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Differentially expressed genes from RNA- @
Seq and functional enrichment results are
affected by the choice of single-end versus
paired-end reads and stranded versus
non-stranded protocols
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Abstract

Background: RNA-Seq is now widely used as a research tool. Choices must be made whether to use paired-end
(PE) or single-end (SE) sequencing, and whether to use strand-specific or non-specific (NS) library preparation kits.
To date there has been no analysis of the effect of these choices on identifying differentially expressed genes
(DEGs) between controls and treated samples and on downstream functional analysis.

Results: We undertook four mammalian transcriptomics experiments to compare the effect of SE and PE protocols
on read mapping, feature counting, identification of DEGs and functional analysis. For three of these experiments
we also compared a non-stranded (NS) and a strand-specific approach to mapping the paired-end data. SE
mapping resulted in a reduced number of reads mapped to features, in all four experiments, and lower read count
per gene. Up to 4.3% of genes in the SE data and up to 12.3% of genes in the NS data had read counts which
were significantly different compared to the PE data. Comparison of DEGs showed the presence of false positives
(average 5%, using voom) and false negatives (average 5%, using voom) using the SE reads. These increased
further, by one or two percentage points, with the NS data. Gene ontology functional enrichment (GO) of the DEGs
arising from SE or NS approaches, revealed striking differences in the top 20 GO terms, with as little as 40%
concordance with PE results. Caution is therefore advised in the interpretation of such results. By comparison, there
was overall consistency in gene set enrichment analysis results.

Conclusions: A strand-specific protocol should be used in library preparation to generate the most reliable and
accurate profile of expression. Ideally PE reads are also recommended particularly for transcriptome assembly. Whilst
SE reads produce a DEG list with around 5% of false positives and false negatives, this method can substantially
reduce sequencing cost and this saving could be used to increase the number of biological replicates thereby
increasing the power of the experiment. As SE reads, when used in association with gene set enrichment, can
generate accurate biological results, this may be a desirable trade-off.
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Background

Technical advances in next generation sequencing over
the past decade have resulted in greater output of
sequence data, and at a lower cost [1]. At the same time,
analysis methods for understanding and interrogating
sequence data have flourished [2—4]. This has resulted in
the widespread uptake of techniques such as RNA-Seq
for projects both large and small. RNA-Seq typically
involves sequencing RNA obtained from a sample, quan-
tification by mapping reads to genomic features, and
comparison between conditions. Unlike micorarrays, no
prior knowledge of samples (or probes) is necessary and
hence it is possible to identify both known and novel
transcripts as well as assembling a transcriptome de
novo [5, 6]. The use of RNA-Seq to better understand
the transcriptome of a vast range of organisms has
grown dramatically over the past few years. With more
researchers undertaking transcriptomic analyses, ques-
tions arise as to the most accurate and cost efficient way
of doing this.

One question that arises is whether it is necessary to
perform paired-end sequencing or whether single-end
sequencing is adequate. Paired-end sequencing involves
the sequencing of both ends of each ¢cDNA fragment
rather than sequencing only one end [7]. As the gap size
between the ends of the fragment can be estimated, this
technique facilitates accurate alignment back to the
reference genome [8]. However, paired-end sequencing
involves twice as much sequencing and is therefore more
costly than single-end. So the decision to use any
method will affect the number of samples which can be
sequenced within a researcher’s budget. The number of
biological replicates sequenced will affect the power of
the experiment to find differential expression, which is
the purpose of many RNA-Seq experiments [9].

Early RNA-Seq library preparation protocols could not
determine the strand of origin and thus direction of any
RNA read from the genome. This is problematic when
there are overlapping genomic features. A number of
techniques have now been developed to address this
shortcoming, as reviewed by Levin et al. [10]. Strand-
specific library preparation protocols, such as the Illumina
TruSeq Stranded Total RNA Prep Kit or the Illumina Tru-
Seq Stranded mRNA Library Prep Kit, are available and
are no more costly than using non-strand aware protocols.
There have been some recent analyses of strand-specific
and non-strand-specific protocols, which point to the
benefits of strand-specific approaches [11, 12].

We have used four different mammalian RNA-Seq
experiments to assess the effect of using paired-end or
single-end reads and a strand-specific versus non-specific
library preparation protocol. We have looked at the effect
of these factors on mapping, feature counting and on the
ultimate objective of many RNA-Seq experiments — the
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calling of differentially expressed genes. We also consider
the impact on functional insights which emerge from the
differential expression analysis.

