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The biocontrol agent Pseudomonas
chlororaphis PA23 primes Brassica napus
defenses through distinct gene networks
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Abstract

Background: The biological control agent Pseudomonas chlororaphis PA23 is capable of protecting Brassica napus
(canola) from the necrotrophic fungus Sclerotinia sclerotiorum via direct antagonism. While we have elucidated
bacterial genes and gene products responsible biocontrol, little is known about how the host plant responds to
bacterial priming on the leaf surface, including global changes in gene activity in the presence and absence of
S. sclerotiorum.

Results: Application of PA23 to the aerial surfaces of canola plants reduced the number of S. sclerotiorum
lesion-forming petals by 91.1%. RNA sequencing of the host pathogen interface showed that pretreatment with PA23
reduced the number of genes upregulated in response to S. sclerotiorum by 16-fold. By itself, PA23 activated unique
defense networks indicative of defense priming. Genes encoding MAMP-triggered immunity receptors detecting
flagellin and peptidoglycan were downregulated in PA23 only-treated plants, consistent with post-stimulus
desensitization. Downstream, we observed reactive oxygen species (ROS) production involving low levels of H2O2 and
overexpression of genes associated with glycerol-3-phosphate (G3P)-mediated systemic acquired resistance (SAR). Leaf
chloroplasts exhibited increased thylakoid membrane structures and chlorophyll content, while lipid metabolic
processes were upregulated.

Conclusion: In addition to directly antagonizing S. sclerotiorum, PA23 primes the plant defense response through
induction of unique local and systemic defense networks. This study provides novel insight into the effects of
biocontrol agents applied to the plant phyllosphere. Understanding these interactions will aid in the development of
biocontrol systems as an alternative to chemical pesticides for protection of important crop systems.

Keywords: Biocontrol, Brassica napus, Chloroplast, Pseudomonas chlororaphis PA23, Reactive oxygen species, RNA-seq,
Sclerotinia sclerotiorum, Systemic acquired resistance

Background
Plants have evolved intricate defense mechanisms to
thwart attack from devastating fungal pathogens.
Morphological and structural barriers such as a waxy
cuticle and tough cell wall are part of an innate defense
mechanism against both living organisms and abiotic
forces [1, 2]. Successfully bypassing these barriers causes
activation of a defense response via detection of

microbial- or pathogen-associated molecular patterns
(MAMPs/PAMPs), or effector molecules [2, 3]. Activa-
tion of MAMP and PAMP pathways are often species-
specific and occur through carefully orchestrated signal
transduction networks. Following a targeted immune re-
sponse to PAMPs/MAMPs, systemic resistance may be
conferred through two distinct pathways: systemic ac-
quired resistance (SAR) or induced systemic resistance
(ISR). While ISR is activated upon colonization of plant
roots by nonpathogenic rhizobacteria and fungi, SAR is
induced by pathogen attack as well as other elicitors of
targeted immune responses [4–6]. The specificity of the
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response is mediated by changes in gene expression and
crosstalk between pathways [7–9]. Nonpathogenic or-
ganisms eliciting systemic resistance in plants boost host
defense strategies leading to stronger and quicker reac-
tions to future threats [5, 6, 10–13]. Such “priming” of
plant defenses involves short- and long-term cellular
changes [14].
Plants are exposed to high numbers of nonpathogenic

organisms when biocontrol systems are employed. In
addition to direct pathogen antibiosis, biocontrol agents
(BCAs) can have the added benefit of priming host de-
fenses [12, 15–17]. The majority of bacterial species that
exhibit these dual roles are ISR-inducing Pseudomonas
spp. or Bacillus spp. [18]. For example, Pseudomonas
putida WCS358 suppresses soil-borne pathogens through
siderophore-mediated competition for iron, but can also
induce ISR in Arabidopsis thaliana via host detection of
flagellin, pseudobactin and lipopolysaccharides [19]. Such
microorganisms are good candidates to replace chemical
pesticides, and the number of commercially available
BCAs is steadily increasing [18, 20, 21]. In order to suc-
cessfully implement BCAs in the field, a complete under-
standing of biocontrol system interactions, including their
impact on the host plant, is required.
Brassica napus (canola) is an economically important

crop of global significance. Despite attempts to breed
cultivars with broad resistance traits, canola remains
susceptible to a variety of pathogens. The necrotrophic
fungus Sclerotinia sclerotiorum represents a particularly
devastating pathogen to which no immune or highly re-
sistant germplasm has been identified [22, 23]. As the
causal agent of canola stem rot, this fungus can infect
over 400 plant species worldwide [24]. Such a wide host
range has resulted in a heavy reliance on chemical pesti-
cides for managing disease. Because of unwanted effects
on the environment along with consumer safety con-
cerns, biological control has emerged as an attractive
alternative for crop protection.
Pseudomonas chlororaphis PA23 is a BCA capable of

preventing S. sclerotiorum growth in vitro and in planta
in susceptible B. napus cultivars [25, 26]. We have previ-
ously shown that PA23 directly antagonizes S. sclero-
tiorum through the excretion of antifungal metabolites
including phenazines, pyrrolnitrin, proteases and lipases
[27, 28], with pyrrolnitrin being the primary compound
responsible for antagonism [29]. Despite our growing
understanding of the molecular mechanisms underlying
PA23 antifungal activity, we have yet to understand how
the presence of PA23 affects the host organism.
In the current study, we examine gene activity

genome-wide in leaf tissues of B. napus in response to
PA23 in the presence and absence of S. sclerotiorum.
Global RNA sequencing (RNA-seq) was employed to
identify differentially expressed genes indicative of B.

napus defense responses. By itself, PA23 activated gene
networks associated with defense priming. Moreover,
changes in leaf architecture and increased chlorophyll
content were observed in plants treated with PA23
alone. The presence of PA23 diminished S. sclerotiorum-
induced defense pathways, including production of
reactive oxygen species (ROS) and SAR induction.
Collectively, these findings show that in addition to dir-
ect S. sclerotiorum antagonism, PA23 exerts a protective
effect through host priming of defense networks.

Results
P. chlororaphis PA23 reduces S. sclerotiorum infection
rates in B. napus
To understand how B. napus responds to PA23 and how
PA23 protects the host plant from S. sclerotiorum infec-
tion, we compared infection rates at the 30–50% flower-
ing stage in the presence or absence of PA23. When
comparing the rate of infection as the proportion of
lesion-forming petals to total petals fallen onto the plant
canopy, application of PA23 reduced the number of le-
sions by 91.1% (Fig. 1a) and sustained pathogen suppres-
sion for at least 7 days post treatment. In this infection
model, leaf necrosis was visible under lesion-forming
petals at 24 h post S. sclerotiorum infection in plants re-
ceiving the pathogen only treatment (Fig 1b).

