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Abstract

Background: Grass carp is an important farmed fish in China that is affected by serious disease, especially hemorrhagic
disease caused by grass carp reovirus (GCRV). The mechanism underlying the hemorrhagic symptoms in infected fish
remains to be elucidated. Although GCRV can be divided into three distinct subtypes, differences in the pathogenesis
and host immune responses to the different subtypes are still unclear. The aim of this study was to provide a
comprehensive insight into the grass carp response to different GCRV subtypes and to elucidate the mechanism
underlying the hemorrhagic symptoms.

Results: Following infection of grass carp, GCRV-I was associated with a long latent period and low mortality (42.5%),
while GCRV-Il was associated with a short latent period and high mortality (81.4%). The relative copy number of GCRV-I
remained consistent or decreased slightly throughout the first 7 days post-infection, whereas a marked increase in
GCRV-II high copy number was detected at 5 days post-infection. Transcriptome sequencing revealed 211 differentially
expressed genes (DEGs) in Group | (66 up-regulated, 145 down-regulated) and 670 (386 up-regulated, 284
down-regulated) in Group Il. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)
enrichment analysis showed significant enrichment in the terms or pathways involved in immune responses
and correlating with blood or platelets. Most of the DEGs in Group | were also present in Group ll, although
the expression profiles differed, with most DEGs showing mild changes in Group |, while marked changes were
observed in Group ll, especially the interferon-related genes. Many of the genes involved in the complement
pathway and coagulation cascades were significantly up-regulated at 7 days post-infection in Group ll, suggesting
activation of these pathways.

Conclusion: GCRV-| is associated with low virulence and a long latent period prior to the induction of a mild
host immune response, whereas GCRV-Il is associated with high virulence, a short latent period and stimulates
a strong and extensive host immune response. The complement and coagulation pathways are significantly activated
at 7 days post-infection, leading to the endothelial cell and blood cell damage that result in hemorrhagic symptoms.
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Background

The grass carp (Ctenopharyngodon idellus) has been an
important aquaculture species in China for over 60 years,
accounting for more than 18% of total freshwater aqua-
culture production. The production of grass carp
reached 5.5 million tons in 2014, making it the most
highly consumed freshwater fish worldwide [1].

Grass carp hemorrhagic disease, caused by the grass carp
reovirus (GCRV), is one of the most serious of these
diseases [2]. GCRV, which was first isolated in China, be-
longing to the genus Aquareovirus of the family Reoviridae
[3]. GCRYV infects not only grass carp, but also rare min-
now (Gobiocypris rarus), black carp (Mylopharyngodon
piceus), and topmouth gudgeon (Pseudorasbora parva),
causing hemorrhagic symptoms and death. Disease caused
by GCRV outbreaks are frequent and result in huge eco-
nomic losses in the aquaculture industry. Consequently,
GCRV is of particular interest to fish breeding geneticists
aiming to identify strategies for disease-resistant breeding
[4-9].

Recently, the genome sequences of a number of GCRV
strains isolated in China have been determined [10-12].
Sequence comparisons and analysis showed that GCRV
could be divided into three distinct subtypes. GCRV-
873, which is a representative strain of type I (GCRV-I),
infected C. idellus kidney (CIK) cells and induced ob-
vious cytopathic effects (CPE). GCRV-HZ08, which is a
representative strain of type II GCRV (GCRV-II), re-
sulted in 80% mortality in yearling fish, while no obvious
CPEs were observed in GCRV-II infected CIK cells.
Type III GCRV (GCRV-III) is not widely distributed in
China and only one strain was found (GCRV-104),
which also induced CPE in CIK cells.

Of the three types of GCRV, GCRV-873 was the first
fish virus to be characterized and sequenced [13] and
was used as the target in early studies focusing on
disease-resistant breeding and virus-host interactions.
However, recent studies showed that most of the GCRV
isolated in Southern China are type II GCRVs, such as
GCRV-HZ08, GCRV-GD108 and GCReV-109 [10-12].
GCRV types I and II both cause hemorrhagic disease in
grass carp, although the hemorrhage mechanism is un-
known. Moreover, these virus types have significantly
different nucleotide sequences, viral-encoded protein
structures, and pathogenicity in grass carp and CIK cells.
Although many studies on GCRV have been conducted,
most were restricted to investigation of the virus itself
and differences in pathogenesis and immune responses
to different types of GCRV in grass carp remain to be
elucidated.

In this study, grass carp were infected with two types
of GCRV (GCRV-I and GCRV-II) and the pathogenesis
was investigated by transcriptome sequencing, real time
quantitative PCR (RT-qPCR) and mortality rates. Details
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of the transcriptional events following GCRV infection
have been reported previously [14]; therefore, the aim of
the current study was to provide a comprehensive
insight into the responses of grass carp to different types
of GCRV and to reveal the mechanism underlying the
hemorrhagic symptoms. Our study will provide guidance
for the development of novel vaccines and disease-
resistant breeding of grass carp.