Results

Four mammalian RNA-Seq experiments using different
read mapping strategies

Four different mammalian RNA-Seq experiments, de-
tailed in Table 1, were used to study the effect of using
single-end or paired-end reads in gene expression ana-
lysis. Paired-end data was also used to explore the differ-
ence that a strand-specific protocol can make compared
to a non-strand-specific approach. Each of the four
RNA-Seq experiments had a simple but typical design,
comprised of three biological controls and three treated
samples. The six samples in each of the experiments
were independent biological replicates. Experiments 1
and 2 were from mouse tissue or primary cells whereas
Experiments 3 and 4 involved human primary cells and
a cell line respectively. In all four experiments sequen-
cing was performed on both ends of the cDNA fragment
(paired-end reads). We mapped both ends (see Methods)
to produce our paired-end data set (PE data). We also
mapped only the first read to produce our single-end
read datasets for each experiment (SE data). Sequencing
for Experiment 1 occurred in 2012 and used a non-
strand-specific protocol for library preparation (Illumina
TruSeq kit). The other three experiments were se-
quenced more recently with the Illumina TruSeq
Standed library preparation kit [13]. For these three
experiments we looked at the effect of analyzing the
paired-end data with a protocol that recognizes the
strand-specific nature of the reads (PE data) and also
with a protocol that does not recognize this (NS data).
In this way we could assess the difference that a strand-
specific protocol makes to gene expression analysis.

The number of assigned reads, multimapped reads and
ambiguous reads varied between the PE, SE and NS data
analyses

We mapped the reads to the respective genomes using
Tophat2 [14] and then mapped the read loci to RNA
features using the featureCounts function of Subread
[15]. The featureCounts function gives the overall num-
ber of assigned reads as well as the number of reads
which could not be assigned to RNA features because
they were (i) ambiguous, (ii) multimapped or (iii) did
not correspond to an RNA feature.

In all experiments, the use of SE as opposed to PE
reads resulted in a reduction in the number of reads that
could be uniquely assigned to an RNA feature (Fig. 1a).
The reduction ranged from 3.3% to 9.4% with one
outlier, sample 5 in experiment 2 differing by 20%. Com-
parison of the PE reads with the paired-end non-strand-
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Table 1 RNA-Seq data sets
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Experiment 1 2 3 4
Species Mus musculus Mus musculus Homo sapiens Homo sapiens
Sample Lip tissue Keratinocytes (primary) Hematopoietic cells (primary) Nuli cells

(cell line)
Control group (n) 3 3 3 3
Treated group (n) 3 3 3 3
Platform lllumina HiSeq2000 lllumina NextSeq lllumina NextSeq lllumina NextSeq
Reads PE? (averaged) 353 M 374 M 84.7 M 372 M
Reads SE” (average®) 350 M 382 M 853 M 375 M
Reads NS¢ (average®) 375 M 849 M 373 M

?PE, paired-end reads
PSE, single-end reads
NS, non-strand specific protocol for the paired-end reads

“Total number of reads from featureCounts summary (assigned plus non-assigned) with average of totals taken over the six samples in each experiment

specific data (NS reads) was possible for Experiments 2,
3 and 4. Interestingly, this analysis did not show a con-
sistent difference across the three experiments (Fig. 1b).
Some samples in Experiments 2 and 3 showed a small
reduction in the number of assigned reads in the NS

data (less than 3%) whereas other samples showed a
small increase in the number of assigned reads (less than
4%). By contrast, Experiment 4 showed a small but
consistent decrease in the number of assigned reads in
the NS data (about or less than 2%).
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Fig. 1 Percentage change in Assigned reads, Multimapped reads and Ambiguous reads. Barplots of the percentage change in reads assigned by
featureCounts in the single-end (SE, purple bars) compared to the paired-end strand-specific data (PE) in a total of 24 samples from four experiments
(Exp1, Exp2, Exp3, Exp4) and percentage change in non-strand-specific paired-end data (NS, green bars) compared to the paired-end strand-specific
data (PE) in a total of 18 samples from three experiments (Exp2, Exp3, Exp4). a Assigned reads, SE comparison, (b) Assigned reads, NS comparison (c)
Multimapped reads, SE comparison (d) Multimapped reads, NS comparison () Ambiguous reads, SE comparison (f) Ambiguous reads, NS comparison
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We investigated the reduction in the number of reads
uniquely assigned using SE mapping. This revealed a
high proportion of reads being ‘multimapped; with an
average increase of 20% of multimapped reads compared
to the PE data (Fig. 1c). This indicates that many 75 bp
reads are not sufficiently unique to allow mapping to a
unique genomic loci whereas the availability of the other
end of the DNA fragment enables the exact genomic lo-
cation of the fragment to be identified. When comparing
the strand-specific PE and NS data, there was little dif-
ference in the number of multimapped reads (Fig. 1d).
However, in this case we saw a striking increase in the
number of ambiguous reads ranging from a 200% in-
crease in Experiment 2 to a 40% increase in Experiment
3, with an average increase of 116% over the three exper-
iments (Fig. 1f). By contrast we saw a decrease in
ambiguous reads in the SE data in Experiments 2 and 3
and a small increase<10% in Experiments 1 and 4
(Fig. 1e). Ambiguous reads arise when the genomic loca-
tion of a read is known but where that location may be
part of more than one gene or other feature, on the
same or opposite strand of DNA. Using a strand-specific
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protocol resolves ambiguity arising from the latter, and
hence we see the least ambiguous reads using the
strand-specific protocol.

