
SOFTWARE Open Access

lncRNA-screen: an interactive platform for
computationally screening long non-coding
RNAs in large genomics datasets
Yixiao Gong1,2, Hsuan-Ting Huang3, Yu Liang4, Thomas Trimarchi5, Iannis Aifantis1,2* and Aristotelis Tsirigos1,2,6*

Abstract

Background: Long non-coding RNAs (lncRNAs) have emerged as a class of factors that are important for regulating
development and cancer. Computational prediction of lncRNAs from ultra-deep RNA sequencing has been
successful in identifying candidate lncRNAs. However, the complexity of handling and integrating different types of
genomics data poses significant challenges to experimental laboratories that lack extensive genomics expertise.

Result: To address this issue, we have developed lncRNA-screen, a comprehensive pipeline for computationally
screening putative lncRNA transcripts over large multimodal datasets. The main objective of this work is to facilitate
the computational discovery of lncRNA candidates to be further examined by functional experiments. lncRNA-
screen provides a fully automated easy-to-run pipeline which performs data download, RNA-seq alignment,
assembly, quality assessment, transcript filtration, novel lncRNA identification, coding potential estimation,
expression level quantification, histone mark enrichment profile integration, differential expression analysis,
annotation with other type of segmented data (CNVs, SNPs, Hi-C, etc.) and visualization. Importantly, lncRNA-screen
generates an interactive report summarizing all interesting lncRNA features including genome browser snapshots
and lncRNA-mRNA interactions based on Hi-C data.

Conclusion: lncRNA-screen provides a comprehensive solution for lncRNA discovery and an intuitive interactive
report for identifying promising lncRNA candidates. lncRNA-screen is available as open-source software on GitHub.
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Background
The landscape of transcription in organisms is now known
to be complex and pervasive, producing a wide range of
small and long RNA species with a variety of biological
functions discovered so far [1–3]. One of the least charac-
terized yet largest class of RNA species are the long non-
coding RNAs (lncRNAs). The most basic definition of a
lncRNA is a long RNA, at least 200 base pairs in length,
that does not encode protein. They can be further classi-
fied by features such as their genomic location, structure,
and expression [4]. Of the small number of lncRNAs that
have been characterized, they have been shown to be func-
tionally important for chromatin and other cellular
processes that affect organismal development and cancer

[5, 6]. However, there are 28,031 lncRNA transcripts
annotated to date in GENCODEv19 and 91,000 in
MiTranscriptome, and this number will continue to grow
as deeper and more sensitive RNA sequencing data are
generated. Recently, large-scale lncRNA analyses of pub-
lished data (e.g. TCGA) have been conducted [7, 8], how-
ever the authors have not made their pipelines available. A
number of databases and bioinformatics tools have been
developed to annotate and catalog lncRNAs that are
known or novel [9]. LncRNA2Function [10], LNCipedia
[11], lncRNAdb [12] and lncRNAtor [13] provide compre-
hensive databases for known, annotated lncRNAs. iSeeRNA
[14], CPC [15] and CPAT [16] introduced machine
learning-based approaches only focusing on assessment of
the coding probability of potential lncRNAs. lncRScan [17]
and its new version lncRScan-SVM [18] are pipelines which
provide novel multi-exonic lncRNA only discovery from
RNA sequencing (RNA-seq), lacking the ability to integrate
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other data types to further filter for interesting lncRNA
candidates. It is known that lncRNAs, like coding genes,
are enriched for histones that mark transcriptionally active
sites such as histone H3K4me3 and H3K27ac [19, 20]. This
approach has led to the successful identification of
LUNAR1 and its function in regulating the IGF1R locus to
sustain T-cell leukemia growth [21]. Thus integrating other
genomic features allows for identification of lncRNAs with
important biological functions. One of the fundamental is-
sues in the field is to identify the function of the discovered
lncRNAs. In this context, the ability to integrate a variety of
genomic datasets to increase the probability of identifying
lncRNAs that are functionally relevant will be of great
value. Thus having an extensive bioinformatics pipeline that
can quickly annotate and classify lncRNAs from RNA se-
quencing (RNA-seq) data will be valuable for identifying
strong candidates for biological validation. To this end, we
have developed an extensive computational pipeline to inte-
grate different types of experimental data to annotate
lncRNAs, which can be filtered by the user to identify spe-
cific lncRNAs of interest. The pipeline first aligns and as-
sembles RNA-seq data to build a comprehensive
transcriptome assembly for all the samples. Then, using a
series of filtering criteria based on gene annotations, se-
quence length, expression level, coding potential and other
features, a list of putative lncRNA candidates is defined
containing basic information that includes transcript size,
genomic location, and differential gene expression. After-
wards, depending on the raw data that the user may pro-
vide, our pipeline can process and annotate the putative
lncRNAs with other processed information such as ChIP-
seq data, copy number variation, Hi-C interaction etc. Gene
tracks for UCSC genome browser and lncRNA local gen-
omic snapshots are generated simultaneously in order to
quickly visualize and assess each lncRNA by its features.