Methods

Viruses

Two types of grass carp reovirus were used in the study.
One GCRYV strain, isolated in Honghu City, Hubei Province,
China in May 2015, was classified as a type I GCRV
due to the high similarity (97.3%) of the S2 segment
to the typical type I strain, GCRV-873. Another
GCRYV strain, isolated in Huanggan city, also in Hubei
Province, in July 2015, was classified as a type II
GCRV due to the high similarity (98.4%) of the S2
segment to the typical type II strain, GCRV-HZO08.
The two types of GCRV were designated GCRV-I and
GCRV-II for the purposes of this study and both were
diluted to the same titer (2.97 x 10° RNA copy/ul)
for use in experiments.

Experimental fish

Healthy full-sib grass carp were used in the study at
3 months of age, weighing 3-5 g and with an average
length of 8 cm. The fish were obtained from the Guan
Qiao Experimental Station, Institute of Hydrobiology,
Chinese Academy of Sciences, and acclimatized in aerated
fresh water at 26-28 °C for one week before processing.
Fish were fed with a commercial diet twice a day and
water was exchanged daily. If no abnormal symptoms
were observed, grass carp were selected for further study.
Fish were then divided into three groups (approximately
150 per group) that were maintained in separate tanks.

Virus challenge experiment and sample collection

After no abnormal symptoms were observed in the three
groups, virus challenge experiments were carried out.
Fish in the Groups I and II were infected with 200 pl
GCRV-I (2.97 x 10 RNA copy/ul) or 200 ul GCRV-II
(2.97 x 10®> RNA copy/ul) by intraperitoneal injection,
respectively, while fish from Group III were injected
with 200 pl PBS as a Control group. At 1, 3, 5, and 7 days
post-injection, 15 fish that contained three biological du-
plicates (n = 5 for each biological duplicate) from each
group were collected and the kidneys were removed for
analysis. The samples were designated I-1, I-3, I-5, I-7,
1I-1, 1I-3, II-5, 1I-7, c-1, ¢-3, c-5, and c-7 (three biological
duplicates for each sample). The remaining fish were
monitored carefully and the number of dead fish in each
group was counted every day. The experiment was
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concluded and the total mortality was calculated when
no mortality was recorded for seven consecutive days.

RNA isolation, library construction and sequencing

RNA of kidneys that collected above was isolated using
TRizol reagent (Invitrogen, USA) according the manu-
facturer’s protocol. RNA concentration was measured
using the Qubit RNA assay kit (Life Technologies, USA),
and integrity was assessed with the RNA Nano 6000
assay kit (Agilent Technologies, USA). RNA of suffi-
ciently high quality was used in library construction. Se-
quencing libraries were generated using the NEBNext
Ultra RNA library prep kit for Illumina (New England
Biolabs, USA) following the manufacturer’s protocol.
Briefly, mRNA was purified from total RNA using
poly-T oligo-attached magnetic beads and fragmented
by the NEBNext first strand synthesis reaction buffer
(New England Biolabs). First strand cDNA was synthe-
sized using a random hexamer primer and M-MuLV
reverse transcriptase. Second strand ¢cDNA synthesis
was subsequently performed using DNA polymerase I
and RNase H. After adenylation of the 3" end of DNA
fragments, NEBNext adaptors with a hairpin loop
structure were ligated in preparation for hybridization.
Subsequently, 3 pL. USER enzyme (New England Biolabs,
USA) was used with size-selected, adaptor-ligated cDNA
at 37 °C for 15 min followed by 5 min at 95 °C prior to
PCR using Phusion High-fidelity DNA polymerase, uni-
versal PCR primers and index (X) primer. Finally, PCR
products were purified using an AMPure XP system and
library quality was assessed using an Agilent Bioanalyzer
2100 system. Libraries were sequenced on an Illumina
Hiseq X Ten platform and 150 bp pair-end reads were
generated.

Data analysis

Raw data reads in fastq format were initially processed
using in-house perl scripts. In this step, clean data (clean
reads) were obtained by removing adapter, poly-N and
poor quality data. The Q20, Q30, and GC contents of the
clean data were calculated, and all downstream analysis
was performed using the clean high quality data.

Clean data were mapped to the grass carp reference
genome [15] using TopHat2 software [16]. Allowing for
two base mismatches in the mapping process, total
mapped reads were calculated, and the mapped regions
(exon, intron, and intergenic) were counted.

HTSeq software was used to count the number of
reads mapped to each gene [17] and the reads per kilo-
base of the exon model per million mapped reads
(RPKM) were calculated for each gene based on the
length of the gene and the number of reads mapped to
the gene [18].
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Differential expression analysis

Differential expression analysis of two groups/conditions
was performed using the DESeq package [19]. The
resulting P-values were adjusted using the Benjamini
and Hochberg approach for controlling the false disco-
very rate. Genes with an adjusted P-value <0.05 (q value
<0.05) in DESeq analysis were assigned as differentially
expressed genes (DEGs).

Gene Ontology (GO) annotation of the genes was per-
formed using ClueGO and CluePedia [20, 21]. In GO
enrichment analysis, only categories with a low P-value
(P < 0.05) were considered as enriched in the network as
determined by two-sided hypergeometric statistical tests
employing the Benjamini and Hochberg approach to
false discovery rate correction.

