreover, a large subset of priming-specific genes showed an inverse regulation compared to
their regulation upon challenge only.

Conclusions: Our data demonstrate that gene expression upon infection is strongly affected by previous
immune priming. We hypothesise that this shift in gene expression indicates activation of a more targeted and
efficient response towards a previously encountered pathogen, in anticipation of potential secondary encounter.

Keywords: RNA-sequencing, Immune priming, Tribolium castaneum, Host-parasite interaction, Bacillus
thuringiensis

Background
Evolution is a dynamic process and nowhere is this better
exemplified than in host-parasite interactions. Hosts must
perpetually mount defences in order to ameliorate the
damage done by parasites, whilst the parasites themselves
must evolve to avoid or temper these defences [1–3]. Such
resistance or virulence is achieved by Darwinian processes
through selection over several host and parasite gener-
ations. However, adaptation to parasites can occur
within the individual’s lifetime through adaptive immunity,

acquired resistance resulting from primary contact that
grants survival benefits upon secondary encounter. Ac-
quired immunity was originally thought to be restricted to
vertebrates, while invertebrates were supposed to only
possess innate immunity. However, evidence from pheno-
typic analyses have shown that invertebrates may also have
some level of immune memory that is often denoted as
‘immune priming’ [4–8]. A particularly compelling aspect
emerging from such studies is that the host response is
sometimes specific to the pathogenic agent [6, 9, 10]. Such
observations have led to suggestions that the boundary
between innate and acquired immunity is blurred [11].
Priming in insects can be achieved by haemocoelic infec-
tion (pricking) with bacterial components, inactivated or
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low-dose pathogens [5, 9, 12] and by oral consumption of
live bacteria or bacteria-derived components [13–15].
Despite accumulating evidence for immune priming in in-
sects, knowledge of its mechanistic underpinnings is cur-
rently limited (for review see, [16]). Insects possess no
known comparable system to vertebrates in terms of an
underlying genetic basis for acquired immunity, although
some candidates have been proposed, e.g. Dscam [17].
Previously, strategies for finding resistance genes involved
a time- and knowledge-intensive candidate gene approach,
but with the recent advances in sequencing technologies it
has become tractable to efficiently explore insect immun-
ity on a genome-wide basis [18, 19]. To date, such gen-
omic approaches have rarely been applied to explore the
mechanistic basis of immune priming [20, 21]. Here, we
used the red flour beetle,Tribolium castaneum and the in-
sect pathogen Bacillus thuringiensis to explore the genetic
underpinnings of oral immune priming [15]. T. castaneum
is a major pest of food grain [22]. This species has become
a powerful model organism also for studies of insect im-
munity, with a fully-sequenced genome [23] and more re-
cently, established protocols for studying host-parasite
interactions using the pathogen B. thuringiensis [9, 24, 25].
It has previously been shown that T. castaneum has en-
hanced survival to B. thuringiensis infection after prior
exposure to heat-killed bacteria by pricking infection
[9] and after exposure to spore supernatant via the oral
route [15]. Gene expression strongly differs for infection
with live bacteria for these routes [19]. To further our un-
derstanding of insect acquired immunity, we here focussed
on the oral route of infection and assessed how the prim-
ing treatment affects gene expression upon later challenge
exposure. For priming, we used filter-sterilised spore
supernatants that do not contain any live bacteria or
spores to exclude potentially confounding effects of in-
fection upon priming. In addition, we compared prim-
ing responses to two strains of B. thuringiensis; one of
these strains is orally pathogenic to T. castaneum and
has previously been identified as an effective priming
agent, while the other one is neither pathogenic to T.
castaneum, nor does priming with it lead to enhanced
survival [15]. We compared transcriptomes of primed
and non-primed larvae upon challenge and identified a
priming-specific pattern of gene expression that was
clearly distinct from the infection response. Further
analysis revealed a number of candidate genes, which
provide a new basis to study the molecular underpin-
nings of immune priming in insects.

