Skip to main content
Fig. 6 | BMC Genomics

Fig. 6

From: Additional oxidative stress reroutes the global response of Aspergillus fumigatus to iron depletion

Fig. 6

The impact of iron supply on oxidative stress resistance of A. fumigatus. A. fumigatus wild type and ΔsidA strains were point-inoculated on minimal medium plates reflecting different iron supply with and without stressors leading to oxidative stress (H2O2 and the redox cyclers paraquat and menadione) or BPS, a ferrous iron-specific chelator, which inactivates reductive iron assimilation [30]. Growth was scored after incubation for 48 h at 37 °C. The effect of H2O2 in the presence of BPS is not shown because H2O2 interferes with BPS function. The A. fumigatus ΔsidA mutant [30] lacks siderophore biosynthesis, which results in decreased iron uptake and decreased resistance to iron starvation. As BPS blocks the growth of ΔsidA [30], this mutant was not analyzed in the presence of BPS. Compared to iron sufficiency (+Fe), iron deprivation (-Fe/BPS) increased the oxidative stress accessibility of the wild type strain (marked by yellow dots); compared to the wild-type strain, SidA-deficiency increased oxidative stress accessibility on +Fe medium (marked by green dots) and -Fe medium (marked by blue dots).

Back to article page