Database

Open Access

IMGD: an integrated platform supporting comparative genomics and phylogenetics of insect mitochondrial genomes

Wonhoon Lee^{†1,2,3}, Jongsun Park^{†3,4,5,6}, Jaeyoung Choi^{3,4,6}, Kyongyong Jung^{3,4}, Bongsoo Park⁷, Donghan Kim^{3,4,6}, Jaeyoung Lee¹, Kyohun Ahn⁴, Wonho Song⁴, Seogchan Kang⁷, Yong-Hwan Lee^{*3,4,5,6,8} and Seunghwan Lee^{*1,2,3}

Address: ¹Insect Biosystematics Laboratory, Seoul National University, Seoul 151–921, Korea, ²Research Institute for Agricultural and Life Sciences, Seoul National University, Seoul 151–921, Korea, ³Department of Agricultural Biotechnology, Seoul National University, Seoul 151–921, Korea, ⁴Fungal Bioinformatics Laboratory, Seoul National University, Seoul 151–921, Korea, ⁵Center for Fungal Pathogenesis, Seoul National University, Seoul 151–921, Korea, ⁶Center for Fungal Genetic Resources, Seoul National University, Seoul 151–921, Korea, ⁷Department of Plant Pathology, Penn State University, University Park, PA 16802, USA and ⁸Center for Agricultural Biomaterials, Seoul National University, Seoul 151–921, Korea

E-mail: Wonhoon Lee - won9@snu.ac.kr; Jongsun Park - starflr@snu.ac.kr; Jaeyoung Choi - amethyst1016@gmail.com; Kyongyong Jung - lulupon0@snu.ac.kr; Bongsoo Park - pbsfree@gmail.com; Donghan Kim - hoppang1234@gmail.com; Jaeyoung Lee - toughcd1@snu.ac.kr; Kyohun Ahn - dksrygns00@snu.ac.kr; Wonho Song - james1201@snu.ac.kr; Seogchan Kang - sxk55@psu.edu; Yong-Hwan Lee* - yonglee@snu.ac.kr; Seunghwan Lee* - seung@snu.ac.kr *Corresponding author tEqual contributors

Published: 07 April 2009

BMC Genomics 2009, 10:148 doi: 10.1186/1471-2164-10-148

This article is available from: http://www.biomedcentral.com/1471-2164/10/148

© 2009 Lee et al; licensee BioMed Central Ltd.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (<u>http://creativecommons.org/licenses/by/2.0</u>), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Background: Sequences and organization of the mitochondrial genome have been used as markers to investigate evolutionary history and relationships in many taxonomic groups. The rapidly increasing mitochondrial genome sequences from diverse insects provide ample opportunities to explore various global evolutionary questions in the superclass Hexapoda. To adequately support such questions, it is imperative to establish an informatics platform that facilitates the retrieval and utilization of available mitochondrial genome sequence data.

Results: The Insect Mitochondrial Genome Database (IMGD) is a new integrated platform that archives the mitochondrial genome sequences from 25,747 hexapod species, including 112 completely sequenced and 20 nearly completed genomes and 113,985 partially sequenced mitochondrial genomes. The Species-driven User Interface (SUI) of IMGD supports data retrieval and diverse analyses at multi-taxon levels. The Phyloviewer implemented in IMGD provides three methods for drawing phylogenetic trees and displays the resulting trees on the web. The SNP database incorporated to IMGD presents the distribution of SNPs and INDELs in the mitochondrial genomes of multiple isolates within eight species. A newly developed comparative SNU Genome Browser supports the graphical presentation and interactive interface for the identified SNPs/ INDELs.

Conclusion: The IMGD provides a solid foundation for the comparative mitochondrial genomics and phylogenetics of insects. All data and functions described here are available at the web site http://www.imgd.org/.

Received: 23 October 2008 Accepted: 7 April 2009

Background

The mitochondrial genomes of members of the superclass Hexapoda (generally referred to as the 'insects') are typically approximately 15 kilobases (kb) in length and encode 37 genes, including 13 protein coding genes (PCGs), 2 ribosomal RNA genes (rRNAs), and 22 transfer RNA genes (tRNAs). Owing to its small size, high copy number, and relatively infrequent gene rearrangements, the mitochondrial genome has been extensively used for phylogenetic analyses [1-4]. Phylogenetic analysis based on the mitochondrial gene sequences is often limited to closely related species, due to the high rate of nucleotide substitutions. However, variations in the mitochondrial gene content and order have been utilized to elucidate evolutionary relationships among distantly-related species, on the basis of shared derived characteristics that denote the common ancestry of a given group [5].

Recent years, the number of sequenced mitochondrial genomes has been increasing fast due to rapidly growing sequencing capacity [6]. For example, more than 1,200 metazoan mitochondrial genomes have already been sequenced completely [7,8]. The abundance of available mitochondrial genomes has led to the development of the following web-based relational databases that are specialized for archiving the resulting data: GObase [9], AMiGA [10], Mitome [8], MamMibase [11], OGRe [7], and NCBI Organelle Genome Resources [12]. Some of these resources also provide tools for data analysis and/or viewing: MamMibase provides a web-based phylogenetic analysis tool for studying evolutionary relationships on the basis of the archived mitochondrial genomes [11] and Mitome provides a graphical mitochondrial genome browser [8]. In order to more effectively support uses of the rapidly accumulating mitochondrial genome sequences, an integrated platform that provides a diverse array of analysis tools is necessary.

