Skip to main content

Table 2 Xylose utilisation metabolic genes with significantly higher expression on xylose compared to maltose.

From: Transcriptomic comparison of Aspergillus niger growing on two different sugars reveals coordinated regulation of the secretory pathway

ORF

gene name

encoded enzyme (homolog)

fold difference

signal xylose

SD

Signal maltose

SD

p

FDR

Xylose conversion:

   An01g03740

xyrA

D-xylose reductase

15.9

9,267

511

1,048

1,033

4.1·10-3

4.5·10-2

   An07g03140

 

xylulokinase (Xks1 – S. cerevisiae)

16.0

916

103

58

34

2.3·10-5

1.3·10-3

Pentose phosphate pathway – nonoxidative phase:

   An08g06570

 

transketolase (Tkl1 – S. cerevisiae)

1.4

5,410

439

3,522

448

1.6·10-4

4.7·10-3

   An07g03850

 

transaldolase (Tal1 – S. cerevisiae)

1.4

5,127

615

3,257

566

1.6·10-4

4.7·10-3

   An07g03160

 

transaldolase (TalB – Synechocystis sp.)

8.9

551

32

60

26

2.1·10-5

1.2·10-3

Glycolysis/gluconeogenesis:

   An16g05420

 

glucose-6-phosphate isomerase (Pgi1 – S. cerevisiae)

1.7

1,481

278

789

61

2.5·10-3

3.2·10-2

Pentose phosphate pathway – oxidative phase:

   An02g12140

gsdA

glucose-6-phosphate dehydrogenase

1.5

1,588

159

966

111

4.5·10-5

2.0·10-3

  1. ORF = identifier for open reading frame in A. niger CBS513.88 genome sequence [3]; gene name in A. niger; enzyme encoded by ORF (gene product and species name in parenthesis indicate closest ORF-homolog with characterized function); fold difference reflects ratio of normalized transcript levels on xylose compared to maltose (xylose/maltose); mean signal values of six experiments on each carbon source and standard deviations (SD) is given in Affymetix units; significance of each observation is given by p-value (p) and the Benjamini-Hochberg false discovery rate (FDR).