Read count per gene tends to be less in SE data
compared to PE data

We examined the number of reads per gene, in the SE
data compared to the PE data, to determine if there were
any differences in counts. Scatterplots of one sample
from each experiment illustrate a systematic tendency
for the counts per gene to be less in the SE data com-
pared to the PE data (Fig. 2, red plots). By contrast, the
comparison of the PE and NS data (Fig. 2, blue plots)
showed more variation in the counts. There was also
evidence that the non-strand-specific approach allocates
counts to features that have no counts in the strand-
specific approach, as seen by the large number of points
mapping close to the y-axes of these plots. That is, in
some cases the non-strand-specific approach will indi-
cate that genes or non-coding features are expressed
when they are not.
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Fig. 2 Scatterplots of reads assigned to protein coding features and non-coding features. Counts for all protein coding genes features (a, b, e, f, i, j)
and for all non-coding features (¢, d, g, h, k, I) are compared for the PE data versus the SE data (red) and the PE data using the strand specific protocol
with the paired end data using a non-strand specific protocol (NS data, blue). Counts for the paired-end strand specific datasets (PE) are on the x-axis
in all cases. Data is shown for sample 1 in Experiment 2 (row 1), sample 1 in Experiment 3 (row 2) and sample 1 in Experiment 4 (row 3)
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The number of assigned reads are significantly different
in SE and NS data compared to PE data

We next investigated whether the different sequencing
methods resulted in changes in the number of assigned
reads. To test for statistically significant differences, in the
counts from SE or NS data compared to the PE data, we
used the statistical tools available in edgeR. A differential
expression test was used to compare the read counts per
gene in the controls generated with the PE data versus the
reads for the controls in the SE and NS data sets. Ideally,
we should find no difference between the groups if each se-
quencing method produces similarly reliable read count
data. Any difference identified indicates the degree to which
alternate sequencing methods produce unreliable count
data. We performed this comparison using edgeR, as de-
scribed in Methods. Applying a multitest correction (FDR
< 0.05) we found that between 111 and 608 genes (equating
to 0.72 — 4.29% of genes tested) had significantly different
counts when comparing the PE and SE data (Table 2). A
high proportion of the genes were apparently down-
regulated (Exp 1, 80%; Exp 2, 94%; Exp 3, 88%; Exp 4, 93%).
This is consistent with the trend we saw of a lower number
of read counts per gene when using the SE protocol (Fig. 2).
Comparing the NS and PE data we find that the number of
differentially expressed genes was between 729 and 1719

Table 2 Number of genes with significantly different counts
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(equating to 5.74 to 12.26% of genes tested) (Table 2). The
distribution between down-regulated and up-regulated
genes was more even in this case, with down-regulated
genes being 50—-75% (Exp 2, 57%; Exp 3, 50%; Exp 4, 75%).

We further explored the characteristics of the gene
counts that differed between data sets. For this, we created
density plots of the average counts (average logCPM) for
all genes expressed in the controls and compared these to
the counts for genes that were significantly different
between SE and PE data, or between the NS and PE data
(Fig. 3). In both comparisons we saw that significantly dif-
ferentially expressed genes could be of high, intermediate
or low expression levels. Although the range of gene
expression levels was covered, we saw a peak in the low
expression range indicating that differentially expressed
genes were more lowly expressed in the SE versus PE data
(Fig. 3a-d). In the NS versus PE data, the differentially
expressed genes showed a bimodal distribution with a
peak also in the high expression range (Fig. 3e-g).

Proportion of protein-coding and non-coding reads is
affected by seqeuncing protocols

It is known that non-coding RNA features tend to have
lower expression than protein-coding genes. We there-
fore examined whether the allocation of reads between

Experiment 1 2

Genes tested 15456

biotype
protein coding 14328 (92.7%)

non protein coding 1027 (6.6%)

- pseudogenes 232 145
- antisense 242 124
176 (1.4%)

SEvsPE DEGs®

biotype
protein coding®

111 (0.7%)

29 (26.1%)

12702

11891 (93.6%)
733 (5.8%)

93 (52.8%)

14166

12009 (85.7%) 12530 (88.5%)
1988 (14.2%) 1620 (11.4%)
452 396

604 532

327 (2.3%) 608 (4.3%)

139 (42.5%) 396 (65.1%)

non protein coding® 82 (73.9%) 74 (42%) 186 (56.9%) 208 (34.2%)
- pseudogenesd 76 (68.5) 50 (28.4%) 105 (32.1%) 150 (24.7%)
- antisense® 1 (0.9%) 3 (1.7%) 13 (4.0%) 12 (2.0%)
NSvsPE DEGs' NA 729 (5.74%) 1719 (12.26%) 1615 (11.4%)
biotype

protein coding®

555 (76.1%)

1167 (67.9%) 1291 (79.9%)

non protein coding® 167 (22.9%) 543 (31.6%) 317 (19.6%)
- pseudogemesd 15 (2.1%) 79 (4.6%) 45 (2.8%)
- antisense® 48 (6.6%) 271 (15.8%) 167 (10.3%)

@ Differential expression (DE) test of Controls in PE data (n = 3) versus Controls in SE data (n = 3) using edgeR, FDR < 0.05
® Number of DE protein coding genes and proportion as a percentage of the tested genes
€ Number of DE non-protein-coding genes and proportion as a percentage of the tested genes