The output of the pipeline is a comprehensive table and an
interactive HTML report containing all the putative
lncRNAs with their corresponding genomic features that
the user has added into the pipeline. This report can then
be filtered interactively by the user for specific lncRNAs of
interest based on any combination of the genomic features
included in the analysis.

Implementation
The lncRNA-screen workflow
lncRNA-screen is an extensive analysis pipeline providing
various useful functions for lncRNA annotation and
candidate selection. It encompasses multiple automated
processes designed for lncRNA discovery and computa-
tional selection, including public data download, locally
sequenced data integration (RNA-seq and ChIP-seq
datasets), comprehensive transcriptome assembly, coding
potential estimation, expression level quantification,
differential expression comparisons and analysis, and lncRNA
classification. Our pipeline enables fully customizable
lncRNA discovery with insightful visualization embedded in
each step of data processing. Most importantly, lncRNA-
screen automatically generates an interactive lncRNA feature
report that allows the user to conveniently search,
filter, and rank by important features (e.g. expression
level, presence of histone marks, etc.) extracted from
the different input data types. Additionally, it provides a
genome snapshot of each lncRNA locus to help user
visually assess the relevance and quality of each candidate
lncRNA. The main functionality of the lncRNA-screen
pipeline compared to other published lncRNA analysis
tools is summarized in Table 1. According to the table,
lncRNA-screen provides the most extensive computa-
tional lncRNA discovery pipeline to date. The
lncRNA-screen workflow can be divided into two

Table 1 The function comparison between lncRNA-screen and other publically available software

lncRNA-screen coRAL RNA-CODE lncRScan iSeeRNA CIRI Annocript LncRNA2Function

Stand-alone server √ √ √ √ √ √ √

Parallel computing √

Online server √ √

Raw data support √ √ √ √ √ √ √

Processed data support √ √

TCGA, GEO, SRA data automatic download √

Known lncRNA identification √ √ √

Novel lncRNA identification √ √ √ √

Differential expression analysis √ √ √ √ √ √

ChIP-seq histone mark integration √

Hi-C data integration √

lncRNA genome snapshots √

Interactive lncRNA report √
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main phases (Fig. 1). In Phase I, the pipeline first conducts
RNA-seq alignment and assembly individually for each
sample and then merges them in order to construct a com-
prehensive transcriptome assembly. Next, a series of filtra-
tion steps are applied in order to detect lncRNAs based on
reference annotations and genomic location. A putative
lncRNA candidate list is generated in Phase I for further
classification in Phase II using different data types. In Phase
II, expression levels of the putative lncRNAs are quantified
in all the samples and summarized at multiple user-defined
group levels. Moreover, by integrating with ChIP-seq data,
we identify typical histone mark profiles (H3K4me3,
H3K27ac) around the TSS region of all lncRNAs. Pairwise
differential expression analysis can also be performed be-
tween any two groups. At the same time, lncRNA-screen
annotates all putative lncRNAs using the information
obtained from the analysis and supplemented by additional
types of “segmented” data (CNVs, SNPs, Hi-C, etc.) in
order to generate a comprehensive interactive lncRNA fea-
ture report. The user can easily adjust parameters (see

README.md file on GitHub repository) to find the most
confident and functionally relevant lncRNAs candidates for
further experimental validation. Furthermore, lncRNA-
screen automatically produces different summary plots and
a flowchart providing intuitive guidance to the user for
adjusting the parameters. Finally, for every lncRNA,
lncRNA-screen generates a genome snapshot which
shows the gene structure, expression pattern and
histone mark profile for the neighboring area.
Additionally, if processed Hi-C data is provided, a
local Hi-C interaction snapshot revealing potential
looping events between each lncRNA and its neigh-
boring genes is also generated.

Obtain the software and environment setup
lncRNA-screen is open-source software, free for aca-
demic use and available for download from GitHub re-
pository: https://github.com/NYU-BFX/lncRNA-screen.
Detailed instructions can be found in Additional file 1:
Supplementary Material 2. It depends on a pipeline that

Fig. 1 The workflow of lncRNA-screen. Phase I conducts RNA-seq alignment and transcriptome assembly, performs transcript filtration and generates a
putative lncRNA list. Phase II uses RNA-seq expression quantification, ChIP-seq histone marks and user-defined annotations (CNVs, Hi-C, etc.) to classify
lncRNA into different groups
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performs standard RNA-Seq analysis, also available on
GitHub: https://github.com/NYU-BFX/RNA-Seq_Stan-
dard (instructions are provided in Additional file 2: Sup-
plementary Material 3). Most of the dependencies used
in this pipeline are integrated into our software packages
and do not need to be re-installed or re-complied in
Linux systems. All the R packages used will be down-
loaded automatically as the pipeline runs. A detailed
description of all the dependencies and environment
setup can be found in Additional file 3: Supplementary
Material 4. Users can easily follow the instructions and
we are continuously providing support of any questions
regarding the lncRNA-screen pipeline installation.