Single nucleotide polymorphisms (SNPs) in the insect mitochondrial genome sequences can support fine-scale phylogenetic analyses, as illustrated in the following examples. Twenty-four biotypes of *Bemisia tabaci* (Hemiptera: Aleyrodidae), which could not be distinguished by morphological characteristics, were resolved [13]. SNPs in the cytochrome c oxidase subunits I (*COI*) locus of *Aedes aegypti* (Diptera: Cuclicidae) were used to differentiate four strains [14]. Based on the fully sequenced mitochondrial genomes in the genus *Flustrellidra* (Ctenostomata: Flustrellidridae), a SNP analysis was conducted to identify a suitable gene maker for distinguishing morphologically similar species [15].

Partially sequenced mitochondrial genes from a very large number of species also provide valuable markers for phylogenetic analysis. For example, the *COI* gene has been used extensively for species identification in the 'DNA barcoding' projects [16,17]. In particular, in Hexapoda, DNA barcoding projects covering multiple orders have been conducted [18-21], resulting in at least 50,000 partial sequences of *COI* loci in the NCBI. Because the cytochrome c oxidase subunits II (*COII*) locus is relatively small (approximately 600 bp) and can be amplified well by PCR from diverse species [22,23], many researchers have sequenced this locus, yielding more than 15,000 sequences from Hexapoda. Due to the large number of characterized insect species, sequences of these loci are an excellent resource for comprehensive phylogenetic analyses of insects; however, such data have not yet been archived in the currently available mitochondrial genome databases.

A new integrated platform named the Insect Mitochondrial Genome Database (IMGD; http://www.imgd.org/) was developed to better integrate available mitochondrial gene and genome sequences and to provide bioinformatics tools for efficient data retrieval and utilization. The IMGD archives the sequences of 112 completely sequenced and 20 nearly completed mitochondrial genome sequences, as well as partial sequences of 113,985 mitochondrial genomes (Tables 1, 2, 3) from 25,747 insect species using the standardized framework of the Comparative Fungal Genomics Platform (CFGP; http://cfgp.snu.ac.kr/) [24]. SNPs in the mitochondrial genomes of multiple isolates within eight species were identified via the SNP Analysis Platform (SAP; http://sap. snu.ac.kr/; J. Park et al., unpublished) and presented through the SNU Genome Browser (http://genomebrowser.snu.ac.kr/) [25]. BLAST [26], tRNAScan-SE [27], and mFold [28] were also incorporated into IMGD. Additionally, three phylogenetic analysis tools, including ClustalW, PHYML, and PHYLIP [29-31], were integrated into IMGD to facilitate analyses across multiple species: these tools are available through the web interface supported by Phyloviewer (http://www.phyloviewer. org/; B. Park et al., unpublished). To assist the comparison of these sequences and phylogenetic analysis within selected taxa, a new user interface, termed the Species-driven User Interface (SUI), was designed and implemented. The IMGD provides a highly integrated environment for conducting evolutionary studies of insects using their mitochondrial gene/genome sequences.

Construction and content System architecture and design

The IMGD consists of three integrated layers: i) a standardized data warehouse that is supported by CFGP [24], ii) the middleware platform for the integration of various bioinformatics programs via standardized

Order	Species	CG ^a	NG ^b	PG ^c
Archaeognatha	10	4	0	15
Blattaria	274	I	0	991
Coleoptera	6,594	8	4	25,783
Collembola	133	6	2	947
Dermaptera	35	0	0	63
Diplura	10	3	0	24
Diptera	3,846	24	2	26,982
Embioptera	14	0	0	26
Ephemeroptera	288	I	0	742
Grylloblattodea	17	0	I	113
Hemiptera	1,851	20	5	7,299
Hymenoptera	4,144	3	2	14,737
Isoptera	647	7	0	2,842
Lepidoptera	4,556	7	2	19,380
Mantodea	188	I	0	717
Mantophasmatodea	17	I	0	194
Mecoptera	61	0	0	141
Megaloptera	7	2	0	409
Neuroptera	143	2	0	437
Odonata	525	0	I	1,734
Orthoptera	919	14	0	4,744
Phasmatodea	64	0	I	482
Phthiraptera	527	3	0	2,155
Plecoptera	184	I	0	529
Protura	2	0	0	6
Psocoptera	121	I	0	338
Raphidioptera	4	0	0	5
Siphonaptera	35	0	0	134
Strepsiptera	6	0	0	7
Thysanoptera	154	I	0	857
Trichoptera	343	0	0	1,100
Zoraptera	I	0	0	2
Zygentoma	27	2	0	50
Total	25,747	112	20	113,985

Table I: List of the number of mitochondrial sequences in Hexapoda archived in the IMGD

^aCompletely sequenced mitochondrial genome, ^bNearly completely sequenced mitochondrial genome, and ^cPartially sequenced mitochondrial gene sequences

input and output interfaces, and iii) the web-based user interface, including the Species-driven User Interface (Figure 1A). In order to support the efficient archiving and analysis of a very large number of heterogeneous mitochondrial gene sequences (Table 2 and Table 3), a standardized structure for sequence data was required: this requirement was solved using CFGP [24], which has demonstrated its reliability and expandability via several published databases [32-37].