Global patterns of gene expression in B. napus treated
with combinations of PA23 and S. sclerotiorum
Next, we studied global patterns of gene activity using
RNA-seq to better understand how B. napus responds to
PA23 in the presence or absence of S. sclerotiorum. Princi-
pal component analysis (PCA) identified relationships be-
tween transcriptomes of plants receiving combinations of
PA23 and S. sclerotiorum. Biological replicates for each
treatment grouped together, with PA23-only treatments
grouping closely to the water controls (Fig. 1c). Replicates
representing treatment with S. sclerotiorum only (Ss) or
PA23 + Ss clustered into distinct groups, with Ss cluster-
ing farthest from the water control (Fig. 1c).
An average of 81.42% of reads mapped to the B. napus

cv. Darmor genome (Additional file 1: Table S1). Un-
mapped reads from all treatments except Ss were com-
posed primarily (58.2%) of Brassicaceae, chloroplast, and
mitochondrial sequences (Additional file 2: Figure S1).
Unmapped reads from the Ss treatment are derived pri-
marily (95.4%) from Sclerotiniaceae and other fungi. To
identify transcripts that may be unique to B. napus cv.
Westar we performed a transcriptome assembly of
unmapped reads (Additional file 3: Dataset S1). The
majority of assembled transcript fragments were identi-
fied as B. oleracea and suggest cv. Westar may have been
recently outcrossed with this species (Additional file 4:
Dataset S2).
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Figure 1d summarizes mRNA detection and distribu-
tion of transcript abundance in treatment groups. A total
of 48,454 genes with Fragments Per Kilobase of tran-
script per Million mapped reads (FPKM) ≥ 1 were de-
tected across all samples, representing 48% of the
predicted B. napus gene models [30]. The number of B.
napus transcripts detected was similar across treatments
at an average of 43,007 expressed genes. We divided ex-
pression levels into low (FPKM ≥1, < 5), moderate (FPKM
5–25), and high (FPKM >25). The proportion of expressed
genes falling into each category was similar across all treat-
ment groups (39.0–43.5%, low; 35.3–44.3% moderate;
11.5–13.2%, high), where plants treated with S. sclero-
tiorum alone resulted in the greatest number of highly ac-
cumulating transcripts (Fig. 1d). In contrast, the PA23 + Ss
treatment group had the greatest number of moderately
and lowly accumulating transcripts across treatments.
Because we observed marked differences on the leaf

surface when S. sclerotiorum was present with or with-
out PA23, we compared differentially expressed genes
(DEGs) of the treatment versus water control to identify
similarities and differences at the RNA level. Figure 2a
shows shared and specifically-upregulated DEGs in treat-
ment groups compared to the water control. Plants
treated with S. sclerotiorum alone had the greatest
number of specifically-upregulated DEGs at 8237 genes.
This trend held for both up- and downregulated genes
(Additional file 5: Figure S2A). Plants treated with a
combination of PA23 and S. sclerotiorum had the fewest
specifically-upregulated DEGs at 515 genes, a 16-fold re-
duction compared to the S. sclerotiorum treatment
group. The majority of upregulated DEGs observed in
PA23 + Ss were shared with the pathogen only (Ss)
group (3159 genes). While the number of upregulated
DEGs in plants treated with PA23 alone was compara-
tively small (1361 genes), 556 genes were specific to
PA23 treatment alone (Fig. 2a). DEGs of significance
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Fig. 1 Brassica napus infection rates and global transcriptome
changes with combinations of PA23 and Sclerotinia sclerotiorum.
a Numbers of lesion-forming petals as a percentage of total petals
which fell onto plant leaves in greenhouse assays. b S. sclerotiorum
disease progression on canola leaves at 24 h or 48 h after petal
application. PA23 + Ss treatment petals were inoculated with PA23
24 h prior to S. sclerotiorum inoculation, whereas Ss treatment petals
were inoculated with sterile water. Petals from both treatment groups
(PA23 + Ss and Ss) were then infected in vitro with S. sclerotiorum 48 h
prior to being placed on leaves. c Principal component analysis of
mRNA sequences from the four treatment groups examined by
RNA-seq. Variation between treatments is greater that variation
between replicates, and phenotypically similar treatment groups
clustered more closely together. d Number of unique mRNAs present
in treatment groups, as well as the cumulative number of unique
mRNA transcripts identified. Transcripts are categorized by frequency
of occurrence in the library, as described by the number of fragments
per kilobase of transcript per million mapped reads (FPKM) value
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from the PA23 treated plants are listed in Table 1. Several
markers of systemic acquired response (SAR) including
pathogenesis-related proteins PR-1 (BnaC03G45470D) and
PR-2 (BnaC08G28150D), lipid transporter protein DIR1
(BnaA03G11410D, BnaC03G14230D, BnaA10G09640D)
and EARLI1 (BnaC03g29580D, BnaA09g20900D) are up-
regulated in the presence of PA23. All DEGs were specific
to B. napus. When the sequence reads were mapped to the
S. sclerotiorum genome, B. napus tissues treated with S.
sclerotiorum alone showed an appreciable mapping rate
compared to water control, PA23 treatment or PA23 + Ss
(Additional file 1: Table S1).
To identify biological processes activated by the differ-

ent treatments, we used the custom gene ontology (GO)
term enrichment function of ChipEnrich with gene sets
identified in Fig. 2a [31]. Figure 2b summarizes GO
terms of interest from this analysis. A heatmap of rele-
vant enriched GO terms for genes downregulated in
these groups is available in Additional file 5: Figure S2B
and the complete list of GO terms with associated
p-values and genes can be found in Additional file 6:
Dataset S3. Response to ROS (log10 p-value < −4) was sig-
nificantly enriched for all of the treatments. Subsets of
genes belonging to this category accumulated in PA23 + Ss

