TY - CHAP AU - Subasinghe, R. P. AU - Bondad-Reantazo, M. G. AU - McGladdery, S. E. ED - Subasinghe, R. P. ED - Bueno, P. ED - Phillips, M. J. ED - Hough, C. ED - McGladdery, S. E. ED - Arthur, J. R. PY - 2001 DA - 2001// TI - Aquaculture development, health and wealth BT - Aquaculture in the Third Millennium. Technical Proceedings of the Conference on Aquaculture in the Third Millennium PB - Naca and FAO CY - Bangkok ID - Subasinghe2001 ER - TY - STD TI - Huang K, Nitin N. Edible bacteriophage based antimicrobial coating on fish feed for enhanced treatment of bacterial infections in aquaculture industry. Aquaculture. 2019. https://doi.org/10.1016/j.aquaculture.2018.12.026. ID - ref2 ER - TY - STD TI - Zhang D, Xu D, Shoemaker C. Experimental induction of motile Aeromonas septicemia in channel catfish (Ictalurus punctatus) by waterborne challenge with virulent Aeromonas hydrophila. Aquacult Rep. 2016. https://doi.org/10.1016/j.aqrep.2015.11.003. ID - ref3 ER - TY - STD TI - Farias THV, Levy-pereira N, Alves LO, Dias DC, Tachibana L, Pilarski F, Belo MAA, Ranzani-paiva MJT. Probiotic feeding improves the immunity of pacus, Piaractus mesopotamicus, during Aeromonas hydrophila infection. Anim Feed Sci Tech. 2016. https://doi.org/10.1016/j.anifeedsci.2015.11.004. ID - ref4 ER - TY - BOOK PY - 2016 DA - 2016// TI - Produção da pecuária municipal v. 44 PB - IBGE CY - Rio de Janeiro ID - ref5 ER - TY - STD TI - Mastrochirico-Filho VA, Ariede RB, Freitas MV, Lira LVG, Agudelo JFG, Pilarski F, Neto RVR, Yáñez JM, Hashimoto DT. Genetic parameters for resistance to Aeromonas hydrophila in the Neotropical fish pacu (Piaractus mesopotamicus). Aquaculture. 2019. https://doi.org/10.1016/j.aquaculture.2019.734442. ID - ref6 ER - TY - STD TI - Jia Z, Chen L, Ge Y, Li S, Peng W, Li C, Zhang Y, Hu X, Zhou Z, Shi L, Xu P. Genetic mapping of koi herpesvirus resistance (KHVR) in Mirror carp (Cyprinus carpio) revealed genes and molecular mechanisms of disease resistance. Aquaculture. 2020. https://doi.org/10.1016/j.aquaculture.2019.734850. ID - ref7 ER - TY - STD TI - Palaiokostas C, Vesely T, Kocour M, Prchal M, Pokorova D, Piackova V, Pojezdal L, Houston RD. Optimizing genomic prediction of host resistance to koi herpesvirus disease in carp. Front Genet. 2019. https://doi.org/10.3389/fgene.2019.00543. ID - ref8 ER - TY - STD TI - Tadmor-Levi R, Hulata G, David L. Multiple interacting QTLs affect disease challenge survival in common carp (Cyprinus carpio). Heredity. 2019. https://doi.org/10.1038/s41437-019-0224-0. ID - ref9 ER - TY - STD TI - El-Magd MA, El-Said KS, El-Semlawy AA, Tanekhy M, Afifi M, Mohamed TM. Association of MHC IIA polymorphisms with disease resistance in Aeromonas hydrophila-challenged Nile tilapia. Dev Comp Immunol. 2019. https://doi.org/10.1016/j.dci.2019.03.002. ID - ref10 ER - TY - STD TI - Bangera R, Correa K, Lhorente JP, Figueroa R, Yáñez JM. Genomic predictions can accelerate selection for resistance against Piscirickettsia salmonis in Atlantic salmon (Salmo salar). BMC Genomics. 2017. https://doi.org/10.1186/s12864-017-3487-y. ID - ref11 ER - TY - STD TI - Robledo D, Matika O, Hamilton A, Houston RD. Genome-Wide association and genomic selection for resistance to Amoebic Gill disease in Atlantic Salmon. G3-Genes Genom Genet. 2018. https://doi.org/10.1534/g3.118.200075. ID - ref12 ER - TY - STD TI - Yoshida GM, Bangera R, Carvalheiro R, Correa K, Figueroa R, Lhorente JP, Yáñez JM. Genomic prediction accuracy for resistance against Piscirickettsia salmonis in farmed rainbow trout. G3-Genes Genom Genet. 