To support phylogenetic studies using the archived hexapod mitochondrial sequences, ClustalW (Version 1.83), PHYLIP (Version 3.68), and PHYML (Version 3.0) [29-31], which support the Neighbour Joining (NJ), Maximum Parsimony (MP), and Maximum Likelihood (ML) methods, respectively, were incorporated. The visualization and management of the resulting phylogenetic data are supported by the Phyloviewer (http:// www.phyloviewer.org/), which has been successfully employed in other platforms [24,34,35]. BLAST [26] was integrated with datasets containing mitochondrial gene sequences and hexapod taxonomy information, and tRNAscan-SE (Version 1.23) [27] and mFold (Version 3.2) [28] were embedded to allow for the display and comparison of secondary structures of tRNAs and anticodon sequences.

The user interface of IMGD provides the Mitochondrial Genome Browser, which is founded on the SNU Genome Browser (http://genomebrowser.snu.ac.kr/) [25], to support the browsing and comparison of mitochondrial genome sequences in both the text and graphical forms via an interactive interface, and the Partial Sequence Browser to allow for the browsing of partially sequenced mitochondrial sequences. The IMGD also provides the Object Browser, which can collect and move selected sequences in IMGD into the Favorite, a personalized virtual storage space, for further data analyses using the analysis tools in both IMGD and CFGP [24]. The IMGD archives sequences and taxonomical information from more than 25,000 hexapod species. To facilitate the organization and presentation of data according to the taxonomic position/grouping of the species of origin, a new interface named the Species-driven User Interface (SUI) was designed and implemented in IMGD.

Pipeline for updating the IMGD data warehouse

To support periodic updating of the IMGD data warehouse, the following automatic analysis pipeline was developed (Figure 1B). In the first step, completely and partially sequenced mitochondrial genome sequences are downloaded from NCBI using proper keywords after filtering out unpublished sequences. The downloaded sequences are subsequently filtered using several stop words in order to remove non-mitochondrial sequences. Secondly, the mitochondrial genome parsers, which were written in PERL, parse and store the filtered data into the data warehouse. Thirdly, adjoined stop codons at the 3'end of the PCGs that overlap with neighboring PCGs or tRNAs in the mitochondrial genome [38], are manually checked to determine whether they are correct or not. Lastly, certain properties of the genome, including the CG content, AT skew, and codon usage, are calculated for graphical representations via SNU Genome Browser, and various cache tables are updated. In the final step, BLAST datasets, tRNA annotation information via both tRNAScan-SE [27] and mFold [28], and SNP databases are updated.