Input data, sample sheet and group information setup
lncRNA-screen provides fully automated and parallel
download of raw RNA-seq FASTQ files from different
public data repositories including the Sequence Read
Archive (SRA) from the National Center for Biotechnol-
ogy Information (NCBI) and The Cancer Genome Atlas
(TCGA). The user only needs to provide a list of SRA
accession numbers or TCGA UUIDs matched with user-
defined sample names to be used throughout the ana-
lysis in a sample sheet file. The pipeline automatically
downloads the relevant files, while the various tools
within our pipeline automatically identify them as the
appropriate inputs for downstream analyses. Processed
ChIP-seq histone mark data (H3K4me3, H3K27ac and
H3K4me1) is required in BED4 format where the fourth
column corresponds to the ChIP enrichment score, cal-
culated by MACS2 or any other peak calling tool. Any
type of data that can be represented as segmented data
in BED4 format (e.g. CNV or SNP data) is also sup-
ported as input to lncRNA-screen. For example, copy-
number variation segments can be integrated by
lncRNA-screen to identify lncRNAs located in recur-
rently amplified or deleted regions in cancer samples. A
group information sheet is also required, where rows
correspond to sample names and different grouping
strategies can be designated by adding an arbitrary num-
ber of columns. These groups might be different cell
types, experimental conditions etc. Matched histone
mark data for each group are also assigned using this
file. lncRNA-screen will automatically perform the ana-
lysis for all user-defined grouping strategies.

Read quality assessment for RNA-seq data
FastQC (http://www.bioinformatics.babraham.ac.uk/pro-
jects/fastqc) is a commonly used package for assessing
the Next-generation sequencing read quality. lncRNA-
screen utilizes FastQC as an automatic quality control
(QC) procedure for each sample. It reports the distribu-
tion of average per-base and per-sequence quality, per-
base and per-sequence GC content, sequence length

distribution, sequence duplication level, etc. This infor-
mation allows the user to quickly diagnose irregularities
in their input samples and take appropriate action.
Based on the results, the user can decide whether to
perform pre-processing of the FASTQ files such as trim-
ming during the next step.

Read alignment
Next, all sequences are aligned using the Spliced
Transcripts Alignment to a Reference (STAR) software
[22]. A pre-built STAR genome index is required in ad-
vance. For each sample, the pipeline identifies all the
raw reads belonging to each sample, automatically deter-
mines whether they are single-end or paired-end and
properly groups read pairs as well as different sequence
files originating from different sequencing lanes. Then,
STAR will automatically determine the strand specificity
and read length. This is a significant advantage com-
pared to TopHat2 [23] and other aligners, given that it
is oftentimes a challenging task to retrieve this informa-
tion from large public datasets such as TCGA or SRA.
Determining this automatically using STAR is also useful
in subsequent steps, for example during transcriptome
assembly performed by Cufflinks. Trimming, soft clip-
ping and other type of necessary pre-preprocessing of
the reads can be done by STAR during the alignment
process. Only uniquely mapped reads are retained in the
final alignment. Raw read counts are generated at the
same time by the STAR aligner for all the annotated fea-
tures in the GENCODEv19 GTF as default annotation
file (or other user supplied annotation files) provided
when aligning the samples.

Post-alignment assessment and processing
After alignment, Picard-Tools (http://broadinstitute.-
github.io/picard) are used to assess the duplication rate
and remove duplicate reads if necessary. We then gener-
ate read coverage signal track files in BIGWIG format
with adjustable resolution compatible with IGV and
UCSC genome browsers. The pipeline also provides a
function which can merge and generate combined track
files at the group level. An interactive HTML RNA-seq
analysis report is generated automatically which
incorporates an alignment quality report (example
shown in Fig. 2; see Results for details) allowing the user
to quickly inspect the alignment rates and the number
of usable reads. A sample distance plot (example shown
in Fig. 3; see Results for details) represents an unbiased
clustering of the samples based on genes annotated by
GENCODEv19. The pipeline also performs differential
expression analysis for each pair of groups and reports
all the GENCODEv19 annotated genes that pass a user-
defined significance threshold if the number of groups
provided by the user is sufficiently small (up to 10). The
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user can perform differential expression analysis semi-
automatically for specific comparison groups if number
of groups exceeded 10. This interactive RNA-seq report
is designed for providing an overview of the sample dif-
ferences and similarities between and within groups and
for verifying that the user-defined list of genes follow the
expected expression pattern across different groups.