Results
Priming with Btt elicits a differential gene expression
response in T. castaneum
We performed RNA-seq experiments to identify the mo-
lecular basis of oral immune priming in T. castaneum

larvae [15]. For this, larvae were orally primed with
spore-culture supernatants of either the priming-inducing
Btt strain, or the Bt407- strain, which does not confer sur-
vival benefits upon subsequent infection with Btt. Both
groups (‘Btt’ and ‘Bt407-’ priming) and an additional
medium-control group (‘control’ priming) were subse-
quently orally challenged with Btt spores or were left naïve,
resulting in six treatment groups, all in triplicates, i.e. 18 se-
quenced libraries (see Methods and Fig. 1). On average,
51.6 million raw reads were generated per sample and 46
million reads per sample remained after filtering, of which
78% could be mapped to the T. castaneum genome. 12288
of the 12777 annotated genes were detected. We found a
total of 1610 genes up-regulated and 1448 down-regulated
compared to control treatment samples (i.e. control prim-
ing with medium and left naïve for challenge). All differen-
tially expressed genes in the different priming-challenge
treatments (compared to fully naive control) are listed in
Additional file 1: Table S1.
A principle components analysis (PCA, Fig. 2) showed

that the primary axis (describing 59% of the variance)
distinguishes among those samples exposed to Btt at any
stage in the experiment (priming or challenge, i.e. Btt-
Btt, Btt-Naive, Control-Btt, Bt407--Btt) and those having
no contact with Btt at any stage in the protocol (Con-
trol-Naive and Bt407--Naive) and therefore separates
beetles by expression response to pathogenicity. The sec-
ondary axis (17.6%) distinguishes between beetles that
were not primed but were challenged with Btt (Bt407--Btt
and Control-Btt), and beetles that were not challenged
with Btt (Bt407--Naive, Control-Naive and Btt-Naive). Btt-
Btt treated beetles cluster with the latter group, rather
than those that were not primed but were challenged
with Btt. This suggests a profound influence of priming
with Btt spore supernatants on beetles challenged with
Btt spores.

Oral priming with Btt spore supernatant prepares larvae for
subsequent challenge
Consistent with the PCA, Venn diagrams of differentially
expressed genes showed many shared changes in expres-
sion for different treatments compared with naive beetles
(Fig. 3, Additional file 2: Figure S1). For example, 292
genes were up-regulated exclusively among larvae chal-
lenged with Btt (Control-Btt, Bt407--Btt and Btt-Btt) and
307 were shared exclusively among Btt-challenged larvae
that had not been primed or were primed with Bt407-

(Control-Btt and Bt407--Btt), confirming a strong tran-
scriptional response to Btt spore ingestion [19]. Inter-
estingly, 315 genes were specifically up-regulated only
in Btt-primed larvae (Btt-Naive, Btt-Btt), showing that
Btt-priming drastically altered gene expression patterns.
Large differences in gene regulation were generated in
larvae primed by the two Bt strains. Few genes in total
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(61) were up-regulated in larvae primed with Bt407-

(Bt407--Naive) compared with control (Control-Naïve)
treatment, consistent with phenotypic data that shows
that Bt407- confers no priming advantage [15]. However,
112 genes were exclusively down-regulated in Bt407--
Naive larvae, suggesting that larvae do respond to Bt407-

cues in their diet, but that any changes in gene regulation
do not confer protection upon challenge. Furthermore,
since large numbers of differentially expressed genes were
exclusively shared in both Btt-primed groups (Btt-Naive,
Btt-Btt), our results indicate that crucial changes leading
to the priming effect already occur before the challenge
(during the 4 days between priming and RNA sampling,
Fig. 1), strongly influencing gene expression pattern upon
challenge itself (Btt-Btt).

Immune pathways
To further analyse the effect of priming and challenge
on immune gene expression, we tested whether certain
categories of immune genes identified in T. castaneum
by Zou et al. [26] showed an enrichment for up- or
down-regulated genes (Fig. 4). To investigate in detail
the potential role of the Toll and IMD pathways, we also
focussed on key components of these pathways and
compared their expression between the treatments, as
described in Behrens et al. [19] (Fig. 5).
We found a strong signal of differential expression of

immune genes (Fig. 4), such that immune genes were
overrepresented among both up- and down-regulated
genes in all treatment groups, except for Bt407--primed
and unchallenged beetles, which also did not show any

Fig. 1 Experimental design. To induce priming, larvae (15 days after oviposition) were exposed to spore-culture supernatants and a medium
control (unconditioned medium) for 24 h. Subsequently, larvae were transferred to naïve diet (flour + PBS) for 4 days and exposed to a lethal con-
centration of spores or naïve diet (flour + PBS). After 6 h, pools of 32 larvae were sampled in triplicates from each group (6 groups in total) and their
RNA was isolated for library preparation
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significant enrichment for up-regulated genes in any of
the immune subcategory. All other treatment groups
showed upregulation of Toll pathway components and
extracellular signalling categories. Antimicrobial peptide
genes (AMP) genes and genes involved in cellular re-
sponses were only up-regulated upon Btt challenge, re-
gardless of priming condition. In contrast, recognition
genes and reactive oxygen species (ROS) genes were
already up-regulated upon priming with Btt (but not
Bt407-), even when this was not followed by infection,
suggesting that priming leads to an increased ‘alertness’
by up-regulation of immune recognition genes and an
elevated level of reactive oxygen based defences. It is fur-
ther noteworthy that IMD genes that were up-regulated
upon infection without priming (Control-Btt and
Bt407--Btt) did not show differential regulation when
there was previous priming with Btt. Finally, in the
Bt407--Naive treatment groups, the ROS, AMP and Toll
pathways were significantly down-regulated compared
with control-primed beetles.
Upon closer inspection of the Toll and IMD pathways,