and Ss but not in plants treated with PA23 alone, while
others were upregulated in all three treatment groups. In
the latter, response to ROS involved upregulation of FER-
RETIN 1 (FER1, BnaC03G00160D), FERRETIN 3 (FER3,
BnaC06G15730D), and two homologs of HEAT SHOCK
TRANSCRIPTION FACTOR A4A (HSFA4A, BnaC01
G11370D, BnaC03G62890D). In PA23 + Ss and Ss
treatment groups, four homologs of ASCORBATE PER-
OXIDASE 1 (APX1, BnaA06G04380D, BnaA09G49190D,
BnaC05G05550D, BnaC08G43490D), three homologs of
ETHYLENE RESPONSIVE ELEMENT BINDING FACTOR
6 (ERF6, BnaA01G34910D, BnaA08G08300D, BnaC01G
10080D), two homologs of XANTHINE DEHYDROGEN-
ASE 1 (XDH1, BnaA09G00610D, BnaCNNG46690D) and
two additional homologs of HEAT SHOCK TRANSCRIP-
TION FACTOR A4A (HSFA4A, BnaANNG31620D,
BnaC07G35520D) were identified. Similarly, all treatment
groups were enriched for the SAR GO term, while the
PA23 + Ss and Ss treatment groups were enriched for re-
spiratory burst involved in defense response.
Because reinforcement of the plant cell wall is a

marker for priming, it is noteworthy that the PA23 + Ss
group was uniquely enriched for GO terms involving cell
wall remodeling (phospholipid transfer to membrane,
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log10 p-value < −6; anchored component of membrane,
log10 p-value < −5; cellular glucan metabolic process,
log10 p-value < −4) (Fig. 2b). Overrepresented transcripts
include lipid transfer proteins and xyloglucan endotrans-
glycosylases. Furthermore, PA23 only and PA23 + Ss
groups were both enriched for the proteinaceous extra-
cellular matrix GO term (log10 p-value < −3).
Several GO terms associated with the chloroplast

were overrepresented in PA23-treated plants (Fig. 2b).

Specifically, thylakoid (log10 p-value < −7), plastid
translation (log10 p-value < −4) and plastoglobule
(log10 p-value < −3) were enriched in the PA23 only
treatment group, and plastid thylakoid membrane (log10
p-value < −3) as well as negative regulation of chlorophyll
catabolic process (log10 p-value < −6) were enriched in
both PA23 only and PA23 + Ss treatment groups. Tran-
scripts among these groups included subunits of photo-
systems I and II, plastid-specific ribosomal subunits, and

Table 1 Genes upregulated in response to PA23 treatment. B. napus identifiers used as per the Genome Genoscope
Database (www.genoscope.cns.fr/brassicanapus). TAIR identifiers used as per The Arabidopsis Information Resource (TAIR,
https://www.arabidopsis.org). Fold change in PA23 compared to the water control

B. napus identifier TAIR identifier Gene name/function Fold change

BnaC03g29580D AT4G12490.1 EARLI1-like lipid transfer protein 2 53.07

BnaA09g20900D AT4G12490.1 EARLI1-like lipid transfer protein 2 40.22

BnaC07g14090D AT1G22070.1 TGA3 (Transcriptional activator) 35.95

BnaC06g37650D AT1G21310.1 EXT3 (Extensin 3) 32.56

BnaC06g18380D - F-box/LRR-repeat protein 4-like 30.61

BnaC02g31910D AT5G45890.1 SAG12 (Senescence-specific cysteine protease) 18.37

BnaC09g26890D - Possible nucleotide phosphorylase 17.43

BnaC08g46150D - Possible malonate decarboxylase 16.69

BnaC06g14700D - Photosystem II reaction center protein A 16.66

BnaA02g24130D AT5G45890.1 SAG12 (Senescence-specific cysteine protease) 15.15

BnaC05g10350D AT1G14080.1 FUT6 (Fucosyltransferase 6) 14.99

BnaCnng12890D ATMG00640.1 ATP4 (ATP synthase subunit 4) 14.18

BnaA10g18480D AT5G15800.1 SEP1 (SEPALLATA 1 transcription factor) 12.56

BnaCnng13130D ATMG00900.1 CcmC (Cytochrome c assembly protein) 12.04

BnaC04g28910D AT5G24150.1 Squalene monooxygenase 1-like 11.94

BnaAnng01030D AT5G04740.1 ACR12 (ACT-domain containing protein) 11.88

BnaCnng24320D AT3G09190.1 Concanavalin A-like lectin family protein 11.87

BnaA01g34180D ATCG00130.1 AtpF (ATP synthase subunit b, chloroplastic) 11.79

BnaC09g29230D - Possible omega-6 fatty acid desaturase 11.24

BnaAnng35860D AT3G28700.1 NADH dehydrogenase [ubiquinone] complex I, assembly factor 7-like 9.93

BnaA01g34980D AT4G19810.1 ChiC (Class V chitinase) 9.74

BnaCnng12960D ATMG00070.1 NAD9 (NADH dehydrogenase subunit 9) 9.64

BnaA01g33070D AT3G02310.1 SEP2 (SEPALLATA 2 transcription factor) 9.39

BnaC05g38940D AT3G14610.1 Cytochrome P450 8.93

BnaA03g38630D AT2G14580.1 Basic PR-1 8.63

BnaC09g27530D ATCG00340.1 PsaB (Photosystem I) 8.58

BnaC04g20930D AT3G30390.2 Probable amino acid transporter 8.47

BnaA07g37560D AT5G38100.1 S-adenosyl-L-methionine-dependent methyltransferases superfamily protein 8.02

BnaUnng03950D ATMG01170.1 ATPase subunit 6 7.90

BnaC04g21290D ATMG01360.1 COX1 (cytochrome c oxidase subunit 1) 7.87

BnaC09g32980D AT5G57220.1 Cytochrome P450, family 81, subfamily F, polypeptide 2 7.77

BnaA08g22890D AT1G17860.1 Kunitz family trypsin and protease inhibitor protein 7.73

BnaA07g21130D - Extensin-like protein 7.63

BnaA01g37280D AT4G11600.1 GPX6 (Glutathione peroxidase, mitochondrial) 7.49
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two homologs of the negative regulator of chlorophyll
degradation STAY-GREEN 2 (SGR2, BnaA03G24900D and
BnaC03G72930D).

PA23 prevents the accumulation of ROS in the leaf
We stained leaf tissues for detection of hydrogen perox-
ide (H2O2) and superoxide (O2

−) radicals to help validate
the RNA seq dataset. Whereas Ss-treated leaves retained
both stains in the regions directly surrounding lesions,
indicative of H2O2 and O2

− presence (Fig. 3m-p), ROS
production was greatly reduced when plants were treated
with PA23 prior to the fungal pathogen (Fig. 3i-l). PA23-
treated leaves had no regions containing large aggrega-
tions of H2O2 and O2

−, although production of the former
appeared similar to the PA23 + Ss treatment group sug-
gesting PA23 activates a mild H2O2 reaction (Fig. 3g, h).

