Skip to main content

Advertisement

Table 1 Results indicating detection sensitivity and fold-reduction in search-space achieved using the i-rDNA algorithm.

From: i-rDNA: alignment-free algorithm for rapid in silico detection of ribosomal gene fragments from metagenomic sequence data sets

Validation data set Total number of sequences (X) i-rDNA predicted 'probable 16S rDNA' sequences (Y) Fold reduction in search space (X/Y) meta-RNA predicted 16S rDNA sequences (A) i-rDNA predicted 16S rDNA sequences within 'A' (B) Detection sensitivity (B*100/A)
SimLC -Sanger 97493 9262 10.5 183 156 85.2
SimMC -Sanger 114456 10873 10.5 268 236 88.1
SimHC -Sanger 116770 10505 11.1 392 341 87.0
SimLC-454-400 224422 30663 7.3 268 241 89.9
SimMC-454-400 268350 36145 7.4 337 312 92.6
SimHC-454-400 267076 37492 7.1 452 407 90.0
SimLC-454-250 359076 53795 6.7 404 374 92.6
SimMC-454-250 429360 65498 6.6 506 476 94.1
SimHC-454-250 427321 64922 6.6 679 637 93.8
SimLC-454-100 897689 153505 5.8 845 776 91.8
SimMC-454-100 1073401 174535 6.2 1035 971 93.8
SimHC-454-100 1068303 130974 8.2 1514 1371 90.6
  1. * X = The total number of sequences in a given data set; Y = Total number of sequences predicted by the i-rDNA program as 'probable rDNA sequences' in that data set
  2. ** A = The total number of 16S rDNA sequences predicted by meta-rna program in the entire data set;
  3. B = Number of 16S rDNA sequences within the subset of 'probable r-DNA sequences' predicted by i-rDNA