The Kyoto Encyclopedia of Genes and Genomes
(KEGG) database is used to provide high-level functional
information on biological systems of molecules, cells, or-
ganisms and ecosystems, and is particularly powerful for
the evaluation of large-scale molecular datasets gene-
rated by genome sequencing and other high-throughput
experimental approaches [22]. In this study, KOBAS
software was employed to test the statistical enrichment
of DEGs in KEGG pathways [23]. KEGG terms with cor-
rected P < 0.05 were considered to indicate statistical
significance.

Validation of DEGs by RT-qPCR

To confirm the reliability of data obtained by RNA-seq,
10 DEGs were selected for validation by RT-qPCR. The
primers are listed in Additional file 1. Only primers with
efficiency of 90%—110% were used for RT-qPCR analysis.
First strand cDNAs were obtained using a random he-
xamer primer and the ReverTra Ace kit (Toyobo, Japan).
RT-qPCR was carried out using a fluorescence quantita-
tive PCR instrument (Bio-Rad, USA). Each RT-qPCR
mixture contained 0.8 pL forward and reverse primers
(for each primer), 1 uL template, 10 pL 2x SYBRgreen
master mix (TOYOBO, Japan), and 7.4 uL ddH,O.
Three replicates were included for each sample and the
[-actin gene was used as an internal control to for
normalization of gene expression. The program for RT-
qPCR was as follows: 95 °C for 10 s, 40 cycles of 95 °C
for 15 s, 55 °C for 15 s, and 72 °C for 30 s. Relative ex-
pression levels were calculated using the 2°°*“* method
[24]. Data represent the mean + standard deviation of
three replicates.

Statistical analysis

The statistical significance between Group I and Group
II was determined by one-way ANOVA. Differences
were considered significant at P < 0.05. P < 0.05 was
denoted by *.
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Results

Mortality of grass carp infected with GCRV-I or GCRV-II
The mortality curves of the three groups are shown in
Fig. 1. In the GCRV-I-infected group, the total mortality
of 42.5% was reached at 15 days post-infection, with the
first fish dying at 10 days post-infection. However, in the
GCRV-II-infected group, the total mortality of 81.4%
was reached at 15 days, with the first death recorded as
early as 8 days post-infection. In the Control group, two
dead individuals were observed, giving a total mortality
of 2.2%. Moreover, fish that died after infection with
GCRV-I or GCRV-II showed hemorrhagic symptoms,
especially in the muscle, whereas no hemorrhagic symp-
toms were observed in the Control group fish (Fig. 2).

Relative copy numbers of the two types of GCRV in grass
carp

To determine dynamic changes in the levels of the two
types of GCRYV in infected fish, the relative copy num-
bers of the viruses were examined by RT-qPCR using
specific primers for the S6 segments of the two types of
GCRV. For convenience, the relative copy number of
GCRYV in one day post-infection in Group I was used as
a reference for normalization. As shown in Fig. 3, the
relative copy number of GCRV-I in Group I was consis-
tent or decreased slightly throughout the experiment. In
contrast, the relative copy number of GCRV-II in Group
II was extremely low at 1 and 3 days post-infection,
followed by a marked increase at 5 days post-stimulation
and a reduction to levels similar to those of GCRV-I in
Group I at 7 days post-infection. Obviously, the two
types of GCRV showed different dynamic curves during
infected fish.
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Fig. 2 The hemorrhagic symptoms induced by GCRV. Images
showing representative fish with typical muscular hemorrhagic
symptoms in Groups | and Il and the Control
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Preliminary analysis of transcriptome sequencing data

To further reveal the mechanism underlying the diffe-
rences in sensitivity of grass carp to the two types of
GCRYV, we performed RNA-seq analysis on samples
collected from three groups at different time-points
post-infection. Three duplicates of each sample were
processed, yielding a total of 36 libraries, which were
sequenced on an Illumina Hiseq X Ten platform to ge-
nerate 150 bp pair-end reads. As shown in Table 1, the
raw reads, clean reads, clean base Q20, Q30, and

90% -
80%
70%
60%
50%
40%
30%
20%
10%

0%

ity

Mortal

w=fe==PBS === GCRV-I|

1 3 5 7 9
Days post-infection

Fig. 1 Cumulative mortality of fish. Fish were infected with 200 ul GCRV-I, GCRV-II, or PBS by intraperitoneal injection, respectively. The number of dead
fish in each group was counted every day until no deaths were recorded for seven consecutive days; the total mortality was then calculated
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Fig. 3 Relative copy number of GCRV in Group | and Group II. The
relative copy numbers of GCRV in Groups | and Il were examined
by using specific primers for the S6 segment. The copy number of
GCRV at 1 day post-infection in Group | was used as a reference
for normalization. Data represent mean + standard deviation of
three replicates. Significant difference (P < 0.05) between the two
groups was indicated with asterisks (¥)

mapped percent for each library were recorded (Table 1).
All libraries gave Q20 = 95%, Q30 = 87%, and mapped
percent 287%. These results confirmed the high quality of
the sequencing data and suitability for further analysis.
The sequencing data in this study have been deposited
in the Sequence Read Archive (SRA) at the National
Center for Biotechnology Information (NCBI) (acces-
sion number: SRP095827).