we found many differences for the Btt challenged larvae
in relation to whether they had been primed with Btt or
Bt407- (Fig. 5). In detail, several genes of the classical
immune pathways (e.g. PGRP-LA, Dif, Basket, IAP, Kenny)
were up-regulated upon challenge following inefficient
priming (with Bt407-), suggesting an overall activation of
these pathways. In contrast, we found only a reduced
number of key genes of the Toll and IMD pathway to be
activated in the Btt priming-Btt challenge scenario.

Genes with known functions against B. thuringiensis and
other pathogens are up-regulated upon priming with Btt
To narrow down candidates among the genes differentially
regulated upon priming (groups Btt-Naive and Btt-Btt;
Fig. 3), we screened the literature for known pathogen-
related functions of those genes. We found several candi-
dates with a described role in insect immunity to be differ-
entially regulated (Fig. 6, Additional file 3: Figure S2,
Additional file 4: Table S2). For example, lysozyme
(TC010351) and many of the c-type lectin genes (e.g.
TC003708, TC010419) were strongly up-regulated, and
have a known function in defence against a variety of bac-
teria. Lysozymes cut bacterial cell wall components [27–
29] and c-type lectins play an important role in pathogen
recognition and opsonisation [30–32], and were recently
proposed to contribute to specific immune responses, es-
pecially in invertebrates [33]. Furthermore, two phospho-
lipase A2 genes (TC015181, TC005550) were found up-
regulated upon priming (Fig. 6, Additional file 3: Figure
S2). These enzymes participate in the formation of eicos-
anoids from arachidonic acid [34, 35] and were found
to play multiple immune roles in insects, such as in nodu-
lation, prophenoloxidase activation [36, 37] and phagocyt-
osis [34], including responses to bacterial challenge and
Toll and Imd pathway activation in T. castaneum [35].
It is further noteworthy that we found several genes

with a known defence function against orally ingested
pathogens and specifically, against B. thuringiensis, ex-
clusively in the Btt primed larvae (Btt-Naïve, Btt-Btt).
Particularly interesting is the hexamerin gene (TC005375),

Fig. 2 Principle component analysis for all samples 6 h after exposure to Btt-contaminated or naïve diet. The plot shows clustering of samples
according to treatment group and replicate, based on FPKM expression values and the percentage of variance described by the first two
principle components
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which we found strongly up-regulated compared to
control (Fig. 6, Additional file 3: Figure S2). Hexamerin
expression and protein concentration were found in-
creased after a bacterial challenge [38–41]. In Drosophila,
hexamerin was indicated to function as a humoral pro-co-
agulant, participating in bacteria binding and clot forma-
tion [42]. Interestingly, increased hemolymph and gut
hexamerin concentrations were found to play a role in the
reaction of the cotton bollworm to Cry1Ac toxins pro-
duced by a B. thuringiensis strain, by aggregating with
the toxin crystal and forming an insoluble coagulant
[43–45]. A putative Hdd1 defense protein gene
(TC013059), associated with gut immune defence and
resistance to B. thuringiensis toxins was found strongly
expressed upon Btt priming (Fig. 6, Additional file 3:
Figure S2). The expression of this gene was up-
regulated after ingestion of bacteria-contaminated diet
in the cabbage semilooper [38] and a similar gene was
found to be involved in prophenoloxidase activation

and nodulation response in the cotton bollworm [46].
Interestingly, a gene of the same class (Hdd11) was
found induced in the Cry 1Ab resistant sugarcane borer
[47] and in the beet armyworm after ingestion of B.
thuringiensis VIP toxins [48], indicating its importance
in defence against B. thuringiensis.