Order	Species	Size (bp)	GC (%)	PCGs	tRNAs	rRNAs
Coleoptera	Chaetosoma scaritides*	15,511	20.96	13	22	2
Coleoptera	Crioceris duodecimpunctata	15,880	23.11	13	22	2
Coleoptera	Cyphon sp. BT0012	15,919	24.83	13	22	2
Coleoptera	Priasilpha obscura*	16,603	23.49	13	22	2
Coleoptera	Pyrocoelia rufa	17,739	22.59	13	22	2
Coleoptera	Pyrophorus divergens	16,120	30.56	13	22	2
Coleoptera	Rhagophthalmus lufengensis	15,982	20.37	13	22	2
Coleoptera	Rhagophthalmus ohbai	15,704	20.85	13	19	2
Coleoptera	Sphaerius sp. BT0074*	15,121	19.28	13	22	2
Coleoptera	Tetraphalerus bruchi	15,689	33.01	13	22	2
Coleoptera	Trachypachus holmbergi [*]	15,722	20.54	13	22	2
Coleoptera	Tribolium castaneum	5,88	28.32	13	22	2
Diptera	Anopheles funestus*	15,354	21.84	7	22	2
Diptera	Anopheles gambiae	15,363	22.44	13	22	2
Diptera	Anopheles quadrimaculatus A Orlando	15,455	22.64	13	22	2
Diptera	Bactrocera oleae Italy	15,815	27.41	13	22	2
Diptera	Bactrocera oleae Portugal	15,815	27.37	13	22	2
Diptera	Ceratitis capitata	15,980	22.52	13	22	2
Diptera	Chrysomya putoria	15,837	23.30	13	23	2
Diptera	Cochliomyia hominivorax	16,022	23.10	13	22	2
Diptera	Cydistomyia duplonotata	16,247	22.07	13	23	2
Diptera	Drosophila ananassae	14,920	22.59	13	22	2
Diptera	Drosophila erecta	14,952	22.77	13	22	2
Diptera	Drosophila grimshawi	14,874	23.24	13	22	2
Diptera	Drosophila mauritiana G52	14,964	22.29	13	22	2
Diptera	Drosophila melanogaster	19,517	17.84	13	22	2
Diptera	Drosophila mojavensis	14,904	23.54	13	22	2
Diptera	Drosophila simulans KY007	14,946	22.33	13	22	2
Diptera	Drosophila simulans KY045	14,946	22.36	13	22	2
Diptera	Drosophila simulans KY201	14,946	22.32	13	22	2
Diptera	Drosophila simulans KY215	14,946	22.33	13	22	2
Diptera	Drosophila persimilis	14,930	22.70	13	22	2
Diptera	Drosophila virilis	14,949	23.25	13	22	2
Diptera	Drosophila willistoni	14,915	22.76	13	22	2
Diptera	Drosophila yakuba	16,019	21.41	13	22	2
Diptera	Simosyrphus grandicornis	16,141	19.16	13	22	2
Diptera	Stomoxys calcitrans*	16,790	21.07	12	23	2
Diptera	Trichophthalma punctata	16,396	26.04	13	21	2
Hymenoptera	Abispa ephippium	16,953	19.39	13	26	2
Hymenoptera	Apis mellifera	16,343	15.14	13	22	2
Hymenoptera	Bombus ignites	16,434	13.22	13	22	2
Hymenoptera	Vanhornia eucnemidarum*	16,574	19.86	13	18	2
Hymenoptera	Xenos vesparum*	14,519	20.68	13	23	I
Lepidoptera	Adoxophyes honmai	15,680	19.61	13	22	2
Lepidoptera	Bombyx mandarina	15,928	18.32	13	22	2
Lepidoptera	Bombyx mori C-108	15,656	18.64	13	22	2
Lepidoptera	Coreana raphaelis	15,314	17.34	13	23	2
Lepidoptera	Manduca sexta	15,516	18.21	13	23	2
Lepidoptera	Ochrogaster lunifer	15,593	22.16	13	22	2
Lepidoptera	Ostrinia furnacalis*	14,536	19.62	13	22	2
Lepidoptera	Ostrinia nubilalis*	14,535	19.84	13	22	2
Lepidoptera	Saturnia boisduvalii	15,360	19.38	13	22	2
Megaloptera	Corydalus cornutus	15,687	25.10	13	22	2
Megaloptera	Protohermes concolorus	15,851	24.17	13	22	2
Neuroptera	Ascaloptynx appendiculatus	15,877	24.43	13	22	2
Neuroptera	Polystoechotes punctatus	16,036	21.04	12	22	2

Table 2: List of 56 whole mitochondrial genomes of hexapod species (Part I. 52 holometabolous species) archived in IMGD

*Nearly completely sequenced mitochondrial genome.

Order	Species	Size (bp)	GC (%)	PCGs	tRNAs	rRNAs
Archaeognatha	Nesomachilis australica	15.474	31.17	13	21	2
Archaeognatha	Pedetontus silvestrii	15.879	25.66	13	22	2
Archaeognatha	Petrobius brevistylis	15.698	32.12	13	22	2
Archaeognatha	Trigoniophthalmus alternatus	16,197	28.59	13	22	2
Zvgentoma	Thermobia domestica	15.152	33.01	13	22	2
Zygentoma	Tricholepidion gertschi	15,267	31.40	13	22	2
Collembola	Cryptobygus antarcticus	15 297	29.10	13	23	2
Collembola	Gombhiocebhalus hodosoni	15 075	25.92	13	20	2
Collembola	Friesen grisen	15,425	23.72	13	22	2
Collembola	Anychiurus arientalis*	12 984	30.89	13	20	1
Collembola	Orchesella villosa	14 924	27.82	13	20	2
Collombola	Podura aquatica*	13,224	34.21	13	22	2
Collembola	Fodula aquatica	13,007	20 54	13	20	1
Collembola	Siminuturus viriais	14,017	30.30	13	22	2
Collembola	l'etrodontopnora Dielanensis	15,455	27.32	13	22	2
Diplura	Campodea fragilis	14,965	27.44	13	22	2
Diplura	Campodea lubbocki	14,974	25.19	13	22	2
Diplura	Japyx solifugus	15,785	35.18	13	22	2
Ephemeroptera	Parafronurus youi	15,481	33.62	13	23	2
Odonata	Orthetrum triangulare melania*	14,033	26.09	13	19	2
Grylloblattodea	Grylloblatta sculleni*	15,595	29.71	12	19	2
Blattaria	Periplaneta fuliginosa	14,996	24.85	13	22	2
lsoptera	Reticulitermes flavipes IS13	16,565	33.82	13	22	2
lsoptera	Reticulitermes flavipes IS57	16,569	33.76	13	22	2
lsoptera	Reticulitermes flavipes IS58	16,567	33.78	13	22	2
lsoptera	Reticulitermes hageni	16.590	34.45	13	22	2
Isoptera	Reticulitermes santonensis IS54	16,567	33.91	13	22	2
Isoptera	Reticulitermes virginicus IS59	16.513	34.12	13	22	2
lsoptera	Reticulitermes virginicus IS60	15,966	34.37	13	22	2
Mantodea	Tamolanica tamolana	16,055	24.73	13	22	2
Mantophasmatodea	Sclerophasma paresisense	15,500	24.94	13	22	2
Orthoptera	Acrida willemsei	15,601	23.78	13	22	2
Orthoptera	Anabrus simplex	15,766	30.56	13	22	2
Orthoptera	Calliptamus italicus	15,675	26.74	13	22	2
Orthoptera	Chorthibbus chinensis	15.599	24.89	13	22	2
Orthoptera	Deracantha onos	15.650	30.76	13	22	2
Orthoptera	Grvllotalba orientalis	15.521	29.51	13	22	2
Orthoptera	Grvllotalba bluvialis	15.525	27.80	13	22	2
Orthoptera	Locusta migratoria	15.722	24.67	13	22	2
Orthoptera	Myrmecophilus manni	15.323	29.82	13	22	2
Orthoptera	Oxva chinensis	15.443	24.11	13	22	2
Orthoptera	Ruspolia dubia	14 971	29.14	13	22	2
Orthoptera	Gastrimargus marmoratus	15 924	24.82	13	22	2
Orthoptera	Cambsocleis gratiosa	15,929	34.69	13	22	2
Orthoptera	Troglophilus neglectus	15,810	26.63	13	23	2
Phasmatodea	Timema californicum*	14,387	27.86	13	19	1
Plecoptera	Pteronarcys princeps	16,004	28.54	13	22	2
Hemiptera	Aeschyntelus notatus*	14,532	24.29	13	22	2
Hemiptera	Aleurochiton aceris	15,388	22.10	13	21	2
Hemiptera	Aleurodicus dugesii	15,723	13.67	13	20	2
Hemiptera	Bemisia tabaci	15,322	24.32	13	22	2