“Number of DE pseudogenes
€ Number of DE genes

f DE test of Controls in PE data (n = 3) versus Controls in NS data (n = 3) using edgeR, FDR < 0.05
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Fig. 3 Density plots comparing distribution of counts in the differentially expressed genes with the distribution of counts for all genes expressed in
the controls. The distribution of average read counts (AveLogCPM) for each of the tested genes (as calculated in edgeR) is plotted (orange). a-d The
distribution of AvelLogCPM counts for the differentially expressed genes found in the SE vs PE comparison are superimposed (purple) for Experiments
1-4. The overlapping region is a combination of orange and purple. e-g The distribution of AveLogCPM counts for the differentially expressed genes
found in the NS vs PE comparison are superimposed (green) for Experiments 2-4. The overlapping region is a combination of orange and green

protein-coding and non-coding features were different
in the SE data compared to the NS data. We saw that
the non-coding transcripts were over-represented in the
DEQG lists in both the SE versus PE comparison and the
NS versus PE comparison. As shown in Fig. 4 the pro-
portion of non-coding DEGs ranged between 20% (Exp
4 NSvsPE, Fig. 4f) and 57% (Exp 3 SEvsPE, Fig. 4c). This
was much higher than the genes tested for differential
expression which, after filtering of lowly expressed
genes, comprised between 6 and 11% of non-coding
transcripts (Table 2). Accordingly, we see that the quan-
tification of non-coding transcripts is disproportionately
affected by sequencing method. This effect was more
pronounced in the SE data compared to the NS data
where we saw that a high proportion of the non-coding
genes are pseudogenes, (between 25% and 69% of the
DEGs generated in the SE vs PE comparison are pseudo-
genes). By contrast, the proportion of pseudogenes
found to be significantly different in the NS vs PE com-
parison ranged from 2-5% of the DEGs. Reads mapping
to pseudogenes are also likely to map to an ancestral
gene. These reads are therefore prone to be ‘multi-
mapped’ and discarded using single-end sequencing,
however, it appears that this effect is lessened where
both ends of the DNA fragment are available for
mapping.

By contrast, the DEGs found with a non-strand-
specific protocol have a higher proportion of antisense
reads (ranging from 7-16% of the DEGs in the three

experiments) compared to 1-4% of the DEGs in the SE
vs PE comparison. This is also consistent with expect-
ation as, by definition, antisense transcripts overlap
genetic features on the opposite DNA strand and so are
likely to be considered ‘ambiguous’ if a non-strand-
specific protocol is used.

Differential expression analysis of treated versus control
samples

A critical question is whether the differences in read
mapping are of consequence for the comparison of
treated and control samples. To investigate this, we
performed differential expression analysis of gene
expression in the 3 treated samples versus the three
controls in each of the four experiments. We
performed this analysis using edgeR and the voom
function of limma [16, 17], employing an FDR cut-
off of 0.05 to identify differentially expressed genes
(DEGs). The DEGs found using the PE, SE and NS
data are compared in the Venn diagrams in Fig. 5(a-h).
Assuming that the PE data is more accurate, these plots
show that false positives and false negatives are seen using
the alternative data. We found that the SE data generated
false positives (average across four experiments (edgeR
7%, voom 5%)) and false negatives (average across four ex-
periments (edgeR, 4%,voom, 5%)). The discrepancy was
higher when comparing the PE data and NS data. False
negatives were higher in all three experiments (average
across three experiments (edgeR, 8%, voom 7%)), and false
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a Exp 2 SEvsPE DEGs

coding 56%

antisense 2%

other nc 13%

pseudogenes 30%

C Exp 3 SEvsPE DEGs

coding 43%

antisense 4%

pseudogenes 33%
other nc 20%

e Exp 4 SEvsPE DEGs

coding 66%

antisense 2%

other nc 8%

pseudogenes 25%

Fig. 4 Pie charts of differentially expressed genes (DEGs) showing proportion of protein coding and non-protein coding features. The DEGs are
classified as: protein coding (white), pseudogenes (green), antisense (orange), non-coding RNAs, other than pseudogenes and antisense (blue).
DEGs found in the SE vs PE comparison are in column 1 (a, ¢, €) and DEGs found in the NS vs PE comparison are in column 2 (b, d, f)

b Exp 2 NSvsPE DEGs

coding 77%

antisense 7%

other nc 14%
pseudogenes 2%

d Exp 3 NSvsPE DEGs

coding 68%

antisense 16%
pseudogenes 5%

other nc 11%

f Exp 4 NSvsPE DEGs

coding 80%

antisense 10%

other nc 7%
pseudogenes 3%

positives were higher in Experiment 3 and Experiment 4
(average false positives across three experiments (edgeR,
9%, voom, 6%)).

