Skip to main content

Table 2 Xylose utilisation metabolic genes with significantly higher expression on xylose compared to maltose.

From: Transcriptomic comparison of Aspergillus niger growing on two different sugars reveals coordinated regulation of the secretory pathway

ORF gene name encoded enzyme (homolog) fold difference signal xylose SD Signal maltose SD p FDR
Xylose conversion:
   An01g03740 xyrA D-xylose reductase 15.9 9,267 511 1,048 1,033 4.1·10-3 4.5·10-2
   An07g03140   xylulokinase (Xks1 – S. cerevisiae) 16.0 916 103 58 34 2.3·10-5 1.3·10-3
Pentose phosphate pathway – nonoxidative phase:
   An08g06570   transketolase (Tkl1 – S. cerevisiae) 1.4 5,410 439 3,522 448 1.6·10-4 4.7·10-3
   An07g03850   transaldolase (Tal1 – S. cerevisiae) 1.4 5,127 615 3,257 566 1.6·10-4 4.7·10-3
   An07g03160   transaldolase (TalB – Synechocystis sp.) 8.9 551 32 60 26 2.1·10-5 1.2·10-3
Glycolysis/gluconeogenesis:
   An16g05420   glucose-6-phosphate isomerase (Pgi1 – S. cerevisiae) 1.7 1,481 278 789 61 2.5·10-3 3.2·10-2
Pentose phosphate pathway – oxidative phase:
   An02g12140 gsdA glucose-6-phosphate dehydrogenase 1.5 1,588 159 966 111 4.5·10-5 2.0·10-3
  1. ORF = identifier for open reading frame in A. niger CBS513.88 genome sequence [3]; gene name in A. niger; enzyme encoded by ORF (gene product and species name in parenthesis indicate closest ORF-homolog with characterized function); fold difference reflects ratio of normalized transcript levels on xylose compared to maltose (xylose/maltose); mean signal values of six experiments on each carbon source and standard deviations (SD) is given in Affymetix units; significance of each observation is given by p-value (p) and the Benjamini-Hochberg false discovery rate (FDR).