Table 3: List of 76 whole mitochondrial genomes of hexapod species (Part II. 73 species excluding holometabolous orders) archived in IMGD

Hemiptera	Coptosoma bifaria	16,179	28.67	13	22	2
Hemiptera	Dysdercus cingulatus	16,249	22.31	13	22	2
Hemiptera	Geocoris pallidipennis*	14,592	24.14	13	22	2
Hemiptera	Hydaropsis longirostris	16,521	24.54	13	22	2
Hemiptera	Macroscytus subaeneus*	14,620	26.21	13	22	2
Hemiptera	Malcus inconspicuus	15,575	22.20	13	22	2
Hemiptera	Neomaskellia andropogonis	14,496	18.73	13	18	2
Hemiptera	Neuroctenus parus	15,354	31.14	13	22	2
Hemiptera	Nezara viridula	l 6,889	23.12	13	22	2
Hemiptera	Orius niger*	14,494	23.47	13	22	2
Hemiptera	Pachypsylla venusta	4,7	25.00	13	22	2
Hemiptera	Phaenacantha marcida*	14,540	26.54	13	22	2
Hemiptera	Philaenus spumarius	16,324	23.01	13	22	2
Hemiptera	Physopelta gutta	14,935	25.49	13	22	2
Hemiptera	Riptortus pedestris	17,191	23.41	13	22	2
Hemiptera	Saldula arsenjevi	15,324	25.39	13	22	2
Hemiptera	Schizaphis graminum	15,721	16.06	13	22	2
Hemiptera	Tetraleurodes acacia	15,080	28.02	13	19	2
Hemiptera	Trialeurodes vaporariorum	18,414	27.70	13	22	2
Hemiptera	Triatoma dimidiate	17,019	30.43	13	22	2
Hemiptera	Yemmalysus parallelus	15,747	22.82	13	22	2
Phthiraptera	Bothriometopus macrocnemis	15,564	29.20	13	25	2
Phthiraptera	Campanulotes bidentatus	I 4,804	29.88	13	22	2
Phthiraptera	Heterodoxus macropus	14,670	20.72	13	22	2
Psocoptera	Lepidopsocid sp. RS2001	16,924	20.98	13	22	2
Thysanoptera	Thrips imaginis	15,407	23.43	13	23	2

Table 3: List of 76 whole mitochondrial genomes of hexapod species (Part II. 73 species excluding h	nolometabolous orders) archived in
IMGD (Continued)	

*Nearly completely sequenced mitochondrial genome.

Taxonomic origins of the sequences data archived in IMGD

The IMGD archives 132 hexapod mitochondrial genomes and 113,985 GenBank accessions of partially sequenced mitochondrial genes, consisting of 102,430 PCGs, 19,452 rRNAs, and 17,944 tRNAs, from 25,747 species belonging to 33 orders (Table 1). More than 10,000 mitochondrial gene sequences were derived from >1,000 species in the orders Coleoptera, Lepidoptera, Hymenoptera, and Diptera. In particular, members of Diptera and Coleoptera account for 26 (20.00%) and 12 (9.23%) mitochondrial genomes, respectively, reflecting active researches on these orders [39,40]. In contrast, the following 13 orders (39.39%) are represented only by less than 50 species in total: Dermaptera, Siphonaptera, Zygentoma, Grylloblattodea, Mantophasmatodea, Embioptera, Diplura, Archaeognatha, Strepsiptera, Megaloptera, Raphidioptera, Protura, and Zoraptera (Table 1). The underrepresentation of mitochondrial gene sequences from many orders suggests that to adequately support the analysis of evolutionary relationships within the Hexapoda, these underrepresented orders require more attention.