Identification of DEGs

DEGs among these samples were identified by subjecting
the data to a series of paired-comparisons. In the analysis,
samples from Group I (I-1, I-3, I-5, and II-7) and Group II
(II-1, I1-3, 1I-5, and II-7) were compared with samples that
from the Control group at the corresponding time-points
the same time. The numbers of DEGs identified from the
different paired-comparisons are listed in Table 2. Com-
parisons with the Control group revealed 66 up-regulated
and 145 down-regulated genes in Group I, whereas 386
up-regulated and 284 down-regulated genes were identi-
fied in Group II. Venn diagram analysis of the 49 up-
regulated and 115 down-regulated genes found in both
groups is shown in Fig. 4. In detail, 25, 4, 38 and 16 genes
were un-regulated, whereas 102, 13, 35, and 28 genes were
down-regulated in Group I at 1, 3 5 and 7 days post-
infection, respectively. In Group 11, 42, 94, 203, and 139
genes were up-regulated and 29, 54, 234, and 29 genes
were down-regulated at 1, 3 5 and 7 days post-infection,
respectively. Detailed information of these DEGs is shown
in Additional file 2. The DEGs that could not be functio-
nally annotated are listed as “unknown”.
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GO and KEGG enrichment analysis of the DEGs

GO enrichment analysis was performed to investigate
the possible roles of these DEGs. Of the three main
categories (biological process, molecular function, and
cellular component), most of the GO terms belonged to
the biological process category, suggesting the occur-
rence of a series of molecular events in grass carp after
GCRYV infection. Many of the significantly enriched GO
terms in both groups were involved in immune re-
sponses, such as defense response, response to organic
substance, inflammatory response, acute inflammatory
response, and innate immune response, indicating that
grass carp respond strongly to both types of GCRV in-
fection. Moreover, some GO terms associated with blood
or platelets, such as blood microparticles, blood coagula-
tion, platelet activation, and platelet degranulation, were
also significantly enriched. The top five enriched GO
terms in both groups are listed in Table 3 and details of
the GO terms are shown in Additional file 3.

KEGG enrichment analysis was also performed for the
DEGs in both groups. In general, many the significantly
enriched KEGG terms were also involved in immune
responses, such as complement and coagulation cas-
cades, Staphylococcus aureus infection, the peroxisome
proliferator-activated receptor (PPAR) signaling path-
way, graft-versus-host disease, and allograft rejection.
In addition, some terms involved in metabolism and
biosynthesis were also significantly enriched. These
terms included glycolysis/gluconeogenesis, phenylala-
nine, tyrosine and tryptophan biosynthesis, as well as
vitamin digestion and absorption, and fat digestion and
absorption. The top five enriched KEGG terms in both
groups are also listed in Table 3 and details of the
KEGG terms are shown in Additional file 4.

Expression patterns of DEGs in the key GO terms

The GO terms involved in blood coagulation, defense
response, innate immune response, inflammatory re-
sponse, apoptotic process, and metal ion transport were
selected for further investigation. Comparisons at each
time-point after infection revealed significant differences
in the expression patterns of these DEGs in the two
groups (Fig. 5). The DEGs in Group I showed mild
change in expression at the four time-points, with
log,fold changes <2 for most of genes. However, a sig-
nificant variation in the expression levels of the DEGs
in Group II was observed, with the most marked va-
riation at 5 days post-infection. Many of DEGs in
Group II showed log,fold changes >2 or even >4.

Identification of DEGs shared between the two groups

Venn diagram analysis showed that the two groups
shared 49 up-regulated and 118 down-regulated DEGs,
regardless of the time-points post-infection. These shared



