Skip to main content
Fig. 4 | BMC Genomics

Fig. 4

From: Shotgun proteomics of peach fruit reveals major metabolic pathways associated to ripening

Fig. 4

Analysis of biological processes and pathways associated to differentially accumulated proteins. a Sucrose and sorbitol conversion into fructose 6-phosphate (F6P), and thereafter into starch, would preferentially occur at the mature fruit stage (panel I, MetaCyc pathways PWY-3801 and PWY-622). Raffinose and stachyose (PWY-5337), phenylacetaldehyde (PWY-5751), farnesyl diphosphate (PWY-5123) and glutamine (PWY-6549) biosynthetic pathways also had proteins that were more abundant in mature fruit (panels II to V). b In turn, ethylene (ETHYL-PWY) and linoleoyl-CoA (PWY-6001) would be preferentially synthesized in ripe fruit due to the preferential accumulation of enzymes related to these pathways at this stage (panels I and II). Cell-wall dismantling would also be favored when the fruit ripens due to the accumulation of pectin and cellulose modifying proteins and enzymes (panel III). c Gluconeogenesis (GLUCONEO-PWY) related enzymes were found accumulated in mature and ripe fruit, but with differences at the glycerone phosphate - D-glyceraldehyde 3-phosphate interconversion step (O1, EC 5.3.1.1) and the oxaloacetate conversion into phosphoenolpyruvate (O2, EC 4.1.1.49), which had differentially accumulated proteins associated to mature and ripe fruit. d Ethylene biosynthesis in mature fruit would be negatively modulated by the action of the signaling cascade that would begin with the action of brassinosteroids and culminate with Feronia-like receptor kinases (FERLs) action upon genes involved in ethylene biosynthesis. F-6-P - fructose 6-phosphate; RAFS - raffinose synthase; phe - phenylalanine; IPP - isopentenyl diphosphate; DMAPP - prenyl diphosphate; glu - glutamate; gln - glutamine; ACO - 1-aminocyclopropane-1-carboxylate oxidase; FAD - Fatty acid desaturase

Back to article page