Immune priming differs from challenge
We found that 9% (78 of the total 825) of the genes up-
regulated upon challenge with Btt after previous priming
(Btt-Btt) were in fact downregulated in beetles challenged
without priming (Control-Btt). The different signature of
priming vs. challenge was seen in the overrepresentation
of gene ontology (GO) terms in the different treatments
(Fig. 7, Additional file 5: Table S3). “Structural constituent
of cuticle” was the most strongly overrepresented term
among up-regulated genes when the larvae were primed
with Btt (Btt-Naive and Btt-Btt), whereas in larvae only
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Fig. 3 Number of differentially expressed genes 6 h after exposure to Btt-contaminated or naïve diet. Venn diagrams representing the number of
differentially expressed genes in each treatment group compared to fully naïve control (Control-Naïve). Larvae for the expression analysis were
sampled 6 h after challenge with Btt or without challenge. a. Sets of significantly upregulated and downregulated genes in Btt-primed larvae,
b. Sets of significantly upregulated and downregulated genes in Bt407- primed larvae
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challenged with Btt (Control-Btt), “serine-type endopep-
tidase activity” was the most significantly up-regulated
term. Interestingly, this GO term was most significantly
down-regulated in larvae only primed with Btt (Btt-Naïve),
suggesting an inverse pattern of gene regulation in primed,
compared to challenged-only larvae.
When we looked at only Btt primed individuals that

were not challenged with live spores (Btt-Naïve), we
found several immune candidates downregulated in
this treatment, but upregulated upon challenge-only
(Fig. 6, Additional file 3: Figure S2). These were the
two genes annotated as variable lymphocyte receptors
(TC004538, TC004541), a chemosensory protein Csp
18 (TC008674) as well as two serine peptidase inhibi-
tors (TC005750, TC015224) and a spätzle (TC000520).
Conversely, a pathogenesis related protein (TC000516),
odorant receptor 150 (TC030347), and several Osiris
genes (TC012679, TC011827, TC011661, TC011660,
TC011658, TC012820, TC012821) were found up-

regulated upon priming, but down-regulated upon
challenge (Fig. 6, Additional file 3: Figure S2). Even
though different time-points after priming (4 days) and
challenge (6h) are here considered, these observations,
together with the data shown above, strongly indicate
that immune priming differs from challenge.

Discussion
In this study, we aimed at exploring the molecular un-
derpinnings of oral immune priming in T. castaneum
larvae [15] using a whole-animal transcriptome sequen-
cing approach. We analysed host gene expression profiles
after exposure to bacterial cues (culture supernatants) of
two different strains; an orally pathogenic strain (Btt) in-
ducing a priming response and conferring survival benefits
upon challenge, and a non-pathogenic strain (Bt407-)
where this effect remains absent. Consistent with pheno-
typic results [15], we found strong differences in host gene
expression profiles between the two bacterial strains.
Whereas priming with Bt407- showed only minor differ-
ences compared to the control-priming group in terms of
up-regulated genes, priming with Btt induced a large set
of differentially regulated genes (Figs. 3 and 6, Additional
file 3: Figure S2), indicating strong responses of the host
to the Btt priming diet. Note that priming in our study is
achieved by using sterilised spore culture supernatants,
such that observed gene expression changes cannot be at-
tributed to an active infection in the host.
We expected two hypothetical scenarios by which im-

mune priming could take place [16, 49]. In the first,
priming could induce a sustained immune response that
would prophylactically confer a survival benefit upon
secondary challenge with live Btt [5, 50]. Indeed, we
found support for this scenario in our dataset, i.e. gene
expression changes upon priming that remained active
until the challenge. For example, several genes of the
Toll and IMD pathways were found activated prior chal-
lenge (i.e. also in the Btt_Naive group; Fig. 5, right upper
panel), which could represent an anticipatory response
based on potentially higher amounts of antimicrobial
peptides that are ‘ready-to-use’ upon challenge. This hy-
pothesis is also based on the fact that the Toll and IMD
pathways are in a somewhat ‘active state’ (i.e. upregula-
tion of upstream factors such as PGRP-LE for IMD and
Spätzle for Toll) after priming with Btt, when not
followed by challenge. Second, priming could lead to an
anticipatory immune defence that is recalled upon chal-
lenge, such that a stronger and/or faster response could
take place, facilitating the rapid elimination of patho-
gens. Such priming would rely on immune memory in a
more narrow sense, i.e., the ability of an immune system
to store and recall the information on a previously en-
countered pathogen [7, 8, 51]. In both of the above men-
tioned cases (sustained or recalled), the type of response

Fig. 4 P-value heatmaps for different immunity-related categories.
P-values are based on a Fisher’s exact test of defined immune gene
categories [26] of significantly upregulated and downregulated
genes for each treatment group compared to the fully naïve control
beetles (Control-Naïve)
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Fig. 5 (See legend on next page.)