He et al. BMC Genomics (2017) 18:452

Table 1 Summary of sequencing data in the study

Page 6 of 15

Sample name Duplicates Raw reads Clean reads Clean base (Gb) Q20 (%) Q30 (%) Mapped (%)
-1 a 43,959,191 42,775,222 6.4 96.48 89.53 88.26
b 46,024,032 44,762,682 6.7 96.26 89.13 90.09
C 42,180,866 41,017,933 6.2 96.44 89.39 90.27
I-3 a 43,175,970 42,015916 6.3 96.22 88.98 90.80
b 45,504,613 44,285,127 6.6 96.27 89.02 88.60
d 44,279,976 43,069,779 6.5 96.21 88.92 89.89
I-5 a 42,440,949 41,273,811 6.2 96.23 89.1 90.55
b 42,743,916 41,555,617 6.2 96.24 89.15 91.30
d 44,936,847 43,704,884 6.6 96.18 89.03 88.96
-7 a 42,302,608 41,142,107 6.2 96.32 89.28 89.19
b 44,763,427 43,571,261 6.5 96.3 89.19 89.72
C 43916414 42,749,930 6.4 96.34 89.29 91.32
-1 a 45,999,850 44,785,102 6.7 96.22 89.01 87.18
b 42,941,167 41,751,223 6.3 96.15 88.90 89.59
C 44,268,235 43,109,075 6.5 96.38 89.33 8947
-3 a 46,881,460 45,686,432 6.9 96.37 89.37 91.09
b 43,359,534 42,206,217 6.3 96.33 89.25 87.24
C 42,641,431 41,496,401 6.2 96.37 89.37 89.72
-5 a 43,358,527 42,183,431 6.4 96.28 89.16 89.88
b 43,539,923 42,358,196 6.4 96.27 89.11 90.86
C 44,335,544 43,109,720 6.5 96.13 88.86 87.38
-7 a 45,463,769 44,240,714 6.6 96.23 89.2 89.75
b 44,831,490 43,616,013 6.5 96.25 89.2 89.83
C 43,771,968 42,577,304 6.4 96.24 89.2 90.88
C1 a 43,428,497 42,233,801 6.3 96.13 889 87.67
b 45,897,450 44,670,684 6.7 96.19 89.02 89.35
C 43,842,260 42,652,596 6.4 96.32 89.27 89.79
[@X] a 45,354,222 44,137,729 6.6 96.02 88.58 90.71
b 42,743,245 41,573,966 6.2 96.22 89.07 87.26
c 44,613,776 43,405,844 6.5 96.13 88.83 89.09
(@) a 44,397,927 43,195411 6.5 96.21 89.14 89.99
b 43,318,566 42,125,322 6.3 96.32 89.42 91.24
C 45,299,655 44,111,640 6.6 96.28 89.2 88.44
C-7 a 44,182,777 42,985,305 6.4 95.72 87.96 89.51
b 43,638,964 42,449,707 6.4 95.79 88.08 89.98
C 45,255,896 44,734,541 6.7 95.6 87.67 91.07

DEGs were subjected to further analysis to investigate
the common events after infection with different types
of GCRV. Of the 49 up-regulated DEGs, many were
involved in anti-viral immune response, blood coagu-
lation, response to stress, protein degradation, antigen
presentation, and transcription/translation. Although
these DEGs were up-regulated in both groups, the
expression patterns differed. The representative up-
regulated DEGs are listed in Table 4. Of the down-

regulated DEGs, many were involved in in blood coagu-
lation, cytoskeleton, complement activation, iron trans-
port, inflammatory response, and metabolism. The
representative up-regulated DEGs are also listed in
Table 4. Interestingly, the representative DEGs (both
up-regulated and down-regulated) belonging to the
same categories showed similar expression patterns in
both groups. Details of these DEGs in both groups are
shown in Additional file 5.
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Table 2 Summary of DEGs in different comparison

Comparisons Details Up Down Total

Group I/Control I-1/c-1 25 101 126
I-3/c-3 4 12 16
I-5/c-5 38 34 72
1/7-c-7 16 27 43
In total 66 145 211

Group II/Control I1-1/c-1 42 29 71
II-3/c-3 94 54 148
II-5/¢-5 203 234 437
I1/7-c-7 139 29 168
In total 386 284 670

DEGs at 1 day post-infection

Comparison of the DEGs in the two groups at corre-
sponding time-points is difficult because of the diffe-
rences in the course of infection of the two types of
GCRV. We selected the DEGs at day 1 post-infection for
comparison because this time-point represents the initial
stage of infection. At this time-point, 25 up-regulated
and 101 down-regulated DEGs were found in Group I,
while 42 up-regulated and 29 down-regulated DEGs
were identified in Group IL. Despite the many differences
in the up-regulated DEGs between the two groups, many
were categorized as immune response, response to stress,
antigen presentation, and blood coagulation. In addition,
most of the DEGs in Group I showed mild upregulation,

Group I/control  Group II/control

I-1/¢-1 1I-1/c-1 I-3/c-3 II-3/c-3
I-5/c-5 II-5/c-5 1-7/c-7 11-7/¢-7

t180
203

Fig. 4 Venn diagram of differentially expressed genes between the
two groups. Venn diagram showing the differentially expressed
genes common to Groups | and Il in total and at each time-point
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Table 3 Top five enriched GO terms and KEGG pathways of the
differentially expressed genes in both groups

GO terms
Groups GO term Corrected
P-value

Group | Extracellular space 2.85E-05
Blood microparticle 6.39E-05
Acute inflammatory response 1.01E-04
Inflammatory response 2.10E-04
Regulation of protein activation 2.37E-04
cascade

Group Il Extracellular space 3.50E-19
Blood microparticle 3.08E-13
Extracellular organelle 3.87E-13
Extracellular membrane-bound 5.16E-13
organelle
Extracellular vesicular exosome 5.56E-12

KEGG pathways
Groups KEGG pathways Corrected
P-value

Group | Complement and coagulation 2.09E-14
cascades
Staphylococcus aureus infection 2.35E-04
Glycolysis/gluconeogenesis 4.578-04
Vitamin digestion and absorption 0.001947
Fat digestion and absorption 0.002017