2018. https://doi.org/10.1534/g3.117.300499. ID - ref13 ER - TY - STD TI - Sonesson AK, Meuwissen THE. Testing strategies for genomic selection in aquaculture breeding programs. Genet Sel Evol. 2009. https://doi.org/10.1186/1297-9686-41-37. ID - ref14 ER - TY - STD TI - Yáñez JM, Lhorente JP, Bassini LN, Oyarzún M, Neira R, Newman S. Genetic co-variation between resistance against both Caligus rogercresseyi and Piscirickettsia salmonis, and body weight in Atlantic salmon (Salmo salar). Aquaculture. 2014. https://doi.org/10.1016/j.aquaculture.2014.06.026. ID - ref15 ER - TY - STD TI - Houston RD, Haley CS, Hamilton A, Guy DR, Tinch AE, Taggart JB, McAndrew BJ, Bishop SC. Major quantitative trait loci affect resistance to infectious pancreatic necrosis in Atlantic salmon (Salmo salar). Genetics. 2008. https://doi.org/10.1534/genetics.107.082974. ID - ref16 ER - TY - STD TI - Moen T, Baranski M, Sonesson AK, Kjøglum S. Confirmation and fine-mapping of a major QTL for resistance to infectious pancreatic necrosis in Atlantic salmon (Salmo salar): population-level associations between markers and trait. BMC Genomics. 2009. https://doi.org/10.1186/1471-2164-10-368. ID - ref17 ER - TY - STD TI - Yáñez JM, Houston RD, Newman S. Genetics and genomics of disease resistance in salmonid species. Front Genet. 2014. https://doi.org/10.3389/fgene.2014.00415. ID - ref18 ER - TY - STD TI - Barría A, Christensen KA, Yoshida GM, Correa K, Jedlicki A, Lhorente JP, Davidson WS, Yáñez JM. Genomic predictions and genome-wide association study of resistance against Piscirickettsia salmonis in coho salmon (Oncorhynchus kisutch) using ddRAD sequencing. G3-Genes Genom Genet. 2018. https://doi.org/10.1534/g3.118.200053. ID - ref19 ER - TY - STD TI - Robinson N, Baranski M, Mahapatra KD, Saha JN, Das S, Mishra J, Das P, Kent M, Arnyasi M, Sahoo PK. A linkage map of transcribed single nucleotide polymorphisms in rohu (Labeo rohita) and QTL associated with resistance to Aeromonas hydrophila. BMC Genomics. 2014. https://doi.org/10.1186/1471-2164-15-541. ID - ref20 ER - TY - STD TI - Wang W, Tan S, Luo J, Shi H, Zhou T, Yang Y, Jin Y, Wang X, Niu D, Yuan Z, Gao D, Dunham R, Liu Z. GWAS analysis indicated importance of NF-κB signaling pathway in host resistance against motile Aeromonas septicemia disease in catfish. Mar Biotechnol. 2019. https://doi.org/10.1007/s10126-019-09883-0. ID - ref21 ER - TY - STD TI - Baird NA, Etter PD, Atwood TS, Currey MC, Shiver AL, Lewis ZA, Selker EU, Cresko WA, Johnson EA. Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS One. 2008. https://doi.org/10.1371/journal.pone.0003376. ID - ref22 ER - TY - STD TI - Davey JW, Cezard T, Fuentes-Utrilla P, Eland C, Gharbi K, Blaxter ML. Special features of RAD sequencing data: implications for genotyping. Mol Ecol. 2013. https://doi.org/10.1111/mec.12084. ID - ref23 ER - TY - STD TI - Palaiokostas C, Cariou S, Bestin A, Bruant JS, Haffray P, Morin T, Cabon J, Allal F, Vandeputte M, Houston RD. Genome-wide association and genomic prediction of resistance to viral nervous necrosis in European sea bass (Dicentrarchus labrax) using RAD sequencing. Genet Sel Evol. 2018. https://doi.org/10.1186/s12711-018-0401-2. ID - ref24 ER - TY - STD TI - Palaiokostas C, Ferraresso S, Franch R, Houston RD, Bargelloni L. Genomic prediction of resistance to pasteurellosis in gilthead sea bream (Sparus aurata) using 2b-RAD sequencing. G3-Genes Genom Genet. 