Skip to main content

# Table 3 The ability of 1C loop to buffer TF noise under of parameters in all three models.

Parameter values Stop Model Degr. Model Dual Degr. Model
$\stackrel{̄}{\epsilon }$ n $\stackrel{̄}{\epsilon }$ n $\stackrel{̄}{\epsilon }$ n
$\begin{array}{c}{h}_{s}=1\\ {h}_{s}=100\\ {h}_{s}=200\\ {h}_{s}=400\end{array}$ $\begin{array}{c}\hfill -0.62\hfill \\ \hfill -0.47\hfill \\ \hfill -0.27\hfill \\ \hfill -0.21\hfill \end{array}$ $\begin{array}{c}\hfill 0\hfill \\ \hfill 5\hfill \\ \hfill 23\hfill \\ \hfill 20\hfill \end{array}$ $\left\{\begin{array}{c}-0.47\hfill \\ -0.47\hfill \\ -0.45\hfill \\ -0.40\hfill \end{array}\right\}$ $\begin{array}{c}\hfill 0\hfill \\ \hfill 0\hfill \\ \hfill 0\hfill \\ \hfill 7\hfill \end{array}$ $\begin{array}{c}\hfill \left\{\begin{array}{c}-0.49\hfill \\ -0.46\hfill \end{array}\right\}\hfill \\ \hfill \left\{\begin{array}{c}-0.42\hfill \\ -0.42\hfill \end{array}\right\}\hfill \end{array}$ $\begin{array}{c}\hfill 0\hfill \\ \hfill 0\hfill \\ \hfill 0\hfill \\ \hfill 1\hfill \end{array}$
$\begin{array}{c}{k}_{q}=0.02\\ {k}_{q}=0.04\\ {k}_{q}=0.08\\ {k}_{q}=0.16\end{array}$ $\begin{array}{c}\hfill -0.37\hfill \\ \hfill -0.24\hfill \\ \hfill \left\{\begin{array}{c}-0.35\hfill \\ -0.33\hfill \end{array}\right\}\hfill \end{array}$ $\begin{array}{c}\hfill 5\hfill \\ \hfill 24\hfill \\ \hfill 14\hfill \\ \hfill 17\hfill \end{array}$ $\begin{array}{c}\hfill -0.60\hfill \\ \hfill -0.45\hfill \\ \hfill \left\{\begin{array}{c}-0.33\hfill \\ -0.29\hfill \end{array}\right\}\hfill \end{array}$ $\begin{array}{c}\hfill 0\hfill \\ \hfill 0\hfill \\ \hfill 10\hfill \\ \hfill 12\hfill \end{array}$ $\begin{array}{c}\hfill -0.63\hfill \\ \hfill -0.44\hfill \\ \hfill \left\{\begin{array}{c}-0.34\hfill \\ -0.25\hfill \end{array}\right\}\hfill \end{array}$ $\begin{array}{c}\hfill 0\hfill \\ \hfill 0\hfill \\ \hfill 13\hfill \\ \hfill 23\hfill \end{array}$
$\begin{array}{c}{k}_{s}=0.01\\ {k}_{s}=0.25\\ {k}_{s}=0.50\\ {k}_{s}=0.75\end{array}$ $\begin{array}{c}\hfill -0.48\hfill \\ \hfill \left\{\begin{array}{c}-0.37\hfill \\ -0.27\hfill \\ -0.24\hfill \end{array}\right\}\hfill \end{array}$ $\begin{array}{c}\hfill 0\hfill \\ \hfill 12\hfill \\ \hfill 23\hfill \\ \hfill 22\hfill \end{array}$ $\left\{\begin{array}{c}-0.50\hfill \\ -0.45\hfill \\ -0.45\hfill \\ -0.45\hfill \end{array}\right\}$ $\begin{array}{c}\hfill 0\hfill \\ \hfill 2\hfill \\ \hfill 0\hfill \\ \hfill 0\hfill \end{array}$ $\left\{\begin{array}{c}-0.48\hfill \\ -0.44\hfill \\ -0.42\hfill \\ -0.43\hfill \end{array}\right\}$ $\begin{array}{c}\hfill 0\hfill \\ \hfill 0\hfill \\ \hfill 0\hfill \\ \hfill 1\hfill \end{array}$
$\begin{array}{c}{h}_{p}\left({h}_{g}\right)=30;{k}_{rs}=1\cdot 1{0}^{-5}\\ {h}_{p}\left({h}_{g}\right)=60;{k}_{rs}=2\cdot 1{0}^{-5}\\ {h}_{p}\left({h}_{g}\right)=120;{k}_{rs}=4\cdot 1{0}^{-5}\\ {h}_{p}\left({h}_{g}\right)=240;{k}_{rs}=8\cdot 1{0}^{-5}\end{array}$ $\left\{\begin{array}{c}-0.28\hfill \\ -0.29\hfill \\ -0.35\hfill \\ -0.41\hfill \end{array}\right\}$ $\begin{array}{c}\hfill 22\hfill \\ \hfill 20\hfill \\ \hfill 13\hfill \\ \hfill 2\hfill \end{array}$ $\left\{\begin{array}{c}-0.46\hfill \\ -0.46\hfill \\ -0.44\hfill \\ -0.44\hfill \end{array}\right\}$ $\begin{array}{c}\hfill 0\hfill \\ \hfill 0\hfill \\ \hfill 1\hfill \\ \hfill 0\hfill \end{array}$ $\left\{\begin{array}{c}-0.45\hfill \\ -0.42\hfill \\ -0.39\hfill \\ -0.40\hfill \end{array}\right\}$ $\begin{array}{c}\hfill 0\hfill \\ \hfill 0\hfill \\ \hfill 2\hfill \\ \hfill 5\hfill \end{array}$
1. For each model and for each parameter value we present the average ε value (left column) and the number n of experiments with positive value of this coefficient (right column). The method for calculation of ε is described in section. Negative ε mean that TF noise is dampen in a loop. The extremal ε values achieved at intermediate parameter values are shown in bold. The Wilcoxon Rank-Sum Test was used to test for significance of difference between the ε values for adjacent parameter values. The differences which are statistically insignificant at the $\alpha =0.05$ level are placed in parentheses.