Notable features in hexapod mitochondrial genomes

The genome size, GC content, and the number of PCGs, tRNAs, and rRNAs of the 132 mitochondrial genomes archived in IMGD (Table 2 and Table 3) were assessed (Figure 2). The GC content ranges from 13.22% to 35.18% with an average of 25.09%, showing the association at the order level (Figure 2A). The genome sizes vary from 12,984 bp to 19,517 bp, with an average of 15,617 bp with no clear correlation at any taxon levels (Figure 2B). Analyses of gene order in the 112 completely sequenced mitochondrial genomes revealed several interesting features. In 42 genomes (37.50%), which represent 12 orders, at least 222 gene insertions, deletions, inversions, and translocations were identified relative to the gene arrangement of the ancestral insect Drosophila yakuba [3,41] (Lee et al., in preparation). Gene translocations and inversions were detected in the following 12 orders: Collembola, Archaeognatha, Zygentoma, Hemiptera, Thysanoptera, Psocoptera, Phthiraptera, Neuroptera, Hymenoptera, Orthoptera, Lepidoptera, and Diptera. Gene insertions and deletions were detected in Collembola, Ephemeroptera, Orthoptera, Hemiptera, Phthiraptera, Diptera, and Lepidoptera.

Figure I

The system architecture and pipeline of IMGD.

(A) Each rectangular box shows three layers. In the standardized data warehouse, diverse databases are placed. The middleware platform manages not only BLAST, tRNAScan-SE, and mFold but also six phylogenetic tools managed by Phyloviewer (http://www.phyloviewer.org/). The web-based user interface supports browsing all information deposited in IMGD. (B) The pipeline for archiving hexapod mitochondrial sequences and calculating their properties was presented as a flowchart diagram.

Examples of phylogenetic analyses results using insectmitochondrial genomes

To demonstrate the utility of IMGD for phylogenetic analysis and also to test the system, many phylogenetic analyses using the data archived in IMGD have been conducted (e.g., Figure 3). Figure 3A shows an ML phylogenetic tree based on 19 completely sequenced and 5 nearly completed mitochondrial genomes in the order Hemiptera, which clearly shows two major suborder clades (Sternorrhyncha + Auchenorrhyncha and Heteroptera). The MP trees based on the *COI* gene sequences (Figure 3B and 3C) revealed more comprehensive phylogenetic relationships than those derived from previous studies in the orders Phthiraptera [42-44] and Mantophasmatodea [45,46].

Single Nucleotide Polymorphisms among 9 insect mitochondrial genomes

Single nucleotide polymorphisms (SNPs) in eight species with more than one mitochondrial genome having been sequenced (Table 4), were analyzed via the SNP Analysis Platform (http://sap.snu.ac.kr/), which

is based on BLAST. A total of 856 SNPs and 30 insertion and deletions (INDELs) were identified (Table 4) from 187 kbp of aligned mitochondrial genome sequences (6 pair-wise comparisons of mitochondrial genomes). Among these, 621 SNPs (72.55%) were identified in 13 PCGs and designated as cSNPs. Figure 4 shows the average number of cSNPs in each species, order and PCG. Bactrocera oleae (BO), Drosophila simulans (DS), and Reticulitermes flavipes (RF) exhibited the highest frequency of cSNPs, similar to the results from previous genome sequence analyses [47-49]. Among the 13 PCGs, the COI, NADH dehydrogenase subunit 4 (ND4), and/or NADH dehydrogenase subunit 5 (ND5) genes showed the highest frequency of SNPs in Diptera (COI and ND5) and Isoptera (cytochrome b, ND4, and ND5) (Figure 4). These regions can serve as potential molecular markers in population genetic studies of these three orders.

Utilities and discussion Species-driven User Interface (SUI)

The SUI of IMGD supports efficient data retrieval and analysis at multi-taxon levels. The SUI was developed using Ajax technology, which supports faster performance than other methods (e.g. JavaScript and Java applets). The SUI helps the users of IMGD search hexapod taxa using the 'Species search' and supports the addition and deletion of selected insect species via the 'Species cart' function, which is similar to the cart functions commonly used on online shopping sites (Figure 3). After placing the taxa of interest in the cart, they can be analyzed in the following ways: i) downloading nucleotide and protein sequences and/or storing them into the Favorite with various options, ii) comparing gene orders, GC content/AT skew, codon usage and position among mitochondrial genomes, iii) displaying tRNA secondary structures predicted by tRNAScan-SE [27] and mFold [28], iv) executing ClustalW for multiple sequence alignment and calculating phylogenetic trees based on three methods, including NJ, MP, and ML, with a bootstrapping option, v) executing a BLAST search against the selected taxa, and vi) saving species information into the Favorite for future analyses (Figure 5). Since SUI was designed using a standardized application programming interface (API), additional programs can be easily incorporated into SUI.