Dominant patterns of gene expression reveal
treatment-specific responses in B. napus
To identify more complex patterns of expression, we
clustered gene activity from all treatment groups into
dominant patterns (DPs) of co-expression using a modi-
fied fuzzy K means clustering algorithm. We identified
six DPs from this analysis (Additional file 7: Figure S3).
We focused our attention on three DPs where genes ac-
cumulated specifically in response to one of the treat-
ments (Fig. 4a). The number of genes clustering in these
DPs ranged from 282 in DP5 to 11,340 in DP1. We

identified genes associated with translation, response to
fungus, plant-type hypersensitive response, and stomatal
closure (log10 p-value < −8) when plants were infected
with S. sclerotiorum without protection by PA23 (DP1).
The chloroplast GO term is also significantly repre-
sented in DP1 (Fig. 4b; log10 p-value < −28), although no
specific chloroplast-related processes were identified. In
contrast, pre-treatment with PA23 (DP5) induced
chloroplast-related components and processes, such as
the chloroplast envelope, vitamin E biosynthesis, and
starch metabolic processes (log10 p-value < −3). When
plants were treated with PA23 alone (DP3), genes associ-
ated with GO terms for cytoskeletal changes and auxin-
activated signaling were upregulated (log10 p-value < −6),
as well as several chloroplast-related terms including plas-
tid translation, thylakoid and chloroplast envelope. Some
GO terms were common to more than one DP; in particu-
lar chloroplast (DP1 and DP3) and chloroplast envelope
(DP3 and DP5), indicating differential expression of genes
within these GO terms among treatments (Fig. 4b). A
complete list of genes for each DP is available in
Additional file 8: Dataset S4.

PA23 treatment results in structural and metabolic
changes in the B. napus chloroplast
Since each DP identified a number of chloroplast com-
ponent- and process-related GO terms, we decided to
explore gene expression patterns within this organelle in

H2O
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e f g h

i j k l

m n o p

Fig. 3 Detection of superoxide radicals (left) and hydrogen peroxide (right) in Brassica napus treatment groups. The leftmost column in each set
depicts leaves after treatment and before staining. The rightmost column depicts the same area of tissue after petal removal, staining and
treatment to remove leaf pigmentation. Scale bar in (P) = 5 mm and is applicable to panels (a) - (p)
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more detail. The chloroplast GO term was significantly
represented in more than one DP indicating differential
expression of subsets of associated genes. Accordingly,
we compared relative expression levels of genes belong-
ing to chloroplast-related sub-regional and functional

GO terms to reveal contrasting expression patterns
(Fig.5a). For example, a comparison of relative abun-
dance of genes for chlorophyll catabolite transmembrane
transport reveals upregulation in the S. sclerotiorum-
treated group. Although PA23 + Ss treatment caused
many of the same genes to be expressed, transcript
abundance was higher in the absence of PA23. It is pos-
sible that the reduced infection load associated with the
PA23 + Ss group results in decreased transcript abun-
dance. This trend was also observed for the chloroplast
inner membrane and chloroplast stroma GO terms (Fig. 5a,
II and IV). Genes downregulated in S. sclerotiorum -treated
plants were enriched for chloroplast photosystem I & II
GO terms as well as thylakoid-related GO terms, including
genes encoding photosystem I subunits (PSAN, BnaA06
g23190D and BnaC03g50210D; PSAG, BnaC06g07480D;
PSAP, BnaC04g51600D), photosystem II subunits and
regulatory proteins (PSBY, BnaA07g38700D and BnaC06
g26560D; PSB27, BnaC08g46250D; PSBP-1, BnaC08g
44890D) and other photosynthesis-related proteins (CRR23,
BnaA07g28860D and BnaC06g31900D; PLASTOCYANIN
2, BnaA06g38550D; PNSL2, BnaA09g45770D). Overall up-
regulation of the chloroplast thylakoid and plastoglobule
GO terms (Fig. 5a, V and VI) in the PA23 only group was
also confirmed. A complete list of gene names and fold
change values for genes in Fig. 5a is available in Additional
file 9: Dataset S5.
Through transmission electron microscopy (TEM),

PA23-mediated changes in chloroplast membrane struc-
ture were identified validating our transcriptional find-
ings (Fig. 5b-f ). Chloroplasts within the uppermost layer
of the palisade mesophyll from the water-treated control
group contained large starch granules and reduced thyla-
koid membrane structure. When plants were treated
with PA23, the area dedicated to thylakoid structures in-
creased with a concomitant increase in granal stack
organization and the accumulation of plastoglobuli 24
and 48 h post inoculation (Fig. 5c, d). While gene ex-
pression in plants treated with PA23 + Ss indicated
significant upregulation of starch metabolic processes
(Fig. 4b), these chloroplasts were similar in appearance
to those of the biocontrol only-treated group containing
many grana stacks and plastoglobules (Fig. 5e). When
plants were inoculated with S. sclerotiorum, the area
dedicated to thylakoid structures within the chloroplast
appeared to be reduced compared to other treatments
(Fig. 5f ).
Since structural changes were observed in PA23-

treated chloroplasts, we sought to determine whether
plant chlorophyll was also affected. Chlorophyll content
between treatment groups showed concentrations of
total chlorophyll (chlorophyll a and b) significantly in-
creased by 22.8% when plants were treated with PA23.
Conversely, plants exposed to PA23 and S. sclerotiorum
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or S. sclerotiorum alone showed no difference in
chlorophyll content when compared to the water control
(Fig. 5g). To clarify whether these changes were due to
increased chlorophyll production or decreased chloro-
phyll degradation, we examined expression of genes
encoding chlorophyllase. Global transcriptional analysis of
genes involved in chlorophyll degradation pathways re-
vealed significant downregulation of CHLOROPHYLLASE
1 (CLH1) in PA23-treated plants, which was confirmed via
qRT-PCR (Fig. 5h). In contrast, S. sclerotiorum-treated
plants showed significantly increased levels of CLH1 and
decreased expression of genes associated with multiple
chlorophyll-related pathways (Fig. 5h, Additional file 2:
Figure S1B).