The lists of DEGs, analysed above, were obtained by
imposing a hard cut-off (here we use FDR<0.05).
However, there might be genes that are close to this
cut-off that may be called as DE (or not) if the arbi-
trary cut-off is changed. To investigate this we plotted
the FDR values for the DEGs found using the PE data
in Experiment 2 against the FDR values for these
genes found using the SE or NS data (Fig. 6). The
genes not identified as being differentially expressed
by the SE or NS method are those above the blue
horizontal line and have an FDR in the range 0.05 to
0.1. These would have been included if a cut-off of
0.1 had been chosen, but the same effect would have
been apparent with another set of genes close to the
new cut-off.

Functional analysis of differentially expressed genes

using gene ontology (GO) analysis and gene set
enrichment

Given that different sequencing methods were affecting
the genes found to be differentially expressed in the
treated samples versus controls, we investigated whether
this then affected functional analysis results. We first
used the goana function [18] in the limma Bioconductor
package to find the most enriched gene ontology terms
in the lists of DEGs. For each experiment we looked for
the degree of concordance in the top ranked GO terms
produced using SE, PE and NS lists of DEGs. These re-
sults are presented in Table 3. If only the top 20 GO
terms were considered, there was a striking discrepancy
in the functional enrichment results between sequencing
protocols. For example, in Experiment 2 we found only
65% concordance for the SE vs PE comparison and just
40% concordance for the NS vs PE comparison. If we
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Fig. 5 Differentially expressed genes (DEGs) identified in each of the four experiments. Venn diagrams of the DEGs comparing those derived from the
PE data (orange) with those derived from the SE data (purple) and the NS data (green). Differentially expressed genes were identified using edgeR (a-d)
and voom (limma) (e-h) with an FDR cut-off of 0.05. a, e Experiment 1, (b, f) Experiment 2, (¢, g) Experiment 3, (d, h) Experiment 4
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took a larger group of GO terms the concordance im-
proved. Taking the top 300 GO terms associated with
the DEGs, the concordance improved to 85-99% con-
cordance for the PE versus SE comparison and 80-96%
concordance for the PE versus NS comparison. However
the GO terms were not necessarily ranked in the same
order and, as such, the degree of concordance varied if
different sized sets of GO terms were selected solely on
the basis of statistical ranking.

Gene ontology enrichment analyses are frequently
based on lists of DEGs defined by use of a hard cut-off,
such as an adjusted P value of 0.05. This is a common
approach in RNA-Seq experiments. However, another
way of approaching functional evaluation is to use gene
set enrichment analyses, that consider all the genes
tested in the differential expression analysis. We used
the camera function [19] included in the limma package
to perform this; it implements a competitive test to
determine whether the genes in the gene set are more
often differentially expressed than the remainder of
genes not in the gene set. In this way it is possible to as-
certain the order of importance of the various gene sets
in the experimental condition of interest. We tested for

concordance in the top gene sets identified by camera
over the PE, SE and NS data (Table 4). Using the camera
function we found a high concordance of 97-99% in the
top 200 gene sets when comparing the PE and SE results
over the four experiments. Similar results were obtained
when comparing the PE and NS results with concord-
ance ranging between 96% and 99% over the three
experiments in the top 200 gene sets.

The importance of biological replicates

This study was based on four experiments, each of
which used a 3 by 3 design (3 controls versus 3 treated
samples). Such designs are typical in RNA-Seq experi-
ments where researchers are constrained by cost and /or
sample availability. It is known that additional replicates
increase the power to identify differentially expressed
genes 9 [20]. To understand the effect of adding more
replicates in our RNA-Seq experiments, we carried out
power analysis. We found that the power to detect genes
with a two-fold expression change ranged from 61%
(Experiment 1) to 76% (Experiment 4) with the 3 by 3
design. Interestingly, this could be increased by the
addition of two more replicates per condition, to 82% in
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Fig. 6 Comparing FDR values of the DEGs found using the PE data with the SE and NS data. The FDR values of the DEGs found in the PE data
set are plotted on the x-axis and the corresponding FDR value for those genes in the SE data or NS data are plotted on the y-axis. The blue
horizontal line shows the 0.05 cut-off. All genes above the line would not be classed as DEGs although the FDR is lower than 0.1. a Experiment 2

Experiment 1 and 93% in Experiment 4, that is, an in-
crease in power of around 15% could be achieved with a
5 by 5 design (Table 5). The 3 by 3 design was under-
powered to detect genes with a lower fold change, say of
1.5 and ranged from 26—35% over the four experiments.
The power to detect these genes was also increased by a
similar increment of around 15% by the addition of two

Table 3 Concordance for GO terms found using goana
function

PE vs SE Exp 1° Exp 2° Exp 3° Exp 4°
Top 20 GO terms 95 65 85 100
Top 50 84 94 88 96
Top 100 79 91 94 98
Top 200 84 86 94 97
Top 300 88 87 85 99

PE vs NS Exp 2° Exp 3° Exp 4°
Top 20 GO terms 40 75 95
Top 50 86 84 90
Top 100 88 91 96
Top 200 78 95 9%
Top 300 80 88 96

replicates to each condition. The algorithm used to esti-
mate power is based on initial estimates of biological
variation in the samples and depth of sequencing. These
parameters were similar in the PE and SE datasets
(Table 5) and consequently the power calculations for
the PE and SE data yield the same result for up to the
third decimal place (Table 5).