Greenwood et al. BMC Genomics  (2017) 18:329 Page 7 of 14



upon priming and challenge would be qualitatively
similar. Such a scenario was recently observed in trans-
generational immune priming in bumble bees, where
worker offspring coming from primed queens exhibited
overlapping expression signatures with workers that
were directly exposed, but whose mothers were not
primed [20].
By contrast, the activated immune repertoire that we

here observed upon priming seems to a certain degree
to be qualitatively different from the one mounted upon
infection without a previous priming. Intriguingly, a
similar observation of a qualitatively distinct priming re-
sponse was recently reported for immune priming in the
snail Biomphalaria glabrata with the trematode parasite
Schistosoma mansoni [21, 52]. In this system, priming
resulted in a shift from cellular to humoral immune re-
actions. When comparing groups that were challenged
with or without preceding priming in our study, we

found a large set of genes regulated in the Btt primed-
Btt challenged group, many of which are known immune
candidates. Since the majority of those genes were
already regulated in the group receiving no challenge
(Btt-Naïve), this suggests that the observed survival
benefit in T. castaneum larvae results from the induc-
tion of a specific set of genes, early after the exposure to
bacterial cues in their environment, and that such induc-
tion results in largely different gene expression than the
one activated upon challenge without the previous prim-
ing. It would be interesting to see how prevalent these
scenarios are among invertebrate phyla, i.e., whether the
priming gene expression is different or similar compared
to a secondary challenge.
Compared to Drosophila, T. castaneum seems to

mount a rather promiscuous immune response after
bacterial challenge, by concomitantly upregulating Toll
and IMD pathways in response to bacteria (Gram- or

(See figure on previous page.)
Fig. 5 Regulation of the Toll and IMD pathway in relation to priming and challenge treatments. Illustrated are the Toll and IMD pathways after
Zou et al., [26] for the two priming treatments, 6 h after the challenge with Btt spore-contaminated or naïve diet (flour + PBS). Red color indicates
significant upregulation, blue significant downregulation of the respective genes and purple both, significant up- and downregulated genes in
the case when genes from the same gene family were reversely expressed. The corresponding official gene IDs (‘TC######’) are specified next to
the genes. For effectors, only those that are differentially expressed 6 h after the challenge treatment (Btt or naïve) in at least one treatment are
indicated with their respective official gene IDs
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Gram+) [53, 54]. Indeed, challenge without the previous
priming induced an overall regulation of the Toll and
IMD pathways in our study as well (Figs. 4 and 5, left
lower panel); however, only a reduced number of those
genes were upregulated upon challenge when there was
previous priming (Figs. 4 and 5, left upper panel). We
even found many of the priming-specific genes to show
an inverse regulation compared to their regulation upon
challenge without the priming, a pattern that was also
visible in the different GO term overrepresentation re-
sults (Fig. 7). We hypothesise that this “shift” in gene
expression indicates activation of a more targeted and
more efficient response following information on previ-
ously encountered pathogens, in anticipation of a potential
secondary encounter. For example, priming induced sev-
eral novel effector genes, not normally expressed upon in-
fection, like hexamerin, pathogenesis related protein 5,
lysozyme and hdd1 defence protein, all with a reported
role in defence against orally ingested pathogens and Ba-
cillus thuringiensis. Activation of a narrower, more suitable
response type towards a specific pathogen would certainly
prove beneficial when an infection is expected.
It is difficult to narrow down the oral priming response

to only a few candidate genes. Rather, priming with Btt
seems to mount an orchestrated response of various sig-
nalling and effector molecules, together contributing to
survival benefits upon secondary exposure to lethal con-
centration of spores. Of note is however, that in order to
understand phenotypic data, we looked at gene regulation
4 days after priming had occurred. Although this still had
a strong influence on gene expression upon challenge
(Btt_Btt treatment group, Figs. 3 and 6, Additional file 3:
Figure S2), it may be that looking at earlier timepoints
would reveal important candidates more clearly (e.g., by
stronger regulation). Hexamerin though, could play a
particularly important role. Hexamerins, or similar li-
poproteins were found to coagulate and bind Bt toxins,

rendering them inactive [44, 45]. Strong hexamerin
regulation may suggest formation of a trap by crosslinking
with other hexamerin molecules, thus facilitating binding
of the toxins and/or bacteria and inactivating them
[44, 45]. Hexamerins may therefore serve as a first line
of defence in the gut [45], especially if accumulating in
the gut upon priming, trapping the toxins and bacteria and
preventing them from reaching the midgut epithelium.
Of note here is that the information on gene identity