PA23 activates unique innate immunity and SAR
networks to prime plant defenses
To understand how PA23 triggers plant priming mecha-
nisms, we compared the differential accumulation of
transcripts known to be involved in innate immunity
among treatment groups. The interactions of signifi-
cantly up- or down-regulated genes encoding products
known to function in triggered immunity are presented
in Fig. 6a. Treatment-specific expression levels are repre-
sented as a heat map for each gene and homolog. Many
of these genes were upregulated in response to the
pathogen, S. sclerotiorum. In response to PA23, two
prokaryote-specific surface receptor genes were down-
regulated, namely FLS2 (BnaA09g17950D), encoding a

a b

c

e

f

h

d

g

Fig. 5 Changes detected in the Brassica napus chloroplast in response to combinations of PA23 and Sclerotinia sclerotiorum. a Differential
expression of genes associated with chloroplast-related GO terms, compared to the water control. Only genes with a log2 fold change greater than 2 in
at least one treatment group are shown. I, chlorophyll catabolite transmembrane transport; II, chloroplast inner membrane; III, chloroplast photosystem I
& II; IV, chloroplast stroma; V, chloroplast thylakoid; VI, plastoglobule; VII, protein import into chloroplast stroma; VIII, thylakoid lumen; IX, thylakoid
membrane. b-f Transmission electron micrographs of leaf chloroplasts. b Water control, 48 h. c PA23, 24 h. d PA23, 48 h. e PA23 + Ss, 24 h. f Ss, 48 h.
S = starch granule; g = grana stack; M = mitochondria. Arrows indicate plastoglobules. Scale bar for panels A-E = 500 nm. g Chlorophyll b content of
treated leaves. h Relative abundance of the chlorophyllase 1 transcript as determined by RNA-seq (grey bars) and qRT-PCR (black line)
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receptor kinase which binds bacterial flagellin, and
LYM3 (BnaCnng11350D), encoding a receptor required
for detection of peptidoglycan.
Systemic resistance and defense priming are often the

result of activation of these innate immunity networks.
As such, we investigated downstream responses to dis-
cover how PA23 primes the host plant on a systemic
level. The SAR GO term was enriched in all treatment
groups, including PA23 alone (Fig. 2b). Analysis of
RNA-seq data for genes associated with the SAR GO
term revealed genes upregulated in the PA23 only group
but downregulated in PA23 + Ss and Ss groups (Fig. 6b
subgroup 1). Subgroup 1 contained DIR1, CPR5 and
ACP4, suggesting that these genes are involved in PA23-
induced SAR. We also observed genes induced by S.
sclerotiorum only (Fig. 6b subgroup 2), as well as those
showing altered expression in all treatment groups com-
pared to the water control (Fig. 6b, subgroup 3). Treat-
ment with S. sclerotiorum alone induced the expression
of ALD1, GLIP1, PR4 and DOX1. The genes MES9, PR1,
PR2 and CHI were upregulated in all treatment groups,
although expression was higher in plants where S. sclero-
tiorum was present. The same trend could be observed
for the downregulation of CPN60B1. Expression levels
for several of the genes mentioned above (ALD1, CHI,
DOX1, FMO1, PR1, and PR4) were confirmed using
qRT-PCR (Additional file 10: Fig. S4).

Discussion
Many nonpathogenic rhizobacteria are capable of prim-
ing plants for an enhanced defense response via induced
systemic resistance (ISR) or systemic acquired resistance
(SAR) (see 5,6 and [32] for reviews). However, few of
these nonpathogenic microorganisms have been shown
to directly antagonize pathogens, especially when applied
to the plant phyllosphere [17]. In the current study, we
provide compelling evidence that in addition to direct
antagonism of S. sclerotiorum mitigating disease progres-
sion, PA23 protects B. napus through priming of host
defense systems at the RNA level.
The B. napus-S. sclerotiorum pathosystem has recently

been transcriptionally profiled under a variety of condi-
tions, providing new insight into genetic processes be-
hind hormone and defense pathway signalling changes
that support plant innate resistance [33, 34]. Patterns of
gene expression revealed that SAR is weakly activated in
plants when treated with the biocontrol agent PA23. The

activation of an immune response in PA23-treated plants
was reflected in both clustering analysis and in the
number of DEGs among groups (Figs. 1c, 2a, Additional
file 2: Figure S1A). Given the majority of DEGs in the
PA23 + Ss group were shared with the Ss group, we
hypothesize that S. sclerotiorum triggers many of the
same defense mechanisms in B. napus regardless of
PA23. It is important to note, however, that the
magnitude of the response is lessened by the presence of
the bacteria. This reduction likely results from PA23
antibiosis controlling the S. sclerotiorum infection.
Additionally, PA23 may attenuate the host defense re-
sponse through detection of bacterial effectors leading
to priming.
Plant cellular signaling cascades which activate defense

priming mechanisms are modulated by PAMP/MAMP-
detecting pattern recognition receptors (PRRs). Wu al.
(2016) observed differential activation of PRRs between
resistant and susceptible lines of canola, highlighting the
role of PRR activation in response to S. sclerotiorum. In
plants treated with PA23 alone, surface detection of this
nonpathogenic bacterium culminates in systemic defense
stimulation via SAR. Genes associated with PAMP/
MAMP- and DAMP-triggered immunity networks were
turned on in response to S. sclerotiorum, but not PA23
(Fig. 6a). The downregulation of FLS2 in plants treated
with PA23 alone is consistent with studies showing that
FLS2 is degraded after initial ligand binding to prevent
continuous stimulation [35]. Thus, it is logical to sur-
mise that detection of PA23 flagellin by the FLS2 recep-
tor complex contributes to downstream induced defense
processes. A similar mechanism may be responsible for
repression of LYM3. Willmann et al. [36] found that in
Arabidopsis, infection with virulent P. syringae pv. to-
mato DC3000 lead to strong downregulation of LYM3,
FLS2 and to a lesser degree LYM1. LYM1 activity is un-
changed in response to PA23. Differences in LYM1 and
LYM3 expression may indicate receptor specificity, as
these two proteins are not functionally redundant [36].
The role these receptors play in the activation of
systemic resistance appears to be variable. For example,
flagellin plays an important role in the induction of sys-
temic defense in response to enteric bacteria applied to
leaves of Arabidopsis [37]. In the rhizosphere, purified
flagellin from nonpathogenic P. putida WCS358 induced
ISR in Arabidopsis but not in bean or tomato [19].
Moreover, Pseudomonas fluorescens SS101 induced