Transcriptome assembly construction
Aligned sequences are assembled individually by Cuf-
flinks 2.2.1 [24] using GENCODEv19 annotation as a
guide transcriptome with default parameters. All riboso-
mal RNAs and snRNAs are masked. The strand specifi-
city is automatically determined by the pipeline based
on the result of STAR aligner. Finally, we use Cuffmerge

to merge all the assemblies into a single comprehensive
assembly from all assembled transcripts with GENCO-
DEv19 annotation as a guided assembly.

Comprehensive identification of putative lncRNAs
To distinguish known transcripts from novel transcripts,
we use the Cuffcompare result generated during
Cuffmerge process, which compares the comprehensive
assembly from all assembled samples and GENCODEv19
reference annotation. Based on the Cuffcompare classifi-
cation result, all of the transcripts are categorized into
12 different classes (see http://cole-trapnell-lab.github.io
/cufflinks/cuffcompare/#transfrag-class-codes). The user
can define which categories to keep. By default, we keep
the three following categories: a transfrag falling entirely
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Fig. 2 RNA-seq alignment quality plot: (a) read percentages, (b) read counts
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within a reference intron (class code “i”); unknown, inter-
genic transcript (class code “u”); an intron of the transfrag
overlaps a reference intron on the opposite strand; exonic
overlap with reference on the opposite strand (class code
“x”). Annotated lncRNAs by GENCODEv19 will be added
back to the filtered transcripts, forming a comprehensive
annotated and novel lncRNA assembly. Then this lncRNA
assembly is merged at gene level based on the unique gene
ID given by Cuffmerge. Alternatively, spliced transcripts for
each gene can be retrieved in the future if necessary by
searching the entire transcript annotation by the Gene ID.
Then, for each protein-coding gene in GENCODEv19, we
extract its transcription start site (TSS) and extend it by
1.5 KB upstream and downstream (default value, modifiable
by the user) to include potential alternative transcription
start sites of protein-coding genes. Any putative lncRNA
overlapping with these regions on the same strand will be

excluded from the putative lncRNA list considering that al-
ternative TSSs of the protein-coding genes may appear as
novel transcripts. Annotated microRNAs, snRNAs,
srpRNAs, tRNAs, scRNAs and antigen receptors datasets
were obtained from UCSC and ENSEMBL databases. The
last step of filtration is to exclude transcripts less than
200 nt (default value, modifiable by the use) in length,
based on the lncRNA definition. This subset of putative
lncRNA is considered to be the comprehensive putative
lncRNA assembly and is used in all downstream analyses.
Moreover, we annotate all the remaining putative lncRNAs
into different categories based on their overlaps with
RefSeq [25, 26], ENSEMBL and MiTranscriptome.

Estimation of lncRNAs abundances
We use featureCounts [27] to count the raw reads for all
the genes included in the putative lncRNA assembly and

Fig. 3 Sample distance report shows unbiased clustering of the samples based on the ENSEMBL annotated genes
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GENCODEv19 annotations. Strand-specificity and
counting single-end versus paired-end reads is deter-
mined by the pipeline automatically in the previous step.
The read abundance calculation is performed at the gene
level and all the reads included are uniquely mapped.
FPKM values are calculated accordingly. A summary bar
chart is automatically generated after featureCounts is
performed (example in Additional file 4: Figure S1),
showing the number and percentage of reads/fragments
that have been utilized by the assembly. Problematic
samples can be identified in this step and should be ex-
cluded from the study if the percentage of reads/frag-
ments assigned to the assembly is too low.

Coding potential estimation
We use Coding Potential Assessment Tool (CPAT) to
estimate the coding potential of the filtered putative
lncRNA. Using the pre-trained human (hg19) logistic re-
gression model, CPAT reports putative ORF size and
coding probability for each transcript. The optimum cut-
off for human gene annotation is 0.364 as determined in
the CPAT manuscript. The distribution of ORF sizes and
coding potential scores for protein-coding and non-
coding transcripts is produced automatically (example
shown in Fig. 4; see results for details).