in T. castaneum often comes from automatic annotations
based on sequence similarities and while some genes are
well annotated (e.g., hexamerin, lysozyme), others (e.g., vari-
able lymphocyte receptors, Fig. 6) are not verified by func-
tional analyses. Similarly, we found many genes strongly
regulated for which no annotation so far exists or with no
described function in other insects, as is the case for the
many Osiris-like genes with characteristic expression pat-
terns (Fig. 6). The Osiris gene family is well-conserved
across insects, but its function is so far largely unknown
[55, 56].
It is not clear which bacteria-derived components induce

priming in our system, as the supernatant of a sporulating
culture may be abundant in various candidate molecules or
pathogen-associated molecular patterns; remnants of the
cell wall components remaining after the cell lysis or se-
creted non-proteinaceous components or toxins that
remained in the supernatant after filter-sterilisation. Such
bacterial cues might damage the host tissue and serve as a
danger signal, activating host immunity [57], which could
be absent in the non-pathogenic Bt407- strain. In this con-
text, it is noteworthy that Bt407-, in contrast to Btt, does
not have the beetle-specific Cry toxin that breaks the gut
barrier. However, upon preparation of the priming diet,
bacterial culture is centrifuged such that no crystal toxins
should remain in the supernatnats, except potentially in a
form of loose monomers, but this needs to be investigated.
Alternatively, certain molecules might be affecting the

Fig. 7 Word clouds of overrepresented GO terms in sets of differentially expressed genes. The R package TopGO was used to perform GO
enrichment analyses for each set of differentially expressed genes in different treatment groups, using the weight01 GO graph algorithm and a
Fishers Exact Test for significance [74]. P-values were scaled according to the scaling factor -log10(p-value) and the top 20 terms were visualised
in Wordle™

Greenwood et al. BMC Genomics  (2017) 18:329 Page 9 of 14



resident microbiota, further promoting a primed re-
sponse. Indeed, a recent study showed that, similar to
the mosquito-Plasmodium system [14, 58], microbiota
play a crucial role in the oral priming in our system as
well [59], but the mechanisms for this dependence and
how they relate to the specific gene expression patterns
found here are still unknown. Interestingly, we found
PGRP-LE activated after priming with Btt (Btt_Naive,
Fig. 5, right upper panel), which is a key gut bacterial
sensor in Drosophila involved in balanced responses to
pathogenic bacteria and microbiota [60]. Further research
is needed to see whether and how this interesting gene
is involved in microbiota regulation of priming in our
system.
Regarding the question of specificity of priming re-

sponses, it is interesting that the ‘non-efficient’ Bt407-

priming was not without any effects. Compared to fully
naive controls, we found a quite clear pattern of down-
regulation of genes (Fig. 3), in particular for Toll, AMP
and ROS-mediated defences (Fig. 4), which might also
be the cause for the observed absence of enrichment for
up-regulated immune recognition upon Btt challenge
(Fig. 4). However, the reasons for these effects are cur-
rently unclear and need further study.
A puzzling question is, why a potentially more effective

immune response would be activated only when priming
occurred, but not constitutively or upon challenge without
priming? First, as with other immune defence, priming with
Btt seems to be costly; primed larvae grow and develop
more slowly than the controls [15]. It thus may depend on
the epidemiology as to whether it is worth paying these
costs. Second, in periods of high bacterial load in a popula-
tion of beetles, priming might actually regularly occur, e.g.
via cannibalising infected larvae [61]. Priming-eliciting cues
could be present in cadavers as the result of bacterial
sporulation such that eating infected cadavers could prove
beneficial for survival. However, little is currently known
about Bt epidemiology and how host and pathogen interact
in nature; these topics require further research.

Conclusions
We here show that oral priming with spore culture su-
pernatants of B. thuringiensis tenebrionis is achieved by
extensive transcriptome changes in T. castaneum that
are specific to priming with Btt, but absent from priming
with the non-infectious strain Bt407-. A unique pattern
of gene expression was found that is different from chal-
lenge without the previous priming. Such a shift in the
expression pattern towards a potentially more effective
response is very intriguing and it would be interesting to
test if this phenomenon is bacteria-specific and whether
such a response type could also be found in other inver-
tebrates that show immune priming.