(See figure on previous page.)
Fig. 6 Differentially expressed genes involved in local and systemic defense responses detected within Brassica napus treatment groups. a Differentially
expressed genes involved in innate immunity mapped to known interactions. Expression for each homolog is represented as a heatmap value for each
treatment group, from left to right: PA23, PA23 + Ss, Ss. Transcript abundance is measured in log2 fold change. Orange and blue borders represent
receptors which bind to BAK1 and IOS1 when activated, respectively. b Comparison of transcript abundance of select SAR-associated genes as
determined by RNA-seq. Transcript abundance is measured in log2 fold change. The leftmost column groups genes by expression pattern
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systemic resistance in Arabidopsis fls2 mutants suggest-
ing that FLS2 is not required for priming during this inter-
action [38]. In the future, determining the roles of these
receptor complexes in PA23-mediated defense priming
should provide additional insight into the molecular under-
pinnings of this tri-partite system at the plant cell surface.
SAR is a classic example of defense priming which is

usually associated with localized pathogen attack [14].
While genes associated with SAR were induced in all
treatments, we identified genes specifically upregulated
in plants treated with PA23 alone. Elevated DIR1, CPR5,
and ACP4 activity are indicative of SAR induction via
glycerol-3-phosphate (G3P). G3P is one of several in-
ducers of SAR, and is also a precursor for the synthesis
of membrane and storage lipids [39, 40]. The lipid trans-
fer protein, DIR1, which is upregulated in PA23-treated
plants, leads to G3P accumulation and G3P-induced
SAR [41]. DIR1 binds to EARLI1, a paralog of AZI1
which is required for SAR and upregulated in PA23-only
treated plants (Table 1) [42]. Expression patterns of
ACP4 further support this hypothesis, as ACP4 knockout
plants are unable to perceive mobile SAR signals [43].
ACP4 also plays a major role in the biosynthesis of fatty
acids within the chloroplast, which indirectly increases
G3P levels [41, 44]. While CPR5 is thought to have a
role in inducing SAR, its exact function has not been de-
fined. Notwithstanding, CPR5 has been shown to nega-
tively regulate programmed cell death caused by
effector-triggered immunity, which supports the hypoth-
esis that PA23 promotes plant growth, as it is known that
S. sclerotiorum infection results in cell death [45–47].
Taken together, our data support a role for G3P in PA23-
mediated defense priming which serves to protect plants
from fungal infection.
As a downstream marker of immune responses, ROS

function as part of a localized hypersensitive-type reac-
tion to invading pathogens, as well as signals for sys-
temic response initiation [48]. Sclerotinia acutely
modifies the redox state of the host at infection sites to
promote pathogenesis through production of oxalic acid
[49]. Several ROS response genes were identified that
are upregulated in either all treatment groups (PA23,
PA23 + Ss, Ss), or in those exclusively treated with S.
sclerotiorum (Ss, PA23 + Ss), similar to the activation of
redox homeostasis genes observed by Yang et al. [50].
HSFA4A is thought to both regulate plant responses to
oxidative stress and function as an antiapoptotic factor
[51]. Upregulation in PA23 groups suggests that treat-
ment with bacteria alone can induce the plant oxidative
stress response resulting in ROS production. This reac-
tion appears to be mild in nature, as only two of the four
upregulated HSFA4A homologs accumulated in the
PA23 treatment group. In addition, HSFA4A-induced
ASCORBATE PEROXIDASE 1 (APX1) was upregulated

in S. sclerotiorum-treated plants, and is required for
H2O2 scavenging and the prevention of protein oxida-
tion during oxidative stress [52]. Regulation of plant
defense through ROS in the presence of PA23 may oper-
ate via the expression of ETHYLENE RESPONSE FAC-
TOR 6 (ERF6) and XANTHINE DEHYDROGENASE 1
(XDH1). ERF6 modulates the expression of antioxidant
enzymes to control ROS production and XDH1 is
thought to be a source of O2

− production [48, 53]. An
important difference between the PA23 + Ss and Ss
groups is upregulation of superoxide dismutase activity
in DP5, which suggests enhanced management of O2

−

molecules in PA23 + Ss (Fig. 4a, b). Thus, gene expres-
sion changes indicate a mild and controlled production
of ROS in response to PA23 alone, while pretreatment
with PA23 prior to pathogen exposure allows for en-
hanced management of the oxidative stress response.
To substantiate the changes observed at the RNA

level, we were interested to see if PA23 stimulates ROS
production and/or modulates ROS levels on the leaf sur-
face. In plants treated with PA23 alone, ROS production
involving low levels of H2O2 was observed (Fig. 3). This
is significant as non-toxic levels of H2O2 are key to the
activation of priming pathways which reinforce resist-
ance to abiotic and biotic stressors [54]. Large regions
staining for both H2O2 and O2

− molecules in Ss-treated
leaves indicates a widespread oxidative stress response
which appears to be unregulated. Leaves treated with
PA23 + Ss had not only H2O2 but O2

− as well, confirming
that S. sclerotiorum induces an oxidative stress response
involving both molecules. Conversely, O2

− staining was
not observed in the PA23 only treatment group (Fig. 3f, j).
Collectively, our findings establish that ROS production in
PA23-only treated leaves is limited to mild oxidative stress
and is likely an outcome of weakly induced upstream in-
nate immunity. Such findings support a role for ROS in
the priming of plant basal defenses and initiation of
long-distance signaling consistent with downstream
PA23-mediated induction of SAR genes. In response
to S. sclerotiorum, ROS production is limited in
plants pretreated with PA23. We believe this results
from a combination of direct fungal antagonism by
PA23 and increased capacity to maintain ROS homeo-
stasis during oxidative stress.
Thylakoid membranes in chloroplasts are a major

source of ROS because they house the photosynthetic
electron transport system [55]. Oxidative stress observed
during S. sclerotiorum infection is likely responsible for
damage to the chloroplast and a reduction in photosyn-
thetic activity [56, 57]. In Ss-treated plants, the observed
upregulation of CLH1 is likely due to chloroplast dam-
age leading to the release of chlorophylls from thylakoid
membranes. CLH1 expression is induced for quick
degradation of these photoactive molecules, a process
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known to be elicited by necrotrophic pathogens [58, 59].
TEM imaging substantiated these findings, as the region
containing thylakoid tissue was decreased. In contrast,
we observed an increase in relative area dedicated to
thylakoid structures in chloroplasts within PA23-treated
plants coupled with an increase in total chlorophyll con-
tent and repression of CLH1. In other studies, BCA ap-
plication has been associated with increased chlorophyll
in the plant host [60–62]. The lack of overexpression of
CLH1 in the PA23-only treatment group is consistent
with evidence showing that CLH1 is only induced after
cellular collapse, a defense response not elicited by non-
pathogenic organisms [63]. Moreover, active repression
of CLH1 may be evidence of a yet-to-be-identified role
for chlorophyll in defense priming. Detection of more
plastoglobules in the chloroplasts of PA23-treated plants
suggests increased plastid lipid metabolism, potentially
facilitating synthesis of lipid signaling molecules and re-
modeling of thylakoid membranes [64].
Such gene expression patterns together with the ob-