Group I Complement and coagulation 1.26E-21
cascades
Staphylococcus aureus infection 1.13E-06
Glycolysis/gluconeogenesis 2.86E-04
peroxisome proliferator-activated 4.36E-04
receptor (PPAR) signaling pathway
Graft-versus-host disease 9.54E-04

with log, fold changes <2, whereas those in Group II were
intensely up-regulated, with log, fold changes >2. The
DEGs with log, fold changes >2 in Group I and >3 in
Group II are shown in Table 5. There were fewer down-
regulated DEGs in Group II than in Group I. Many of the
DEGs were involved in iron transport, transcription/trans-
lation, cytoskeleton, enzyme activity, and binding activity,
suggesting inhibition of the host transcription/ translation
machinery by GCRV. Interestingly, many genes encoding
the middle subunit of ferritin were significantly down-
regulated. The DEGs with log,fold changes < — 2 in both
groups are shown in Table 5.

Expression patterns of key interferon-related genes

The interferon system plays a critical role in both in-
nate and adaptive immune responses to virus infection
[25-27] and are particularly involved in fish responses
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to GCRV [28, 29]. Therefore, the expression patterns of
key interferons and interferon-stimulated genes were
examined in this study. These genes included interferon
inducible Mx protein 1 (Mx-I), interferon regulatory
factor 2 (IRF2), interferon regulatory factor 3 (IRF3),

interferon regulatory factor 7 (IRF7), C-C motif chemo-
kine 7 (CCL7), C-X-C motif chemokine 11 (CXCLI11I),
interleukin 8 (IL8), interleukin 11 (/L11), interferon- in-
duced protein with teratricopeptide repeats 1 (IFIT1),
and interferon-induced helicase C domain-containing
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Table 4 Representative differentially expressed genes in both groups
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Category Gene name Log2 fold change
Group | Group Il
1 3 5 7 1 3 5 7
Representative up-regulated genes in both groups
Anti-viral immune response  C-C motif chemokine 7 1.1 -10 07 03 0.6 14 24 -15
Interferon-induced with tetratricopeptide repeats 5 1.5 -03 12 03 03 24 24 -0.9
C-X-C motif chemokine 11 0.6 -05 15 -02 -06 07 22 =17
Blood coagulation Urokinase plasminogen activator surface receptor 13 -05 07 0.5 -05 33 22 -1.1
CD9 antigen 03 -0.5 13 0.8 -0.1 1.1 2.1 0.1
Response to stress Mitomycin radical oxidase 22 -13 14 —-0.1 0.5 14 23 -08
Hypoxia-inducible factor 3-alpha -04 04 09 1.1 —-0.1 04 0.7 14
DNA damage-inducible transcript 4 -05 04 36 14 06 -04 17 20
Protein degradation Polyubiquitin contains 14 -03 16 04 —-0.1 23 2.7 -0.7
Probable E3 ubiquitin-ligase HERC3 09 -0.7 1.2 0.8 0.0 18 19 -04
Suppressor of cytokine signaling 09 0.1 1.0 0.2 -0.1 1.1 22 -05
Antigen presentation H-2 class Il histocompatibility E-S beta chain 1.5 -04 13 0.1 31 0.0 1.0 0.2
H-2 class | histocompatibility Q8 alpha chain 4.7 30 0.2 0.7 30 06 2.1 -0.1
Translation/transcription Threonine-tRNA ligase 15 -03 03 0.2 04 1.0 17 -03
Transcriptional regulator Myc-1 03 03 13 09 -02 02 1.1 0.0
Enzyme activity Helicase with zinc finger domain 2 1.0 -05 14 0.7 0.1 22 22 -09
Tetraacyldisaccharide 4"-kinase 03 -04 11 0.2 -02 13 16 -0.7
Representative down-regulated genes in both groups
Blood coagulation Hemopexin -13 10 -13  -16 06 03 -23 26
APOAT, apolipo A-l -04 -1.7 -19 -36 06 -39 =27 =11
Fibrinogen gamma chain -12 03 -07 -06 -02 01 -18 19
Cytoskeleton Myosin-8 -22 02 -28 -16 -04 -04 31 06
Actin-binding protein -7 05 -09 -10 -05 -23 =20 01
Myoglobin -0.7 0.9 -4.7 0.0 -0.8 1.6 -54 0.0
Complement activation Complement C3 beta chain -12 03 -10 -08 00 -06 =25 09
Complement C1q 4 -09 15 -24 -0.1 1.9 -18 26 25
Complement component C9 -10 00 -07 -09 1.0 -04  -19 1.2
Iron transport Serotransferrin-1 -10 02 -16 -12 1.2 -07 =26 1.6
Ferritin M -0.7 -0.8 0.6 -10 -18 =20 -09 -0.1
Hepcidin-1 =14 04 -03 =11 -04 02 -26 1.5
Inflammatory response Alpha-2-HS-glyco -12 03 -08 -05 -03 -06 -22 09
Plasma protease C1 inhibitor =11 0.1 -08 06 02 -05 -15 09
Endothelin B receptor 0.0 0.0 -80 00 9.7 0.0 -8.1 0.0
Metabolism Fructose-bisphosphate aldolase B -12 06 -05 -10 -06 -07 20 -02
Fructose-1,6-bisphosphatase 1 -12 06 -03 -08 —-09 -08 -23 04
Glyceraldehyde-3-phosphate dehydrogenase -12 04 0.1 -06 -04 12 =21 09