Methods
Insects
For all experiments we used the wild type strain of
Tribolium castaneum, Croatia 1 (Cro1), which was
collected in May 2010 in Croatia [24]. This strain was
adapted to lab conditions for more than 20 genera-
tions (~18 months). Beetles were reared on flour (type
550) with 5% brewer’s yeast at 30°C with a 12/12 h
light/dark cycle and 60% relative humidity.

Bacteria and spore cultivation
Bacillus thuringiensis bv. tenebrionis (Btt) was obtained
from the Bacillus Genetic Stock Center (BGSC, Ohio
State University, USA) and Bacillus thuringiensis 407-

(Bt407-) was kindly provided by Dr. Christina Nielsen-
Leroux, Institut National de Recherche Agronomique
(La Minière, 78285 Guyancourt Cedex, France). Before
using in experiments, bacteria were subcloned five times
on LB-Agar and glycerin stocks were stored at -80°C.
Spore cultures of Btt and Bt407- were produced as previ-
ously described [24] and centrifuged at 2900 x g at room
temperature for 12 min. Spores were washed and subse-
quently resuspended in phosphate buffered saline (PBS,
Calbiochem®), counted using a Thoma counting chamber
(0.02mm depth) and used for challenge immediately.

Experimental design
The priming experiment was done as in Milutinović et
al. [15] (see Fig. 1). For this, spore cultures of Btt and
Bt407- were centrifuged and the supernatants subse-
quently filter-sterilised, first using a 0.45 μm and then a
0.2 μm cellulose acetate filter (Whatman GmbH). Flour
with yeast was added to the supernatant (0.15 g/mL of
supernatant). Diet for the control larvae was prepared by
mixing the flour with sterile sporulation media. Such liquid
diet was pipetted into wells of a 96-well plate (Sarstedt,
Germany) and dried in the oven at 36°C overnight. The
next day, similar-sized T. castaneum larvae (15 days after a
24 h oviposition) that were cultivated under standard con-
ditions were individually exposed to the priming or control
diet (sterile sporulation media) for 24 h and transferred to a
naive diet of flour discs obtained by mixing flour and
PBS. Larvae were kept on the naive diet for 4 days after
which they were similarly exposed to spore-containing
(5 × 109 mL-1 Btt spores in PBS mixed with flour) or
naive diet for 6 h and sampled for the transcriptome
analysis. This timepoint was used since our previous
study showed that sampling 6 h after the challenge
gives a clear expression signature, compared to already
weaker expression after 18 h [19]. Hence, the sampled
treatments were as follows: Btt primed-Btt challenged
(Btt-Btt), Bt407- primed-Btt challenged (Bt407--Btt),
Control-Btt challenged (Control-Btt), Btt primed-Naïve
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(Btt-Naive), Bt407- primed-Naïve (Bt407--Naïve), Control-
Naïve. Each treatment was replicated 3 times, with a pool
of 32 larvae each.

Sample preparation, library construction and sequencing
For each treatment group, three replicate RNA libraries,
each consisting of the 32 pooled T. castaneum individuals
were produced. Total RNA from frozen beetles was iso-
lated using mirVanaTM miRNA Isolation Kit (Ambion) ac-
cording to the instructions of the manufacturer. The
libraries for the whole transcriptome sequencing were
created with the Illumina TruSeq RNA Library Prep kit
(version February 2012, Part# 15026495 Rev. B). After
cluster generation on the cBot with the TruSeq PE
Cluster Kit v3, the sequencing was performed with the
TruSeq SBS Kit v3 (200 cycles) on two lanes of the Illumina
HiSeq 2000.

Transcriptomic analysis
The transcriptomic assembly and analysis closely followed
the procedures described by Behrens et al. [19]. Before
mapping, a number of filtering steps were performed on
the data. Firstly, Illumina quality-failed reads were re-
moved from the read files, and adaptor sequences were re-
moved using the package SeqPrep [62]. Then Seqtk [63]
was used to trim the first 13 base pairs of sequence from
the reads to remove biases in nucleotide composition due
to random hexamer priming [64], which improved the
number of reads mapping to the genome.
After filtering, Tophat v2.0.11 [65] was used to map

the reads to the Tribolium 3.0 reference genome down-
loaded from Beetlebase (Kim et al. [66]). A separate,
more recent annotation file, incorporating improved gene
models taking advantage of transcriptomic data was
downloaded from the iBeetle website [67, 68] and used to
guide the mapping process, as well as the subsequent as-
sembly and differential expression analyses.
Next, Cufflinks v.2.2.1 [69] was used to quantify the