SE data can be produced more economically than PE
and can potentially allow the use of additional replicates.
To investigate this, we tested whether differential

Table 4 Concordance for gene sets found in gene set analysis
using the camera function

PE vs SE Exp 19 Exp 2° Exp 3° Exp 4°
Top 50 gene sets 100 98 96 98
Top 100 98 98 98 97
Top 200 99 99 97 99
Top 400 99 PE total 243 98 99
PE vs NS Exp 2° Exp 3P Exp 40
Top 50 gene sets 98 96 98
Top 100 97 94 93
Top 200 99 9% 99
Top 400 PE total 243 96 96

Percentage concordance in the top GO terms (by FDR) found using the goana
function of limma when using the SE and PE datasets for each of

the experiments

PPercentage concordance in the top 20 GO terms (by FDR) found using the
goana function of limma when using the SE and PE datasets for each of

the experiments

®Percentage concordance in the top gene sets (by FDR) found using the
camera function of limma when using the SE and PE datasets for each of
the experiments

PPercentage concordance in the top top gene sets (by FDR) found using the
camera function of limma when using the PE strand specific and non-strand
specific datasets for experiments 2-4
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Table 5 Power calculations using functions in RNASegPower
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Depth? PE CVP SEQV© Fcd PE Power (n=3)° SE Power (n=3)f PE Power (n=5)° SE Power (n=5)f
Exp 1 10 02074 0.2069 15 02589 02592 03956 03961
2 06121 06127 0.8259 0.8264
Exp 2 10 0.1052 0.1007 15 03192 03215 04855 04887
2 07215 07251 09080 09103
Exp 3 10 0.099 0.0907 15 03223 03262 04899 04955
2 0.7264 0.7325 09111 09149
Exp 4 10 00264 00256 15 03464 03465 05241 05242
2 07628 0.7630 09324 09325

?Average depth of coverage

PBiological coefficient of variation derived from the estimateCommonDispersion function of edgeR for the PE data
“Biological coefficient of variation derived from the estimateCommonDispersion function of edgeR for the SE data

9Fold change

€The power calculations performed for the PE data using the RNASeqPower package
The power calculations performed for the SE data using the RNASeqPower package

expression analysis between controls and treated sam-
ples differed when using 3 biological replicates per con-
dition with SE data compared to using 2 biological
replicates per condition with PE data. In all cases we
found that using 3 biological replicates with SE data was
superior to using 2 biological replicates with PE data for
identifying DEGs, as judged against the gold standard
for this experiment (three biological replicates with PE).
However, it should be noted that our results were influ-
enced by which 2 biological replicates were chosen for
study, indicating the inadequacy of 2 replicates for esti-
mating biological variation. These data are presented in
Additional file 1, Additional file 2: Table S1 and
Additional file 3: Figure S1. The use of only 2 biological
replicates is extreme, and is not recommended, however
this analysis does indicate the benefit of increasing the
number of biological replicates even though this may be
at the expense of sequencing both ends of the RNA-seq
reads.

Discussion

RNA-Seq technology has been keenly embraced by the
research community, as evidenced by the hundreds of
publications involving the deep sequencing and analysis
of transcriptomes. Sequencing centres generally offer a
number of library preparation strategies, along with
paired-end or single-end sequencing. Initially, sequen-
cing chemistry could not distinguish the DNA strand
from which a read originated. However, straightforward
strand-specific chemistry has become available recently,
such as that provided by the Illumina TruSeq Stranded
Library Prep Kits, as used in this study. Sequencing
centres and researchers about to embark upon an RNA-
Seq project require information to make decisions
regarding library preparation. This motivated us to
undertake this comparison, involving four mammalian
RNA-Seq experiments.

Single-end sequencing involves half the amount of
sequencing as paired-end sequencing and thus halves
the sequencing cost, excluding sample preparation.
Based on this it is an attractive option. However, this
must be balanced against its drawbacks. Our study
shows that single-end reads, compared to paired-end se-
quencing, result in a reduction in the number of reads
that can be assigned to RNA features and a trend of
lower read counts per feature. As a consequence, be-
tween 0.72% and 4.29% of expressed genes had signifi-
cantly different counts when comparing the SE data to
PE data. The main reason for this appears to be the
discarding of multimapped reads which reduce the reads
that could be assigned to features. We found that this
had a strong effect on read counts for pseudogenes but
also affected other non-protein coding features as well
as protein coding genes.

Using a non-strand-specific protocol had an even
greater impact on results. Up to 12.26% of the tested
genes showed significantly different counts in the NS
data, as compared to the PE data. Non-strand specific
protocols therefore pose a definite risk to accurate
analysis. An earlier study comparing a stranded and
non-stranded RNA-Seq protocol in blood samples from
five human subjects found 10.65% of genes were differ-
entially expressed when comparing these protocols [12].
Our study gave similar results in the human samples
(12.26%, Exp 3 and 11.40%, Exp 4). Whilst SE data
showed a trend towards decreased read counts per gene,
the NS data was more variable with read counts being
higher for some genes but lower for others. It is interest-
ing though that many genes had reads allocated in the
NS protocol but no counts using the strand-specific
data. This spurious allocation of reads is likely to lead to
the incorrect assumption that certain features are
expressed when they are not. Indeed it has previously
been observed that a non-strand-specific protocol results
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in a significant fraction of genes having overestimated
expression values; this poses a significant problem given
that approximately 16% of protein coding genes are
overlapping [13].