1(IFIH1). As shown in Fig. 6, Groups I and II showed
differences in the overall expression patterns of these
genes. In Group I, most of genes showed log,fold

changes <1 at all time-points post-infection, while more
marked dynamic changes in expression of the genes
was observed in Group II. Specifically, most of genes
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Table 5 Significantly differentially expressed genes in both
groups at 1 day post-infection

Groups  Gene name Log2 fold
change
Up-regulated Group | H-2 class | histocompatibility — 4.74
Q8 alpha chain
Urokinase plasminogen 2.90
activator surface receptor
Tumor necrosis factor 2.58
receptor superfamily
member 11B
GTP-binding A 234
Mitomycin radical oxidase 227
Unknown 214
Group Il Endothelin B receptor 9.65
Stonustoxin subunit alpha 7.63
Unknown 6.46
Natterin 587
Ribonuclease-like 3 5.64
Short = RNase ZF-3
Haptoglobin alpha chain 5.59
Perforin-1 493
CD59 glycoprotein 427
Endothelial cell-specific 4.07
molecule 1
Serum amyloid A-5 392
H-2 class Il histocompatibility 3.09
E-S beta chain
Phloem protein 2-like A3 3.05
Down-regulated  Group | Neoverrucotoxin -333
subunit beta
Neoverrucotoxin —2.96
subunit alpha
Arginase-1 -2.96
Unknown —2.67
Coenzyme Q-binding -2.34
COQ10 mitochondrial
Amine sulfotransferase -2.26
Unknown -2.22
Probable DNA polymerase -2.20
partial (mitochondrion)
Myosin-8 =215
Group Il GTPase IMAP family -5.10
member 5
Ferritin, middle subunit —433
Ferritin, middle subunit —3.63
Ferritin, middle subunit —349
Olfactomedin-4 -2.18

showed log,fold change >1 or even >2 at 3 or 5 days
post-infection, whereas the expression level decreased
at 7 days post-infection.
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DEGs involved in complement and coagulation cascades
KEGG enrichment analysis showed that the “comple-
ment and coagulation cascades” pathway was the most
significantly enriched in both groups. The expression
patterns of the DEGs involved in these pathways were
further investigated to elucidate the mechanism of
hemorrhage in infected fish (Fig. 7). Interestingly, most
of the DEGs showed similar expression patterns in each
group, with the exception of the urokinase plasminogen
activator surface receptor (PLAUR) gene, which showed
an opposing expression pattern compared with other
DEGs. The DEGs in Group I showed only slight changes
in expression, with it increased levels detected at 3 days
and decreased expression at 1, 5, and 7 days post-
infection. Most of the DEGs in Group II showed mild
changes at 1 and 3 days post-infection. However, signifi-
cantly decreased expression of the DEGs was observed
at 5 days post-infection, followed by marked upregulation
at 7 days post-stimulation, suggesting activation of the
“complement and coagulation cascades” pathways.

Confirmation of DEGs by RT-qPCR

To confirm the RNA-seq data, a total of 10 DEGs (5
involved in “immune response” and 5 involved in
“complement and coagulation cascades”) were selected
for RT-qPCR analysis. These genes included Mx-1, IRF3,
IRF7, CCL7, IFIT1, PLAUR-I1, alpha-2-macroglobulin 3
(A2M-3), complement C3c alpha chain fragment 1 (C3-1),
coagulation factor IX (F9), and complement component 9
(C9). The relative expression levels of DEGs in Groups I
and II were calculated as the ratio of gene expression levels
relative to those in the Control group at the corresponding
time-point. As shown in Fig. 8, overall, the expression pat-
terns of all 10 DEGs identified by qPCR were similar to
those obtained in RNA-seq analyses, although the relative
expression levels were not completely consistent. More-
over, RT-qPCR also showed that the PLAUR-1 gene ex-
pression pattern was opposite to that of the other genes
that involved in “complement and coagulation cascades”.
Therefore, the results of the RT-qPCR analysis confirmed
the reliability and accuracy of the RNA-seq data.

