Skip to main content
Fig. 3 | BMC Genomics

Fig. 3

From: Distinct gene expression program dynamics during erythropoiesis from human induced pluripotent stem cells compared with adult and cord blood progenitors

Fig. 3

The gene expression profile of hiPSC derived erythroblasts is independent of the media used as evidenced by comparison of erythroid differentiation in SEM-i with SEM-F. a Hierarchical clustering analysis by Euclidean distance of adult erythroid differentiations performed using media for adult derived HSPCs (SEM-F), or hiPSC conditions (SEM-i). The gene set used contained genes which were DE during maturation in any of the two media settings (Additional file 20: Table S4). The colour bar on the left hand side denotes clusters of co-regulated genes. Samples cluster together by time and by the immunophenotype of the developing erythroid cells. There are no coherent subclusters formed according to the type of media used. b PCA of the samples shown in (A) with the same gene set. Populations are represented as follows: SEM-F, red symbols; SEM-i, blue symbols; d0 CD34+, black circles; day 4 CD36+CD71+CD235a, triangles; day 7 CD36+CD71+CD235a, thin diamond; day 7 CD36+CD71+CD235a+, square; day 7 CD71+ beads, fat diamond; day 14 CD71+CD235a+, pentagon; day 14 CD235a+ beads, hexagon. c Proliferation in SEM-i of erythroid AB-erythroblasts (black triangles), CB-erythroblasts (green squares) and hiPSC-erythroblasts (blue) where hiPSCs were specified from CD34+ peripheral blood (squares), erythroid cells (triangles) or fibroblasts (circles). Error bars indicate standard error of the mean of 3 or more cultures. d Morphological changes observed in erythroblasts of hiPSC and AB origin cultured in SEM-i. Representative images of Giemsa-benzidine stained cytospins of cultures on day 7, day 14 and day 20. Scale bar is ~10 μm. “m” is the stromal cell line MS-5. AB-derived differentiations, cultured further until day 20/21, were typically 70-80 % enucleated (see also Additional file 21: Figure S12), whereas the hiPSC-erythroblast cultures failed to enucleate

Back to article page