Differential expression analysis of the controls and
treated samples, using PE data as a gold standard, re-
vealed that the NS data produces a greater proportion of
false positives and false negatives than occurs using the
SE data. We found that this had a non-negligible effect
on evaluating differential expression. In RNA-Seq ana-
lyses it is usual to derive a list of DEGs based on a
threshold statistical value, such as a multitest adjusted p-
value of 0.05. Adopting this standard approach single-
end data produced both false positives (average across
four experiments (edgeR, 7%, voom, 5%), and false nega-
tives (average across four experiments (edgeR, 4%, voom,
5%)). Differential expression analysis of the controls and
treated samples, using PE data as a gold standard, re-
vealed that the NS data produces a greater proportion of
false positives and false negatives than occurs using the
SE data (average false positives across three experiments
(edgeR, 9%, voom, 6%) and average false negatives across
three experiments (edgeR, 8%, voom, 7%).

The utility of single-end reads may depend on the
questions being asked in the research. When it comes to
understanding any functional differences between case
and controls in the experiment, we saw that SE reads
and NS reads can lead to a dramatic difference in the
top 20 gene ontology terms arising from enrichment
analysis. For example in Experiment 2, there was only
65% concordance in GO terms found between the SE
and PE data and 40% concordance between the NS and
PE data. Caution is thus to be advised if using SE data or
NS data. However, there was reasonable agreement be-
tween the top 300 GO terms identified from the DEGs.
If a comprehensive list of GO terms is used it is there-
fore likely that the same broad conclusions would be
drawn as to the functional effect of the treated samples
versus the controls. Interestingly, when we supplemented
the use of DEGs by a gene set enrichment analysis ap-
proach, which uses all tested genes, we found strong
agreement in the most significant gene sets. In this case,
the same biological conclusions could be drawn regardless
of the sequencing and read mapping method.

A final consideration when undertaking RNA-Seq is
the power to detect differentially expressed genes. This
increases with additional replicates. We estimate that
power to detect differential expression could be in-
creased by around 15% if the number of biological
replicates in each condition was increased from three to
five. As cost of sequencing is an important factor in
experimental design it may be that the combination of
single-end reads with increased number of biological
replicates would be a sound trade-off, especially if care is
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taken in the functional analysis of results. Our analysis
indicates that using 3 biological replicates per condition
with SE is preferable to using 2 biological replicates with
PE sequencing when undertaking differential expression
analysis. This is a rather extreme comparison, however it
does illustrate the important advantages that can be
gained with additional biological replicates.

There is no cost difference in using a strand-specific
and non-strand-specific library preparation. In this case
it is clear that a strand-specific method is preferable. A
strand-specific protocol avoids underestimation of read
counts as occurs when a read could be allocated to alter-
native features. The number of ambiguous reads
decreases and a strand-specific protocol avoids spurious
allocation of reads to features in cases where the feature
is not actually expressed.

Conclusions and recommendations

Using a paired-end strand-specific protocol is necessary
to obtain an accurate read count for all genomic
features. Errors in read counts will occur from use of
single-end or non-stranded sequencing, and lead to false
negatives and false positives in the analysis of differen-
tially expressed genes. This can and will affect down-
stream analysis, including in functional GO enrichment
analysis. Ultimately, this can affect the biological inter-
pretation of results.

At the same time it must be borne in mind that using
SE mapping reduces the sequencing cost and that this
saving could be used to increase the number of
biological replicates. This will increase the power of an
experiment, and may be a desirable trade-off. There is
no similar advantage in using a non-strand-specific
protocol and we would always recommend the use of a
strand-specific protocol.

In conclusion, the use of a strand-specific protocol is
recommended in all cases. The use of single-end reads
with additional replicates may be preferable to paired-
end reads with less replicates for differential expression
analysis. However, if transcriptome assembly is the pri-
mary objective of an experiment then use of paired-end
reads will be a better strategy.

Methods

Samples

Experiments 1 and 2 involved the use of mice. All ex-

perimental procedures were approved by the Animal

Care and Ethics Committee at UNSW Australia.
Experiment 3 involved the use of human primary

hematopoietic cells. All experimental procedures were

approved by the Human Research Ethics Committee and

Institutional Biosafety Committee at UNSW Australia.
Experiment 4 involved the use of a human NulLi cell

line [21] and did not require ethics approval.
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Transcriptome sequencing

mRNA libraries for all four experiments were prepared at
the Ramaciotti Centre for Genomics (UNSW Australia).
The Illumina TruSeq RNA Prep Kit was used for Experi-
ment 1. The Illumina TruSeq Stranded Total RNA Prep
Kit was used for Experiments 2-3 and the Illumina TruSeq
Stranded mRNA Prep Kit was used for Experiment 4. The
six RNA-Seq libraries in Experiment 1 were sequenced on
the Illumina HiSeq2000 platform, Experiments 2, 3 and 4
were sequenced using the Illumina NextSeq 500. R1.fastq
and R2.fastq files were produced for each sample.

