Skip to main content
Fig. 1 | BMC Genomics

Fig. 1

From: The effect of variant interference on de novo assembly for viral deep sequencing

Fig. 1

Trends and patterns of sequencing technology and assembly methods of viral entries in the GenBank database. a Cumulative frequency histogram of all viral entries in GenBank from Jan. 1, 1982 through Dec. 31, 2019 (total = 2,793,810 entries). b Count of all viral entries with at least one Sequencing Technology documented for the years 1982–2019. For panels (b) and (d), the “Other” category denotes entries with the Sequencing Technology field omitted or mis-assigned. c Relationship between viral entries listing one or two Sequencing Technologies during 1982–2019. The number inside the circle indicates viral entries with only one Sequencing Technology listed; the number adjacent to the line indicates entries combining two Sequencing Technologies. The thicker the connection line, the stronger the relationship. d and e Percentage ratio graph of all viral entries with Sequencing Technology documented for the years 2010–2019, with (d) and without (e) the Other category. The majority of entries in earlier years include omissions classified under the Other category, which is detailed in Supplement Table S1. f Percentage ratio graph of viral entries with length greater than 2000 nt that have been documented with one of the seven Sequencing Technologies for the years 2012–2019. The seven technologies include Sanger (n = 1) and NGS technologies (n = 6). g Percentage ratio graph of viral entries with length greater than 2000 nt and that have been documented with one of the six NGS as the Sequencing Technology for the years 2012–2019. Compared to panel (f), Sanger is excluded in this graph. h Assembly method of viral entries greater than 2000 nt, showing percentage ratio graph of entries with at least one Assembly Method. For (h) and (i), the Other category describes assembly methods outside of the 18 most popular programs investigated. i Reclassification of panel (h) by the nature of the assembly methods. The programs can be grouped into de novo assembler, reference-mapping, and software that can perform both

Back to article page