Integration of histone mark ChIP-seq data
ChIP-seq peaks for H3K4me3, H3K27ac and H3K4me1
can be used directly as input to lncRNA-screen. Alterna-
tively, lncRNA-screen can perform its own ChIP-seq
analysis starting from raw FASTQ files. Using Botwie2
[28] for alignment and MACS2 [29] for peak calling, his-
tone mark peaks can be identified. Broad peak calling is
used (q-value <0.05) and fold enrichment compared to
the input is calculated. A user-defined fold change cutoff
can be applied. Then we extend each putative lncRNA
transcription start site by 1.5 KB upstream and

downstream and assign the histone marks that have a
peak overlapping this extended TSS region. The fold en-
richment value of each overlapping peak is reported for
each lncRNA.

Defining group-enriched lncRNAs
In order to determine all expressed lncRNAs in a spe-
cific group, the pipeline allows the user to set a FPKM
cutoff based on the distribution of the lncRNA expres-
sion level. Then, we compute the average FPKM values
for all the putative lncRNAs among different sample
groups. Samples which have FPKM value below the cut-
off are excluded before computing average FPKM values
within groups. The number of samples that have an
FPKM value above the cutoff will also be reported. Next,
combining the ChIP-seq histone mark overlaps with the
FPKM cutoff, we are able to define group-enriched
expressed lncRNAs based on their expression value and
the histone mark enrichment in the extended TSS re-
gions. The user can specify which histone mark (or com-
bination of histone marks) must be present. By default,
we define a lncRNA as being expressed in a specific
group by requiring the mean FPKM in this group to be
greater than a user-defined cutoff (default 0.5) while
overlapping with H3K4me3 histone marks in its ex-
tended TSS region. Additionally, we define an enhancer-
RNA to be expressed in a specific group, if its mean
FPKM in this group exceeds the cutoff value while over-
lapping with both H3K4me1 and H3K27ac but not with
H3K4me3 histone marks in its extended TSS region. A
“pie matrix” illustrating the number of lncRNAs in cat-
egories characterized by different histone marks, as well
as the intersections between different sample groups is
automatically generated (example shown in Fig. 5). The
group information table, as described in a previous sec-
tion, is essential for the pipeline to group the related
samples or replicates under the same group name and to
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match the RNA-seq data and ChIP-seq data. Different
levels of grouping can be achieved by adding an add-
itional group column so that the user can explore the
similarity and difference between samples in different
ways.

Pairwise differential expression analysis between
designated groups
Our pipeline also integrates pairwise differential expres-
sion analysis using DESeq2 [30]. If a list of pairwise
comparison groups of interest is provided, the pipeline
performs all the differential expression analyses provided
in the list. Otherwise, by default the program performs
differential expression for up to 10 comparison groups.

P-values, FDR, and log2 fold changes are provided for
each lncRNA.

lncRNA selection and the comprehensive putative lncRNA
feature report
The default criteria of lncRNA selection are illustrated
in the example flowchart of Fig. 6. The flowchart is gen-
erated automatically and shows in detail the filtering cri-
teria applied in each step as well as the number of
putative lncRNA selected (and excluded). This allows
the user to inspect the breakdown of the impact of each
filtration step. The user can then modify the parameter
file and re-run all the steps after the “expression estima-
tion” step, thus obtaining an updated lncRNA list and
the corresponding flowchart using their custom criteria.

Fig. 5 Pie-matrix showing the number of lncRNAs in categories defined by different histone mark enrichment profiles and pairwise overlap of
lncRNAs between different groups in different categories. The pie charts in the diagonal from top left to bottom right show total number of
lncRNAs in each group and categorize based on the histone mark enrichment profile. Other pie charts above this diagonal show the overlap of
lncRNAs between the column and row names of the groups in different histone mark enrichment categories. Remaining pie charts below the
diagonal show only the total number of overlapping lncRNAs between the column and row names of the groups. The sizes of the pie charts
represent the total number of lncRNAs in each group

Gong et al. BMC Genomics  (2017) 18:434 Page 8 of 18



Finally, we collect all the results generated by our pipe-
line into a comprehensive putative lncRNA feature re-
port which includes the columns shown in Table 3. The

comprehensive putative lncRNA feature report is pro-
vided to the user in both HTML (example snapshot
shown in Fig. 7) and Excel formats. Both versions allow

Fig. 6 Flowchart of lncRNA selection criteria and number of lncRNAs retained in each step
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Fig. 7 A screenshot of the interactive HTML report generated by lncRNA-screen, which enables sorting, filtering, searching based on different
lncRNA features and a preview of the lncRNA genome snapshot and local heatmap
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the user to conveniently filter and search based on user-
defined criteria.

