Skip to main content
Fig. 2 | BMC Genomics

Fig. 2

From: Genome analysis of Pseudomonas sp. OF001 and Rubrivivax sp. A210 suggests multicopper oxidases catalyze manganese oxidation required for cylindrospermopsin transformation

Fig. 2

Genetic organization of regulatory system and MO-mco’s in P. putida GB-1 and Pseudomonas sp. OF001. a McoA protein of strain GB-1, and the putative homolog found in strain OF001, b MnxG protein of strain GB-1, and the putative homolog found in strain OF001, c predicted operon organization in which mnxG (MO-mco) is found in strain GB-1, and putative homologues found in a predicted operon in strain OF001, and d regulatory system for Mn2+ oxidation of strain GB-1, and putative homologues found in strain OF001. Capital letters (A-D) in a), and b) represent the multicopper oxidase motifs [46]. mnxR: response regulator; mnxS1 and mnxS2: sensor histidine kinases; ABC: ABC transporter; lactonase f.: beta-propeller fold lactonase family protein; mnxG: MO-mco, SCO f. SCO family protein; SurA: SurA N-terminal domain-containing protein, McoA: MO-mco, MnxG: MO-mco

Back to article page