Discussion
In the study, we used RNA-seq to elucidate the the
mechanism of hemorrhage and the different immune re-
sponses induced in grass carp infected with GCRV-I and
GCRV-IL

Mortality analysis showed that grass carp infected
with GCRV-I began to die at 10 days post-infection
with a total mortality of 42.5%, whereas the first grass
carp infected with GCRV-II died at 8 days post-
infection and the total mortality was much higher, at
81.4%. The results suggested that the GCRV-II sub-
group is associated with high virulence and a short
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Fig. 6 Expression patterns of key genes involved in immune responses. The expression patterns of immune genes Mx-1, IRF2, IRF3, IRF7, CCL7,

latent period, while the GCRV-I subgroup is asso-
ciated with low virulence and a longer latent period.
Interestingly, changes in the relative copy numbers of
the two types of GCRV during the course of infection
showed results consistent with the theory mentioned
in the above. The copy number of GCRV-I remained
stable or even decreased slightly from day 1 to day 7

post-infection, whereas GCRV-II showed a rapid in-
crease in copy number at 5 days post-stimulation. High
virulence, short latent period, and high mortality could
accelerate the spread of virus [30]. Our results ex-
plained that why the GCRYV isolated recently in China
belonged to GCRV-II rather than GCRV-I [10-12].
Moreover, the number of DEGs in the two groups is
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also consistent with the relative copy numbers. It can
be speculated that fewer DEGs were identified in
Group I due to the low copy numbers at the four time-
points, while numerous DEGs were discovered in
Group II, especially at 5 days post-infection due to the
high GCRV-II copy number of at this time-point. The
consistency of these data suggests the reliability of our
experimental design.

Furthermore, the relatively low number of DEGs found
in Group I compared with Group II suggest the induc-
tion of a strong and extensive response in Group II com-
pared with the relatively mild response in Group I. The
changes in DEGs in Group II were more dramatic than
those in Group I. The variation in the expression pattern
of DEGs among the selected GO terms was also greater
in Group II than that in Group I. However, most of the
DEGs in Group I were also identified in Group II, al-
though the differences in expression patterns were con-
sistent with the variation in the course of infection
between the two groups. Therefore, we hypothesized that
GCRV-I and GCRV-II induced similar responses in grass
carp, although the response to GCRV-II was more robust
and extensive. Previous studies revealed similar results in
rainbow trout, which showed similar responses to high
and low virulence strains of infectious hematopoietic ne-
crosis virus (IHNV), although the level of the response
and DEG profiles differed [31, 32].

Most of the up-regulated DEGs common to Groups I
and II were associated with functions in anti-viral im-
mune responses, blood coagulation, response to stress,
protein degradation, antigen presentation, and transcrip-
tion/translation, suggesting that a series of events, espe-
cially immune responses, occur after infection regardless
of the GCRV subtype. Many of the down-regulated
DEGs common to both Groups I and II were found to
be involved in cytoskeleton, metabolism, iron transport,
enzyme activity, and binding activity. This association
was particularly marked in Group I at 1 day post-
infection. The association of up-regulated DEGs with
protein degradation, while down-regulated DEGs were
associated with metabolism, enzyme activity, and bind-
ing activity suggests that the host translation machinery
is hjjacked or shut-down by GCRYV to facilitate the repli-
cation and spread of the virus. A similar phenomenon
has been observed in other fish after virus infection [33].
Interestingly, DEGs involved in cytoskeleton and iron
transport were down-regulated in both Groups I and I
These observations are consistent with reports that actin
cytoskeletal dynamics are important for T lymphocyte
activation and migration [34, 35] and the important
role of iron homeostasis in the host response to in-
fection [36-38].

GCRV causes hemorrhagic symptoms in infected fish,
although the mechanism remains unknown. Interestingly,
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GO enrichment analysis revealed that some GO terms as-  Group II, indicating the existence of a correlation between
sociated with blood or platelets, such as blood microparti-  these GO terms and the hemorrhagic symptoms. More-
cles, blood coagulation, platelet activation, and platelet over, KEGG analysis showed that DEGs associated with
degranulation were significantly enriched, especially in  “complement and coagulation cascades” were the most
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significantly enriched in both groups. A heatmap of DEGs
in this pathway showed only slight variation in log,fold
changes in expression in Group I, whereas marked va-
riation was observed in Group I In addition, most of the
DEGs in Group II were significantly up-regulated at 7 days
post-infection, indicating that this pathway is highly acti-
vated. It has been reported that complement and coagula-
tion systems play an important role in innate immunity
[39, 40]; however, many studies have also shown that
hyperactivity of the complement cascade can lead to
endothelial and blood cell damage, resulting in platelet
activation and aggregation, hemolysis, as well as pro-
thrombotic and inflammatory changes [41, 42]. Thus, the
significant activation of complement and coagulation cas-
cades in Group II at 7 days post-infection may account for
the hemorrhagic symptoms that appeared at 8 days post-
infection in Group II.

Conclusions

In conclusion, the results of this study provide an im-
proved understanding of the differences in the pathoge-
nesis and host immune response to GCRV-I and GCRV-II
and the mechanism of hemorrhagic symptoms caused by
these viruses. The GCRV-I subtype is associated with low
virulence, a long latent period, and a mild host immune
response, whereas the GCRV-II subtype is associated with
relatively high virulence, a short latent period and a robust
and extensive immune response. The significant activation
of the pathway complement and coagulation pathways at
7 days post-infection, accounts for the damage to endo-
thelial and blood cells that cause the hemorrhagic symp-
toms. This information forms the basis of further studies
aimed at developing novel vaccines and determining stra-
tegies for disease-resistant breeding of grass carp.
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