Mapping RNA-Seq reads

The reads for Experiment 1 and Experiment 2 were
mapped to the Ensembl Mus musculus genome
(GRCm38). The reads for Experiment 3 and Experiment
4 were mapped to the Ensembl Homo sapiens genome
(GRCh38). Mapping was performed with Tophat2 (v
2.0.12) [14] calling Bowtie2 (v 2.1.0) [22]. For paired-end
mapping we used the settings: tophat2 -p 6 —library-type
fr-firststrand -G $gtf -o $output $ref *R1*.fastq.gz
*R2* fastq.gz. For single-end mapping we used the set-
tings: tophat2 -p 6 —library-type fr-firststrand -G $gtf -o
$output $ref *R1*fastq.gz. To process in a non-strand-
specific manner we used the settings: tophat2 -p 6 —li-
brary-type fr-unstranded -G $gtf -o $output $ref
*R1*fastq.gz *R2* fastq.gz.

The featureCounts function of Subread [15] was used
to generate counts of reads uniquely mapped to anno-
tated genes using the GRCm38 annotation gtf file and
the GRCh38 annotation gtf file respectively. For the bam
files produced from the strand-specific paired-end data
we used the script: featureCounts -s 2 -T 12 -p -a $gtf -t
exon -g gene_id -o $seq\featurecounts.txt n_sort.accep-
ted_hits.bam. For the bam files produced from the
strand-specific single-end data we used the script: fea-
tureCounts -s 2 -T 12 -a $gtf -t exon -g gene_id -o
$seq\featurecounts.txt n_sort.accepted_hits.bam. For the
non-strand-specific protocol we used the script feature-
Counts -s 0 -T 12 -p -a $gtf -t exon -g gene_id -o $seq\
featurecounts.txt n_sort.accepted_hits.bam.

Differential gene expression analysis

Tables of raw counts generated using featureCounts
were used as input in all analyses. Comparison of con-
trols in the PE, SE and NS datasets was performed using
edgeR (v3.14.0). We excluded lowly expressed genes and
tested those genes with expression of at least 1 CPM
(counts per million) in at least one of the controls. The
number of genes retained for testing in each of the ex-
periments was as follows: Experiment 1: 15456, Experi-
ment 2: 12702, Experiment 3: 14016, Experiment 4:
14166. Counts were normalized using the TMM method
and generalized linear models were used for differential
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expression analysis. Comparison of the controls versus
treated samples in each of the four experiments was per-
formed using functions in the edgeR (v 3.14.0) [23] and
limma (v 3.28.17) [17] Bioconductor packages. Low
count transcripts were excluded and only those genes
with at least 1 count per million (cpm) in at least 3 sam-
ples were used for analysis. In all cases differentially
expressed genes were defined as those genes with a
Benjamini-Hochberg corrected p value less than 0.05.

Functional analysis

We used the goana function [18] included in the
limma Bioconductor package to find the most
enriched gene ontology terms in the lists of DEGs.
The Gene Ontology (GO) terms in the categories Bio-
logical Process, Cellular Component and Molecular
Function were included. The false discovery rate
(FDR) was set to 0.05 and the function topGO was
used to order the GO terms by statistical significance.
We compared sets comprised of the top 20, 50, 100,
200 and 300 GO terms.

We used the camera function [19] included in the
limma package to perform gene set enrichment analysis.
We interrogated the gene sets contained in mou-
se_c2_v5.rdata for mouse and human_c2_v5.rdata for
human downloaded from http://bioinf.wehi.edu.au/soft-
ware/MSigDB. We used an inter.gene.cor =0.01 and an
FDR value of 0.01. We compared sets comprised of the
top 20, 50, 100, 200 and 300 GO terms.

Power calculations

We carried out power calculations using the RNASeq-
Power package [24]. The required inputs to the rna-
power function are the coefficient of variation
between biological replicates (CV) and average read
depth per gene. We calculated the biological co-
efficient of variation in each experiment using the
function estimateGLMCommonDisp from edgeR. We
used an average depth of 10 reads and confirmed this
estimate by creating multidensity plots of count
distribution.

Additional files

Additional file 1: Comparing differential expression analysis using 2
biological replicates of the PE data versus using 3 biological replicates of
the SE data. This document contains the DE analysis of control versus
treated samples conducted using only 2 biological replicates from the PE
data set compared to results obtained using 3 biological replicates from
the SE data set. (DOCX 184 kb)

Additional file 2: Table S1. Numbers of DEGs found using 2 biological
replicates with PE and 3 biological replicates with SE. (XLSX 42 kb)

Additional file 3: Figure S1. Venn diagrams of the DEGs comparing 3
biological replicates from the SE data with 2 biological replicates from
the PE data. (PPTX 237 kb)
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