lncRNA heatmaps
Two types of heatmaps are generated for selected
lncRNAs which pass all the filtration criteria. First, we
generated a supervised clustering heatmap (example
shown in Fig. 8), designed to show the group-enriched
lncRNAs. Because a lncRNA may be expressed in

different groups at the same time, in this type of heat-
map, the lncRNAs may appear multiple times. The order
of the sample groups is the same as the order of the
lncRNAs discovered in each group, which ensures that
the group-enriched lncRNAs are always located near the
diagonal of the heatmap. Second, we provide an un-
supervised hierarchical clustering heatmap (example
shown in Fig. 9) for samples (columns) as well as
lncRNAs (rows). This heatmap lets the user inspect the

Fig. 8 Supervised lncRNA expression heatmap. It plots all group-enriched lncRNAs selected by user-defined filtration criteria. lncRNAs may appear
multiple times due to co-expression in multiple groups. The order of the samples is the same as the order of the lncRNA discovered in each group
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similarity and specificity between sample groups in the
filtered lncRNA level, and also allows the user to search
for lncRNAs co-expressed or co-differentially expressed
between groups.

lncRNA genome snapshots
The pipeline generates a genome snapshot (example
shown in Fig. 10) for each lncRNA, centered around
the lncRNA locus and zooming out 10 times from
the lncRNA length. In this snapshot, the user can

choose to display ENSEMBL, RefSeq, GENCODEv19,
or other user-defined GTF or BED format annota-
tions. The comprehensive merged assembly is also
shown in this snapshot, containing all the transcripts
assembled without any filtration criteria steps. More-
over, the user can choose to plot bigwig RNA-seq
signal tracks either at the merged group level or at
the sample level. The HTML report (Fig. 7) also
includes a preview of the lncRNA genome snapshot
for all lncRNAs.

Fig. 9 Unsupervised lncRNA expression heatmap. Hierarchical clustering is performed in both rows and columns which categorized lncRNAs into
different groups and identify sample similarity and difference
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Results
Quick installation, setup, execution and interactive
browsing of the results
lncRNA-screen can be downloaded as a single zip file from
GitHub through the link below. The reference files setup
script step will automatically download the necessary refer-
ences and dependencies. Following instructions in the “how
to run” link below, the user can easily set up the preferred
parameters and run the entire pipeline using a single com-
mand. After the run is completed, the user can interactively
browse the results using the automatically generated HTML

report (see example below) or import the automatically gen-
erated table into Excel to do more complex filtering.
Setup and excute: https://github.com/NYU-BFX/lnc

RNA-screen/blob/master/README.md
Browse the results: http://www.hpc.med.nyu.edu/~gon

gy05/lncRNA-screen/H1_Cells/lncRNA_report.html

lncRNAs in Roadmap Epigenomics
To demonstrate the usage and performance of lncRNA-
screen in big datasets, we used data from the Roadmap
Epigenomics project [31], which contains RNA-seq and

Fig. 10 lncRNA genome snapshot. Snapshot of the area surrounding each lncRNA, showing the RefSeq annotations, lncRNA-screen assembly and
selected RNA-seq or ChIP-seq signal tracks
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ChIP-seq data representing a collection of human stem
cells and tissue type. The raw FastQ reads of total 198
RNA-seq samples from Roadmap Epigenomics project
were downloaded from SRA using SRA-toolkit and
aligned to the GENCODEv19 reference genome by
STAR (version 2.4.2a) with default parameters (see
methods). After quality control (Fig. 2 and Additional file 4:
Figure S1), 187 samples (see Additional file 4: Table S1)
were successfully processed and classified into 40 groups
based on cell type. Accepted reads for each sample were as-
sembled individually using Cufflinks (version 2.2.1) provid-
ing the guide reference (RefSeq Flat Table GTF file).
Cuffmerge was employed to merge all the assemblies into a
comprehensive transcriptome assembly, yielding 491,218
transcripts, forming 229,442 genes in total. By comparing
the merged comprehensive transcriptome assembly with
GENCODEv19 annotated genes using Cuffcompare, tran-
scripts are classified into different categories based on their
structure compatibility of the GENCODEv19 reference an-
notation. All filtering steps in Phase I of lncRNA-screen, in-
cluding the number of lncRNAs selected and discarded by
various filtering criteria are shown in Fig. 6. The total num-
ber of putative lncRNAs identified are 178,473. Both our
coding genes, annotated and novel lncRNA candidates were
tested by CPAT and the coding potential distribution com-
parison are in Fig. 4. Novel lncRNA and annotated lncRNA
discovered in this pipeline showed similar distribution in
ORF and coding potential, and significantly different than
coding genes. We use the recommended coding potential
cutoff 0.364 for human genome, excluding 11,725 genes
from our putative lncRNA list, which is 6% of our total can-
didates. We also included the ChIP-seq histone marks
broad peak calling result from MACS2 (H3K4me3,
H3K27ac and H3K4me1) from Roadmap Epigenomics

project for all of the 40 groups and matched them with cor-
responding RNA-seq sample groups. The lncRNA feature
report in both HTML (see the link in GitHub) and Excel
format (see the link in GitHub) included all 178,473 puta-
tive lncRNAs and their features shown in Table 2. The
lncRNA feature report (Fig. 9) not only enables sorting, fil-
tering, searching for all lncRNA features extracted from