Gene order browser for graphical presentation of elements on the mitochondrial genome

Gene rearrangement events in the mitochondrial genomes can be used for tracing the evolutionary history of the mitochondrial genomes in Hexapoda (Lee *et al.,* in preparation). The gene order browser implemented in IMGD was designed for efficient graphical presentation

A. GC content

Figure 2

Estimates of the GC content and genome size of the 132 hexapod mitochondrial genomes. (A) The ranges of the GC content in the nearly completely and the completely sequenced mitochondrial genomes are shown. The closed red circle indicates the average GC content, and the blue and red bars present the maximum and minimum GC contents, respectively. (B) The distribution of mitochondrial genome sizes in different hexapod orders is shown. The closed red circle indicates the average mitochondrial genome size and the blue and red bars present the largest and smallest genome sizes, respectively (see also Table 2 and Table 3).

of PCGs, tRNAs, and rRNAs in the mitochondrial genome. To display different features on the genome graphically, the browser uses three different colors for PCGs, tRNAs, and rRNAs, and presents names of individual units (Figure 6). Moreover, the gene order browser displays the gene organizations using a specific gene as the start site for the linear genome diagrams regardless of the arbitrary start position given to individual mitochondrial genomes. Users can choose the number of mitochondrial genomes to be displayed by selecting them via SUI.

Integrated platform for phylogenetic analyses supported by Phyloviewer

The Phyloviewer (http://www.phyloviewer.org/) provides four phylogenetic analysis programs (ClustalW, DNAPARS/ PROTPARS, DNAML/PROML, and PHYML [29-31]) via a common interface to support phylogenetic studies based on the mitochondrial gene/genome sequences archived in IMGD. Three different methods of drawing phylogenetic trees (NJ, MP, and ML) are currently available. In addition, the interactive capability of graphical presentation of sequence alignments and selecting and storing all sequences

Examples of phylogenetic analyses conducted using data and tools in IMGD. (A) ML tree of the 24 Hemipteran species (19 completely and 5 nearly completed mitochondrial genomes) with *Thrips imaginis* (Thysanoptera) as an outgroup was constructed using DNAML. S, Sternorrhyncha; A, Auchenorrhyncha; H, Heteroptera. (B) MP tree built based on 88 *COI* sequences from 70 Phthirapteran species using DNAPARS, is shown. *Ptycta johnsoni* (Psocoptera) was used as an outgroup. The blue square indicates the sequences originated from Johnson and Whiting (2002) [42]; green square, Johnson *et al.* (2003) [43]; blue triangle, Price and Johnson (2006) [44]; red, violet and yellow squares, and red triangle present unpublished mitochondrial gene sequences. (C) MP tree using 90 *COI* sequences from 14 Mantophasmatodean species, with *Galloisiana yuasai* (Grylloblattodea) as an outgroup, was drawn using DNAPARS. The red circle indicates the mitochondrial sequences reported by Damgaard *et al.* (2008) [46] and violet circle presents the sequences from the study of Klass *et al.* (2003) [45]. The numbers on individual nodes of the trees in A, B, and C indicate bootstrap values with 10, 100, and 100 repeats, respectively, and the names of the species used and NCBI accession numbers are shown at the end of individual branches.

Order	Source/Target Species	Size (bp)	Aligned (bp)	SNPs	INDELs
Diptera	<i>Bactrocera oleae</i> Italy vs <i>Bactrocera oleae</i> portugal	15,815 15,815	15,815 15,815	31	0
	Drosophila simulans KY007 Drosophila simulans KY045	14,946 14,946	4,946 4,946	25	2
	Drosophila simulans KY007 Drosophila simulans KY201	14,946 14,946	14,946 14,946	17	2
	Drosophila simulans KY007 Drosophila simulans KY215	14,946 14,946	4,946 4,946	6	0
lsoptera	Reticulitermes flavipes ISI3 vs Reticulitermes flavipes IS57	16,565 16,569	16,561 16,565	393	14
	Reticulitermes flavipes ISI3 vs Reticulitermes flavipes IS58	16,565 16,567	16,561 16,563	384	12
Total	6 pair-wise comparisons	187,572	187,556	856	30

Table 4: List of mitochondrial genome comparisons for SNP analysis

Figure 4

Distribution of SNPs in 13 PCGs in 9 mitochondrial genomes. The bar graph displays the distribution of SNPs in 13 PCGs of three insect species: BO, *Bactrocera oleae*; DS, *Drosophila simulans*; RF, *Reticulitermes flavipes*. *ATP6* and 8 (ATP synthase subunit 6 and 8); COX1–3 (cytochrome c oxidase subunits I–III); CYTB (cytochrome b); *ND1–6* (NADH dehydrogenase subunits 1–6); *ND4L* (NADH dehydrogenase subunit 4L) (see also Table 4).

under a selected node in the resulting phylogenetic tree by clicking the node is also provided.

Comparative mitochondrial genomics via the SNU Genome Browser

To support intuitive visualization of sequences, SNPs, and INDELs between two mitochondrial genomes, the

SNU Genome Browser (http://genomebrowser.snu.ac.kr/) [25] was implemented. This recently developed genome browser provides an interactive user interface that supports visualization of the alignment region between genomes with the capability of comparing multiple genomes simultaneously (Figure 7). It also supports the text browser function for displaying nucleotide sequences of a selected region, supporting the confirmation of SNPs and INDELs. The table browser provides a list of individual elements present in the selected region with their positional information in a tabular form.