2016. https://doi.org/10.1534/g3.116.035220. ID - ref25 ER - TY - STD TI - Vallejo RL, Leeds TD, Fragomeni BO, Gao G, Hernandez AG, Misztal I, Welch TJ, Wiens GD, Palti Y. Evaluation of genome-enabled selection for bacterial cold water disease resistance using progeny performance data in rainbow trout: insights on genotyping methods and genomic prediction models. Front Genet. 2016. https://doi.org/10.3389/fgene.2016.00096. ID - ref26 ER - TY - STD TI - Houston RD, Taggart JB, Cézard T, Bekaert M, Lowe NR, Downing A, Talbot R, Bishop SC, Archibald AL, Bron JE, Penman DJ, Davassi A, Brew F, Tinch AE, Gharbi K, Hamilton A. Development and validation of a high density SNP genotyping array for Atlantic salmon (Salmo salar). BMC Genomics. 2014. https://doi.org/10.1186/1471-2164-15-90. ID - ref27 ER - TY - STD TI - Correa K, Bangera R, Figueroa R, Lhorente JP, Yáñez JM. The use of genomic information increases the accuracy of breeding value predictions for sea louse (Caligus rogercresseyi) resistance in Atlantic salmon (Salmo salar). Genet Sel Evol. 2017. https://doi.org/10.1186/s12711-017-0291-8. ID - ref28 ER - TY - STD TI - Vallejo RL, Leeds TD, Gao G, Parsons JE, Martin KE, Evenhuis JP, Fragomeni BO, Wiens GD, Palti Y. Genomic selection models double the accuracy of predicted breeding values for bacterial cold water disease resistance compared to a traditional pedigree-based model in rainbow trout aquaculture. Genet Sel Evol. 2017. https://doi.org/10.1186/s12711-017-0293-6. ID - ref29 ER - TY - STD TI - Robledo D, Palaiokostas C, Bargelloni L, Martínez P, Houston R. Applications of genotyping by sequencing in aquaculture breeding and genetics. Rev Aquac. 2017. https://doi.org/10.1111/raq.12193. ID - ref30 ER - TY - STD TI - Liu S, Vallejo RL, Palti Y, Gao G, Marancik DP, Hernandez AG, Wiens GD. Identification of single nucleotide polymorphism markers associated with bacterial cold water disease resistance and spleen size in rainbow trout. Front Genet. 2015. https://doi.org/10.3389/fgene.2015.00298. ID - ref31 ER - TY - STD TI - Mahapatra KD, Gjerde B, Sahoo PK, Saha JN, Barat A, Sahoo M, Mohanty BR, Ødegard J, Rye M, Salte R. Genetic variations in survival of rohu carp (Labeo rohita, Hamilton) after Aeromonas hydrophila infection in challenge tests. Aquaculture. 2008. https://doi.org/10.1016/j.aquaculture.2008.03.054. ID - ref32 ER - TY - STD TI - Xiong X, Chen Y, Liu L, Wang W, Robinson NA, Gao Z. Estimation of genetic parameters for resistance to Aeromonas hydrophila in blunt snout bream (Megalobrama amblycephala). Aquaculture. 2017. https://doi.org/10.1016/j.aquaculture.2017.07.011. ID - ref33 ER - TY - STD TI - Srisapoome P, Chatchaiphan S, Bunnoy A, Koonawootrittriron S, Na-Nakorn U. Heritability of immunity traits and disease resistance of bighead catfish, Clarias macrocephalus Günther, 1864. Fish Shellfish Immun. 2019. https://doi.org/10.1016/j.fsi.2019.05.060. ID - ref34 ER - TY - STD TI - Ødegård J, Olesen I, Dixon P, Jeney Z, Nielsen H, Way K, Joiner C, Jeney G, Ardó L, Rónyai A, Gjerde B. Genetic analysis of common carp (Cyprinus carpio) strains. II: Resistance to koi herpesvirus and Aeromonas hydrophila and their relationship with pond survival. Aquaculture. 