transcripts against the reference.gtf file, using default pa-
rameters. Cuffmerge was used to merge the individual
assemblies into a comprehensive transcriptome and the
Cuffdiff utility [70] was used to normalise the data using
upper-quartile normalisation and to quantify differential
expression of genes across samples; a value of p < 0.05,
FDR < 0.05 was used to identify genes with significant
differential expression. Data were imported into R [71]
for further statistical analysis.
Principle components analysis (PCA) was used to

summarise the distribution of gene expression values of
the samples using functions in the R base package and
Venn diagrams were generated for the data using the R
package VennDiagram [72].
In order to generate functional terms associated with

the genes of interest, the software Blast2GO [73] was

used to annotate the iBeetle T. castaneum genome anno-
tation [67]. The R package TopGO was then used to
generate GO enrichments for each of our treatment
comparisons of interest, using the weight01 GO graph
algorithm and Fishers exact test for significance [74]. Re-
sults of the 20 most significant terms were visualised
with Wordle™ after the p-values were scaled according
to -log10(p-value) [19, 75]. Subsequently, these results
were merged with Gene Ontology terms [76] down-
loaded from Ensembl Biomart [77] and results of a
BlastP search [78] using default parameters, to further
add gene information for interpretation of the results.
Finally, immunity genes identified by Zou et al. [26]

were tested for enrichment in up- or downregulated
genes of each treatment using a Fisher’s exact test. P-
values were normalised using the Benjamini-Hochberg
correction method [79]. Zou et al. [26] identified around
300 candidate defense proteins based on sequence
similarity to homologs known to participate in immune
responses. They further characterized these genes with
phylogenetic analyses of immune gene families and RT-
qPCR analyses after bacterial and fungal pricking.

Additional files

Additional file 1: Table S1. Lists of all differentially expressed genes in
the different priming-challenge treatments (compared to the fully naïve
control; xlsx file). Relevant columns include the following: sample_1 and
sample_2 – treatment groups being compared; Normalised FPKM
sample_1 and sample_2 – FPKM of samples being compared; log2(fold_-
change) – log2(FPKM sample 2/FPKM sample 1), i.e. negative means sample 1
upregulated compared with sample 2, positive means sample 2 upregulated
compared with sample 1; cuffdiff test_statistic – test statistic of differential
expression test; p_value – p-value of differential expression test; q_value (FDR
correction) – adjusted P-value of differential expression test. (XLSX 598 kb)

Additional file 2: Figure S1. Number of differentially expressed genes
6 h after exposure to Btt-contaminated or naïve diet. Venn diagrams
representing the number of differentially expressed genes in each treatment
group compared to fully naïve control (Control-Naïve). Larvae for the
expression analysis were sampled 6 h after challenge with Btt or without
challenge. A. Sets of significantly upregulated genes in all treatments, B.
Significantly downregulated genes in all treatments. (PDF 1.12 kb)

Additional file 3: Figure S2. Barplots of candidate immunity-related
genes. Barplots of a subset of candidate immunity-related genes
regulated upon priming or showing reversed expression compared to
groups challenged without or after ineffective Bt407 priming (see also
Fig. 6.) Y-axis shows FPKM values. Error bars show 95% confidence
intervals. Please note that gene descriptions for T. castaneum often
come from automatic annotations and are not always verified by functional
analyses. (PDF 9.42 kb)

Additional file 4: Table S2. Gene description summary for Additional
file 3: Figure S2. The table shows the au2 and TC numbers as well as the
gene description for the genes shown in Fig. 6 and Additional file 3:
Figure S2. Please note that gene descriptions for T. castaneum often
come from automatic annotations and are not always verified by
functional analyses. (DOCX 69 kb)

Additional file 5: Table S3. Lists of top 20 overrepresented GO terms
in Btt exposed treatment groups (compared to fully naïve control).
Methodology as described for Fig. 7. The columns are as follows: GO
ID – Gene Ontology unique ID of the overrepresented GO term; GO
term – text descriptor of the overrepresented GO term; total no.genes
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annotated – total number of genes in the T. castaneum genome
which are annotated with this GO term; observed – number of genes
over- or underrepresented in the treatment found to be annotated
with this GO term; expected – number of genes over- or underrepresented
in the treatment expected to be annotated with this GO term under the
null hypothesis; P-value – P-value of the Fisher’s test found using the
Weight01 algorithm of [74]; Ontology – GO category to which each
GO term belongs (MF – Molecular Function; CC – Cellular Component;
BP – Biological Process). (XLSX 21 kb)

Abbreviations
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