served morphological changes in the chloroplasts of
PA23-treated leaves correlate to the activation of SAR-
modulated expression and mitigation of S. sclerotiorum
disease progression.
Finally, the plant cell wall is an important component of

innate immunity and defense priming [65]. Changes in
gene expression related to cell wall architecture were ex-
clusively observed for plants in the PA23 + Ss treatment
group. GO terms associated with cell wall development
including thirteen xyloglucan endotransglycosylases which
function to build up the cell wall during cell growth [66]
and three homologs of LIPID TRANSFER PROTEIN 2
(LTP2) were enriched. These proteins may be involved in
the deposition of cutin or wax in the extracellular matrix,
and may increase tolerance to pathogens as has been
shown in tobacco [67]. As these genes were only upregu-
lated in PA23 + Ss, we hypothesize this to be the result of
a heightened defense response to S. sclerotiorum primed
by PA23 pretreatment.

Conclusions
Findings from the current study broaden our understand-
ing of PA23-mediated control of sclerotina stem rot.
Beyond antibiosis, application of PA23 to the plant phyllo-
sphere protects canola through induction of plant innate-
immune pathways involving G3P-mediated SAR, ROS sig-
naling molecules and protection of chloroplast integrity.
Together, these processes serve to prime the plant and en-
hance defenses in response to fungal attack. As we move
towards more sustainable approaches for crop disease
management, it is essential that we fully appreciate the
impact that BCAs pose on the plants they protect as well
as the surrounding environment. Findings from the
current study are an important step in this direction.

Methods
Plant and bacterial growth conditions
Brassica napus cv. Westar plants were grown in Sun-
shine Mix #1 soil in growth chambers at 21 °C with a
light/dark photoperiod of 16 h/8 h and 0% humidity. P.
chlororaphis PA23 was grown overnight in Luria-Bertani
broth at 28 °C in a shaking incubator.

Greenhouse infection assays
One day prior to fungal pathogen exposure, B. napus
plants at the 30% flowering stage were sprayed until
dripping with a 2 × 108 cfu/mL solution of PA23 resus-
pended in sterile water supplemented with 0.02% Tween
20 as a surfactant. Plants not receiving biocontrol treat-
ment (water control and Ss only groups) were sprayed
with sterile water (0.02% Tween 20). Plants were sealed
in clear bags to maintain relative humidity and returned
to the growth chamber for 24 h. The following day, bags
were removed and plants receiving the pathogen treat-
ment were sprayed with an 8 × 104 spores/mL solution
of S. sclerotiorum ascospores resuspended in sterile
water (0.02% Tween 20). Control plants and plants to be
exposed only to PA23 were sprayed with sterile water
(0.02% Tween 20). Plants were transferred to a humidity
chamber with humidity levels of 70–90% for 72 h. Dur-
ing this time, plants were gently shaken at the base twice
to encourage petals to detach and fall into the plant can-
opy. Infection rates were quantified by calculating the
ratio of petals causing lesions to total petals in the plant
canopy. Counts from three plants were pooled for each
treatment. This experiment was performed three times.

RNA extraction and sequencing
Infection assays were carried out as described above,
and tissue from three biological replicates was collected
for RNA extraction. Three leaves per plant and three
plants per treatment group were used for each biological
replicate. Leaves upon which petals had landed were
used for collection, as these are sites of potential infec-
tion. The petal was removed from the leaf and approxi-
mately 1cm2 area of leaf tissue surrounding the site was
collected with a scalpel. For S. sclerotiorum-infected
leaves, green tissue immediately surrounding the lesion
was collected. Cuttings were flash frozen in liquid nitro-
gen, and stored at −80 °C for no more than 2 days before
processing. Total RNA was extracted using PureLink®
Plant RNA Reagent (Invitrogen). DNA contamination
was removed with the Turbo DNA-free™ kit (Ambion),
following the manufacturer’s instructions. RNA concen-
tration was verified using a NanoVue spectrophotometer
(GE Healthcare), and quality was measured with an
Agilent 2100 Bioanalyzer with Agilent RNA 6000 Pico
and Nano Chips (Agilent Technologies; Santa Clara, CA,
USA). RNA-seq libraries were prepared according to the
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alternative HTR protocol (C2) described by Kumar [68]
with the exception of PCR enrichment of the libraries,
where the number of cycles was adjusted to 11. Libraries
were validated using the Agilent Bioanalyzer High
Sensitivity DNA Assay with DNA chips (Agilent
Technologies). The desired fragment sizes of sheared
cDNA with ligated adapters were isolated employing the
E-Gel® electrophoresis system (Invitrogen). 100 bp single-
end RNA sequencing was carried out at Génome Québec
(Montreal, Canada) on the Illumina HiSeq 2000 platform.

Data analysis
Sequenced reads were analyzed to remove barcode adapters
and low quality reads using the Trimmomatic tool [69].
The parameters for Trimmomatic which maximized map-
ping efficiency to the B. napus and S. sclerotiorum genomes
(B. napus: v.4.1, Chalhoub et al. [30]; S. sclerotiorum: v1,
Amselem et al., [70]) were determined using FastQC
reports for quality control (http://www.bioinformatics.
babraham.ac.uk/projects/fastqc/) followed by alignment
with Tophat2 v.2.1.0 [71]. Reads mapped to the B. napus
and S. sclerotiorum genomes as expected, with 81.42% of
reads mapping to B. napus across samples (Additional
file 1: Table S1). Multiple mapping reads were retained to
detect expression of plant defense and resistance genes of
interest that may be duplicated within the genome. The
value of multiple-mapping reads is determined by dividing
the count by the total number of hit locations [71]. For ex-
ample, a read mapping to four locations will be recorded
as 0.25 at each position. This correction statistically favors
uniquely mapping reads in downstream analyses. Align-
ment of reads to these genomes was performed in high-
sensitivity mode using B. napus reference annotation v5
from Chalhoub et al. [30] and the S. sclerotiorum reference
annotation from Amselem et al. [70] as guides. The cuf-
flinks and cuffmerge tools within the Cufflinks v.2.2.1
suite [71] were employed to construct a transcriptome
from the reads and identify novel transcripts. Transdeco-
der (https://transdecoder.github.io) was used to identify
open reading frames (ORFs) within transcript sequences.
Genes were identified by aligning translated ORF se-
quences with proteins in the Arabidopsis TAIR10, NCBI
and Uniprot databases using BLAST [72]. Read counts
were normalized to FPKM values using the cuffquant and
cuffdiff tools in the Cufflinks package with default settings
[71]. Significantly differentially expressed genes were
identified as those with a corrected p-value <0.05 (false dis-
covery rate = 0.05). This output was used for hierarchical
clustering via the pvclust package (https://cran.r-project.org/
web/packages/pvclust/pvclust.pdf) and Venn diagram gen-
eration via Venny v2.1 (http://bioinfogp.cnb.csic.es/tools/
venny/index.html). Dominant patterns (DPs) of expres-
sion were identified using the cuffdiff output data via
the Fuzzy K-means (FKM) implementation FANNY