Table 2 List of features included in the final lncRNA feature report

Single Column One column per group

lncRNA ID Mean FPKM above user-defined threshold

Locus Percentage of samples above FPKM
threshold

Number of Exons H3K27ac peak enrichment score

Gene Body Size H3K4me3 peak enrichment score

ORF Size H3K4me1 peak enrichment score

Coding Probability Histone marks enrichment and FPKM
cutoff combination

Gencode Annotation Differential expression analysis between
groups

RefSeq Annotation Hi-C interaction between lncRNA and
neighboring coding genes

Ensembl Annotation

MiTranscriptome Annotation

SNPs annotation

Copy number gain/loss value

Table 4 Number of transcripts by category for each multi-lineage
differentiated embryonic stem cells

Cell Type enhancers eRNA lncRNA mRNA

hESC 6323 286 1231 8605

Mesench 16,736 318 724 8660

Mesendo 2371 309 910 8396

Neupro 1487 52 1152 8652

Trophect 12,663 321 888 8766

Table 3 Number of putative lncRNAs identified in each group

Group Number of
lncRNAs

Group Number of
lncRNAs

Adipose 8709 Fetal Thymus 5763

Adrenal Gland 3950 Gastric 3978

Bladder 695 H1 BMP4 derived
mesendoderm

1711

CD14 3982 H1 BMP4 derived
trophoblast

844

CD19 6188 H1 derived mesenchymal
stem cells

443

CD34 3661 H1 derived neuronal
progenitor

1067

CD3 6113 H1 8271

CD4 5232 Heart Aorta 17,092

CD56 9596 Heart Central 6126

Esophagus 3443 hESC-derived CD184 P
endoderm

1367

Fetal Adrenal Gland 12,008 hESC-derived CD56 P
ectoderm

2086

Fetal Fibroblasts 1568 hESC-derived CD56 P
mesoderm

900

Fetal Heart 2081 HUES64 1257

Fetal Kidney 4429 IMR90 2152

Fetal Large Intestine 5824 Liver 785

Fetal Lung 4930 Lung 2359

Fetal Muscle 10,477 Ovary 1056

Fetal Oary 2472 Pancreas 5204

Fetal Renal Cortex 4578 Placenta 9030

Fetal Renal Pelvis 4621 Psoas Muscle 2223

Fetal Small Intestine 4508 Sigmoid Colon 18,827

Fetal Spinal Cord 8113 Small Intestine 4760

Fetal Spleen 2448 spleen 2953

Fetal Stomach 10,330 Testes Pool 1266
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different data resources, but also includes a preview of the
lncRNA genome snapshot. Examples of high confident
lncRNA local snapshot is shown in Fig. 10. The report also
includes a pre-set UCSC Genome browser session link to
provide advanced genome browse function. With default fil-
tration parameters, pie-matrix (Fig. 5) is showing all the
lncRNAs expressed (mean FPKM >0.5) in at least one group
by categories defined by 3 histone mark overlaps in the ex-
tended TSS regions (TSS flanked by +/− 1.5 KB). It also
shows pairwise overlap of lncRNAs between different groups
in different categories. A total of 8207 unique lncRNAs were
identified as expressed in at least one group and have all
H3K4me3, H3K4me1 and H3K27ac histone marks enrich-
ment in its matched cell type group. And a total of 26,144
unique enhancer-RNAs were identified as expressed in at
least one group and having both H3K4me1 and H3K27ac
but do not have H3K4me3 histone marks enrichment in the
matched group. A breakdown list of number of lncRNAs
identified in each group is in Table 3. For these lncRNAs
identified in each group, we generated a supervised heatmap
(Fig. 7) ensuring the order of the groups and the order of
lncRNAs of each groups to be identical for rows and col-
umns. Therefore, the diagonal position of the heatmap shows
relatively higher FPKM values across all the samples which
proved that lncRNAs identified in a specific group have the
relatively higher expression values comparing to other
groups. The unsupervised automatic hierarchical clustered
heatmap (Fig. 8) for all the 8207 unique group-enriched
lncRNAs revealed some clusters of lncRNAs which are

differentially expressed in TALL cell lines comparing with
other cell types.