2010. https://doi.org/10.1016/j.aquaculture.2010.03.017. ID - ref35 ER - TY - STD TI - Nunes JRS, Liu S, Pértille F, Perazza CA, Villela PMS, Almeida-Val VMF, Hilsdorf AWS, Liu Z, Coutinho LL. Large-scale SNP discovery and construction of a high-density genetic map of Colossoma macropomum through genotyping-by-sequencing. Sci Rep. 2017. https://doi.org/10.1038/srep46112. ID - ref36 ER - TY - STD TI - Correa K, Lhorente JP, López ME, Bassini L, Naswa S, Deeb N, Genova AD, Maass A, Davidson WS, Yáñez JM. Genome-wide association analysis reveals loci associated with resistance against Piscirickettsia salmonis in two Atlantic salmon (Salmo salar L.) chromosomes. BMC Genomics. 2015. https://doi.org/10.1186/s12864-015-2038-7. ID - ref37 ER - TY - STD TI - Meuwissen TH, Hayes BJ, Goddard ME. Prediction of total genetic value using genome-wide dense marker maps. Genetics. 2001; https://www.ncbi.nlm.nih.gov/pubmed/11290733. UR - https://www.ncbi.nlm.nih.gov/pubmed/11290733 ID - ref38 ER - TY - STD TI - Tsai HY, Robledo D, Lowe NR, Bekaert M, Taggart JB, Bron JE, Houston RD. Construction and annotation of a high density SNP linkage map of the Atlantic salmon (Salmo salar) genome. G3-Genes Genom Genet. 2016. https://doi.org/10.1534/g3.116.029009. ID - ref39 ER - TY - STD TI - Yáñez JM, Yoshida GM, Parra Á, Correa K, Barría A, Bassini LN, Christensen KA, López ME, Carvalheiro R, Lhorente JP, Pulgar R. Comparative genomic analysis of three salmonid species identifies functional candidate genes involved in resistance to the intracellular bacterium Piscirickettsia salmonis. Front Genet. 2019. https://doi.org/10.3389/fgene.2019.00665. ID - ref40 ER - TY - STD TI - Chang MX, Zhang J. Alternative pre-mRNA splicing in mammals and teleost fish: a effective strategy for the regulation of immune responses against pathogen infection. Int J Mol Sci. 2017. https://doi.org/10.3390/ijms18071530. ID - ref41 ER - TY - STD TI - Di Rienzo M, Romagnoli A, Antonioli M, Piacentini M, Fimia GM. TRIM proteins in autophagy: selective sensors in cell damage and innate immune responses. Cell Death Differ. 2020. https://doi.org/10.1038/s41418-020-0495-2. ID - ref42 ER - TY - STD TI - Kimura T, Jain A, Choi SW, Mandell MA, Johansen T, Deretic V. TRIM-directed selective autophagy regulates immune activation. Autophagy. 2017. https://doi.org/10.1080/15548627.2016.1154254. ID - ref43 ER - TY - STD TI - Pandit NP, Shen YB, Xu XY, Yu HY, Wang WJ, Wang RQ, Xuan YK, Li JL. Differential expression of interleukin-12 p35 and p40 subunits in response to Aeromonas hydrophila and Aquareovirus infection in grass carp, Ctenopharyngodon idella. Genet Mol Res. 2015. https://doi.org/10.4238/2015.February.6.20. ID - ref44 ER - TY - STD TI - Zundler S, Neurath MF. Interleukin-12: functional activities and implications for disease. Cytokine Growth F R. 2015. https://doi.org/10.1016/j.cytogfr.2015.07.003. ID - ref45 ER - TY - STD TI - Gao F, Qu L, Yu S, Ye X, Tian Y, Zhang L, Bai J, Lu M. Identification and expression analysis of three c-type lysozymes in Oreochromis aureus. Fish Shellfish Immun. 2012. https://doi.org/10.1016/j.fsi.2012.01.031. ID - ref46 ER - TY - STD TI - Ye X, Zhang L, Tian Y, Tan A, Bai J, Li S. Identification and expression analysis of the g-type and c-type lysozymes in grass carp Ctenopharyngodon idellus. Dev Comp Immunol. 