Skip to main content
Fig. 7 | BMC Genomics

Fig. 7

From: Differential expression profiling of ΔlitR and ΔrpoQ mutants reveals insight into QS regulation of motility, adhesion and biofilm formation in Aliivibrio salmonicida

Fig. 7

Proposed model of QS and the possible LitR and RpoQ interaction in A. salmonicida. The expression of LitR signaling at high cell density represses motility, biofilm and activates transcription of RpoQ [19, 27]. The increased level of RpoQ activity leads to strong repression on biofilm formation, rugose colony morphology, motility and adhesion, through a negative regulatory cascade on EPS producing genes (i.e., syp), flagellar and tad genes, respectively. At low cell density the LitR is not activated, thereby RpoQ levels are low and not sufficient to repress either tad or syp genes, resulting in an upregulation leading to a strong adhesion to surface and thereby biofilm formation. However, the deletion of rpoQ results in reduced motility, where the regulation of flagellar genes maybe affected by other genes and environmental factor either dependent or independent of QS mechanism. Arrows and lines with bar end indicate positive and negative regulation respectively. Lines may also indirect direct or indicate pathways with several steps

Back to article page