Integration with Hi-C data
To demonstrate the flexibility of our pipeline we inte-
grated RNA-seq/ChIP-seq data from Roadmap
Epigenomics with matched Hi-C data from a previous
study [32, 33]. First, we rerun the lncRNA-screen pipe-
line focusing only on the samples that have matched Hi-
C data (the report is included in GitHub). For each cell
type, we defined expressed mRNAs, lncRNAs including
annotated and novel, enhancer-RNAs and enhancer re-
gions using expression profile and H3K4me3, H3K27ac
and H3K4me1 histone mark occupancy. The numbers of
elements in each category for each cell type are included
in Table 4. Hi-C analysis was performed using our HiC-
bench pipeline [34]. HiC-bench automatically produces
various plots to help the user assess the quality of the
data as well as compare different samples. Paired-end
reads were mapped to the reference genome (hg19 or
mm10) using Bowtie2 [28]. Local alignments of input
read pairs were performed as they consist of chimeric
reads between two (non-consecutive) interacting frag-
ments. This approach yielded a high percentage of map-
pable reads (>25%) for all datasets. Mapped read pairs
were subsequently filtered for known artifacts of the Hi-
C protocol such as self-ligation, mapping too far from
the enzyme’s known cutting sites etc. (Fig. 11). Samples
clustered as expected by Principal Component Analysis
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(Additional file 4: Figure S2A), and the average Hi-C
count showed the characteristic dependency on the dis-
tance between the interacting fragments as demon-
strated in previous studies (Additional file 4: Figure
S2B). Additional file 4: Figure S3A, B shows the sizes
and the number of detected topologically-associated do-
mains (TADs) detected in each cell type and each repli-
cate, and Additional file 4: Figure S3C shows the
pairwise overlaps of boundaries between all pairs of
samples and replicates. HiC-bench also generates a table
of all the interacting loci annotated with genes, ChIP-seq
peaks and any other region file that the user provides.
Using this feature, we compiled a comprehensive report
of all interactions that involve the lncRNAs discovered
by our lncRNA-screen pipeline in the matched RNA-
seq/ChIP-seq datasets. Overall, we found that 268
lncRNAs in hESC, 239 lncRNAs in mesendoderm cells,

9 lncRNAs in neural progenitor cells and 254 lncRNAs
in mesenchymal cells interacting with at least one
mRNA in cis within the context of topological domains.
Most importantly, mRNA expression appears to be
sensitive to changes in looping with their lncRNA inter-
acting partners. We used HiCPlotter [35] to generate the
Hi-C maps mRNA-lncRNA interaction plots. As an ex-
ample we show the putative lncRNA CTD-2006C1.2 on
chromosome 19 in Fig. 12. This lncRNA interacts with
multiple protein-coding genes, mainly zinc-finger pro-
teins within a single topological domain. When we com-
pared both the expression and the Hi-C interaction
intensity of the lncRNA to its neighboring genes, we
observed an interesting contrasting pattern. Upstream,
the lncRNA interacts with two protein-coding genes,
ZNF441 and ZNF491: both genes are up-regulated in
Mesenchymal cells compared to hESCs and show a

Fig. 12 Example of lncRNA-mRNA interactions. Putative lncRNA CTD-2006C1.2 is shown to differentially interact with two upstream and two
downstream zinc-finger genes: hESCs (left panel) and Mesenchymal (right panel)
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concomitant increase in Hi-C looping. In contrast,
downstream, the lncRNA interacts with ZNF878 and
ZNF625, both down-regulated in Mesenchymal cells
compared to hESCs with concomitant decrease in Hi-C
looping.

Conclusions
We developed lncRNA-screen, an easy-to-use integrative
lncRNA discovery platform for comprehensive mapping
and characterization of lncRNAs using a variety of genom-
ics datasets. The main objective of this work was to
facilitate the computational discovery of lncRNA candi-
dates to be further examined by experimental screening as
well as functional experiments. More specifically, our goal
was to enable experimental laboratories with limited
genomics expertise to quickly and comprehensively
characterize lncRNAs in their particular field of study (e.g.
cancer, stem cells, development). Our pipeline can be
installed using one self-contained installation package
available on GitHub, and, importantly, is designed to
enable execution of an entire analysis using a single
command. Initializing a new analysis is also simplified into
setting up a trivial sample sheet to describe the datasets
involved in the study. Additionally, lncRNA-screen gener-
ates an interactive lncRNA report which allows the user to
explore the results of the analysis, define their own cus-
tom criteria for selecting lncRNAs, and interactively
visualize the filtered results using the UCSC Genome
Browser and pre-built genome snapshots. The pipeline is
compatible with both stand-alone server environments
and high-performance computing clusters. In summary,
our pipeline provides a comprehensive solution for
lncRNA discovery and an intuitive interactive report for
identifying promising lncRNA candidates. lncRNA-screen
is available as free open-source software on GitHub and
our bioinformatics team offers installation and usage
support.
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