2010. https://doi.org/10.1016/j.dci.2009.12.009. ID - ref47 ER - TY - BOOK AU - Gjedrem, T. PY - 2009 DA - 2009// TI - Baranski. Selective breeding in aquaculture: an introduction PB - Springer CY - Dordrecht UR - https://doi.org/10.1007/978-90-481-2773-3 DO - 10.1007/978-90-481-2773-3 ID - Gjedrem2009 ER - TY - BOOK AU - Gilmour, A. AU - Gogel, B. AU - Cullis, B. AU - Thompson, R. AU - Butler, D. AU - Cherry, M. AU - Collins, D. AU - Dutkowski, G. AU - Harding, S. AU - Haskard, K. PY - 2009 DA - 2009// TI - ASReml user guide release 3.0. VSN International Ltd., UK 275 ID - Gilmour2009 ER - TY - STD TI - Catchen JM, Amores A, Hohenlohe P, Cresko W, Postlethwait JH. Stacks: Building and genotyping loci de novo from short-read sequences. G3-Genes Genom Genet. 2011. https://doi.org/10.1534/g3.111.000240. ID - ref50 ER - TY - BOOK AU - Gregg, F. AU - Derek, E. PY - 2019 DA - 2019// TI - Dedupe ID - Gregg2019 ER - TY - STD TI - Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller J, Sklar P, de Bakker PI, Daly MJ, Sham PC. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007. https://doi.org/10.1086/519795. ID - ref52 ER - TY - STD TI - Marshall TC, Slate J, Kruuk LEB, Pemberton JM. Statistical confidence for likelihood-based paternity inference in natural populations. Mol Ecol. 1998. https://doi.org/10.1046/j.1365-294x.1998.00374.x. ID - ref53 ER - TY - STD TI - Kalinowski ST, Taper ML, Marshall TC. Revising how the computer program Cervus accommodates genotyping error increases success in paternity assignment. Mol Ecol. 2007. https://doi.org/10.1111/j.1365-294X.2007.03089.x. ID - ref54 ER - TY - STD TI - Rastas P. Lep-MAP 3: robust linkage mapping even for low-coverage whole genome sequencing data. Bioinformatics. 2017. https://doi.org/10.1093/bioinformatics/btx494. ID - ref55 ER - TY - STD TI - Ribeiro LB, Matoso DA, Feldberg E. Chromosome mapping of repetitive sequences in four Serrasalmidae species (Characiformes). Genet Mol Biol. 2014. https://doi.org/10.1590/S1415-47572014000100009. ID - ref56 ER - TY - STD TI - Ouellette LA, Reid RW, Blanchard SG, Brouwer CR. LinkageMapView-rendering high-resolution linkage and QTL maps. Bioinformatics. 2018. https://doi.org/10.1093/bioinformatics/btx576. ID - ref57 ER - TY - BOOK AU - Misztal, I. AU - Tsuruta, S. AU - Strabel, T. AU - Druet, T. AU - Lee, D. PY - 2002 DA - 2002// TI - BLUPF90 and related programs (BGF90). 7th World Congress on Genetics Applied to Livestock Production ID - Misztal2002 ER - TY - STD TI - VanRaden PM. Efficient methods to compute genomic predictions. J Dairy Sci. 2008. https://doi.org/10.3168/jds.2007-0980. ID - ref59 ER - TY - STD TI - Wang H, Misztal I, Aguilar I, Legarra A, Muir WM. Genome-wide association mapping including phenotypes from relatives without genotypes. Genet Res (Camb). 2012. https://doi.org/10.1017/S0016672312000274. ID - ref60 ER - TY - STD TI - Aguilar I, Misztal I, Johnson DL, Legarra A, Tsuruta S, Lawlor TJ. Hot topic: a unified approach to utilize phenotypic, full pedigree, and genomic information for genetic evaluation of Holstein final score1. J Dairy Sci. 2010. https://doi.org/10.3168/jds.2009-2730. ID - ref61 ER - TY - STD TI - Zhang Z, Liu J, Ding X, Bijma P, de Koning DJ, Zhang Q. Best linear unbiased prediction of genomic breeding values using a trait-specific marker-derived relationship matrix. PLoS One. 2010. https://doi.org/10.1371/journal.pone.0012648. ID - ref62 ER - TY - STD TI - Turner SD. qqman: an R package for visualizing GWAS results using Q-Q and Manhattan plots. biorXiv. https://doi.org/10.1101/005165. ID - ref63 ER - TY - STD TI - Lourenco D, Legarra A, Tsuruta S, Masuda Y, Aguilar I, Misztal I. Single-step genomic evaluations from theory to practice: using SNP chips and sequence data in BLUPF90. Genes. 2020. https://doi.org/10.3390/genes11070790. ID - ref64 ER -