(https://cran.r-project.org/web/packages/cluster/cluster.pdf)
with a K value of 10. Transcripts with a Pearson’s correl-
ation of 0.85 or above were assigned to DPs. Principal
component analysis was performed on raw counts using
the DESeq2 package [73]. Unmapped reads were con-
verted from BAM format to FASTA with the SAMtools
software package (http://samtools.sourceforge.net/). Fasta
files were then aligned to the SILVA phylogenetic database
(https://www.arb-silva.de/) with a local instance of ncbi-
BLAST-2.6.0+ (https://blast.ncbi.nlm.nih.gov/Blast.cgi) to
identify the composition of unmapped reads (Additional
file 2: Figure S1). To identify genes that may be unique to
cv. Westar, unmapped reads from water and PA23 control
samples were assembled to transcript fragments
(Additional file 3: Dataset S1) with the Trinity package
(https://github.com/trinityrnaseq/trinityrnaseq/wiki). As-
sembled transcripts were then aligned with a local in-
stance of ncbi-BLAST-2.6.0+ to a database of Brassicaceae
transcript sequences (Additional file 4: Dataset S2).

Staining for reactive oxygen species
B. napus leaves were stained for hydrogen peroxide
(H2O2) and superoxide radical (O2

−) accumulation as
per the methods of Kumar et al. [68]. Briefly, leaves were
severed with petioles intact and immersed in staining so-
lution overnight in the dark, while avoiding contact be-
tween the solution and the severed petiole to reduce
staining of the vein conduits. For H2O2 detection, a
1 mg/mL solution of 3,3′-diaminobenzidine was used. A
0.2% solution of nitrotetrazolium blue chloride in
50 mM sodium phosphate buffer at pH 7.5 enabled
identification of O2

−. The following day, chlorophyll was
removed from the leaves by submersion in 95% ethanol
and heating in a boiling water bath.

Chlorophyll quantification
Concentrations of chlorophyll a and b were determined
based on methods described by Arnon [74] and Porra
[75]. Briefly, tissue from two leaves per plant was com-
bined as one biological replicate and ground in liquid ni-
trogen. Approximately 200 mg of powder was extracted
in 80% acetone buffered to pH 7.8. All steps of the ex-
traction were performed in the dark. Concentrations
were calculated as described by Porra [75]. Three bio-
logical replicates were collected and absorbance values
were measured twice for each replicate. The experiment
was repeated twice.

Transmission electron microscopy
Leaf tissue was collected as above and processed follow-
ing the methods of Chan and Belmonte [76]. Tissue was
fixed overnight in 3% glutaraldehyde in 0.025 M cacody-
late buffer supplemented with 5 mM calcium chloride
(pH 7.0). Plant material was rinsed with cacodylate
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buffer and post-fixed with 2% osmium tetroxide in 0.8%
KFe(CN)6 in cacodylate buffer. After post-fixation, the
sample was rinsed with distilled water and stained over-
night with a 0.5% aqueous uranyl acetate solution. Plant
material was rinsed in distilled water and dehydrated in
a graded ethanol series. The leaf tissue was further dehy-
drated in 1:1 absolute ethanol to propylene oxide (v:v)
followed by 100% propylene oxide. Finally, tissue was
gradually infiltrated and embedded in Spurr’s epoxy resin
at 70 °C. All methods prior to embedding were performed
at 4 °C. Using a Reichert–Jung Ultracut ultramicrotome,
sections were cut (90 nm thickness) with a Diatome dia-
mond knife and mounted on copper grids. The sections
were visualized with a Hitachi H-7000 transmission elec-
tron microscope at 75 kV and pictures were taken using
AMT Image Capture Engine version 601.384.

Differential gene expression verification using qRT-PCR
RNA collected for RNA sequencing was also used to
synthesize cDNA for qRT-PCR. qRT-PCR primers are
listed in Additional file 11: Table S2. Following integrity
checks via the Agilent 2100 Bioanalyzer with Agilent
RNA 6000 Pico and Nano Chips (Agilent Technologies;
Santa Clara, CA, USA), cDNA was synthesized with the
Maxima First Strand cDNA Synthesis Kit (Thermo
Fisher Scientific, Inc.). qRT-PCR was performed on a
Bio-Rad CFX Connect™ Real-Time System with SsoFast™
EvaGreen® Supermix (Bio-Rad, USA). The following cyc-
ling conditions were employed: 95 °C for 30 s, followed
by 45 cycles of 95 °C for 2 s and 60 °C for 5 s. Melt
curves (0.5 °C increments in a 68–90 °C range) for each
gene were performed to assess the sample for non-
specific targets, splice variants and primer dimers. CFX
Manager v3.1 (Bio-Rad, USA) was used to calculate rela-
tive mRNA abundance from three technical replicates per
primer set per sample utilizing the ΔΔCt method. ATGP4
was incorporated as an endogenous control and water-
treated tissue was used as a reference sample. Three bio-
logical replicates for each treatment were measured.
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Brassica napus and Sclerotinia sclerotiorum genomes. (PDF 14.7 kb)
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unmapped reads with ncbi-BLAST. For all treatments, unmapped reads
were converted to fasta format with SAMtools and aligned to the SILVA rRNA
sequence database. Average distribution of alignments are represented in
individual pie charts for each treatment group. (PDF 10 kb)
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groups. A. Venn diagram of B. napus gene counts for uniquely and

significantly downregulated genes in treatment groups compared to the
water control. B. Heatmap of enriched GO terms selected from genes
identified in A. (PDF 347 kb).
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uniquely-expressed genes between treatment groups, with associated
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(XLSX 968 kb)

Additional file 7: Figure S3. Dominant patterns of expression
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(PDF 14.7 kb)
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