Favorite, a personalized virtual space for storing data and conducting further analysis

Most of the data analysis and/or retrieval interfaces in IMGD provide the Object Browser, which allows users to save all or selected sequences and/or species shown into Favorite. This will help users manage their own datasets via IMGD. Through the interface of Favorite, BLAST, six different phylogenetics programs, and four data analysis tools are available for further analyses (Figure 8). The Favorite is linked to CFGP (http://cfgp.snu.ac.kr/), which provides not only diverse bioinformatic tools but also a data warehouse containing complete sequences of 19 insect nuclear genomes [24], so that further analyses with diverse resources can be conducted easily via this web interface.

Conclusion

We developed IMGD to support versatile comparative analyses of hexapod mitochondrial gene/genome sequences. In IMGD, 132 completely or nearly-completely sequenced mitochondrial genomes and 113,985 mitochondrial gene sequences from 25,747 species were archived. The IMGD provides a variety of phylogenetic

ec ros	t item what you w ies search : Droso ophilinae > Drosoph	ant and then drag phila melan ilini > Drosophilina >	selected item to Drosophila > Dro	the cart. The cont [Search] 8 speci sophila	ents in the cart will be sto les were found.	ored before <u>vo</u>	u dosed vour browse Species sear	ch
nos nos nos nos	sophila micromela sophilnae > Drosoph sophilnae > Drosoph sophilnae > Drosoph sophilnae > Drosoph sophilnae > Drosoph sophilnae > Drosoph	nica : Hexapoda > I ilini > Drosophilina > ilini > Drosophilina > ilini > Drosophilina > tee: : Hexapoda > Ir ilini > Drosophilina > ilini > Drosophilina > ilini > Drosophilina >	nsecta > Neoptera Drosophila > Dro Drosophila > Dro Drosophila > Dro secta > Neoptera Drosophila > Sop Insecta > Neopteri	 Endopterygota - sophila Endopterygota - sophila Endopterygota - shophora Endopterygota 	 Diptera > Brachycera > M Diptera > Brachycera > M Diptera > Brachycera > Mu > Diptera > Brachycera > Mu 	uscomorpha > E uscomorpha > E scomorpha > Ep Juscomorpha > 1	phydroidea > Drosophi phydroidea > Drosophi phydroidea > Drosophil Ephydroidea > Drosoph	lidae > lidae > idae > iilidae
Dr	osophilinae > Droso	philini > Dresoph	By clicking	species nam	e SIII will be on	ened auto	matically	13
	Superfamily Ephydroidea	Family Drosophilidae	Sublamily Drosophilinae	Tribe Drosophilini	Subtribe Drosophilina	Gener	Subgenus Sophophora	
	[™] Drosophilidae [™] Ephydridae [©] sp.	♥ Drosophilinae ♥ Steganinae	♥ Drosophilini Taxon bro	₩ Drosophilina	 Drosophila Zaprionus Hirtodrosophila Chymomyza Liodrosophila Mycodrosophila Paramycodrosophila Samoaia Scaptodrosophila Dettopsomyia Sphaerogastrella Zygothrica 	V Sophopho V Drosophila S differens S heteroneu S nigra S picticomis S planitibia S silvestris S ingens S hanaulae	ra S melanogasti a S ambigua S erecta S grimshawi ra S guanche S mauntiana S madeirensis S orena S persimilis S pseudoobsc S simulans S subobscura	ura
St	ored taxa]	₩ Ephydr	idae		→ 8 Bic	Species c	art tool:

Species-driven User Interface (SUI) optimized for collecting data based on taxa. The Species-driven User Interface (SUI) consists of three parts: i) Species search, ii) Taxon browser, and iii) Species cart. The Species search function supports the search of species by species name. The Taxon browser provides the interface for browsing taxa in a hierarchical manner. The Species cart can store selected taxa, bridging the data from them to nine bioinformatics tools.

Gene order browser for graphical presentation of the mitochondrial gene order. The gene order browser consists of two parts: one is the option window and the other is the gene order diagram. In the option window, three options, including width, categories, and components, are displayed. After clicking 'Apply Options,' a gene order diagram based on the chosen option will be displayed. To indicate the nature of specific genetic elements on displayed mitochondrial genomes, the following abbreviations were used: A, tRNA-Ala;C, tRNA-Cys; D, tRNA-Asp; E, tRNA-Glu; F, tRNA-Phe; G, tRNA-Gly; H, tRNA-His; I, tRNA-Ile; K, tRNA-Lys; L, tRNA-Leu; M, tRNA-Met; N, tRNA-Asn; P, tRNA-Pro; Q, tRNA-Gln; R, tRNA-Arg; S, tRNA-Ser; T, tRNA-Thr; V, tRNA-Val; W, tRNA-Trp; Y, tRNA-Tyr; COX1–3, cytochrome c oxidase subunits I–III; CYTB, cytochrome b; ATP6 and ATP8, subunits 6 and 8 of the F₀ATPase; ND I–6 and nad4L, NADH dehydrogenase subunits I–6 and 4L; I-r and s-r, large and small subunit of ribosomal RNA genes; PCGs, protein coding genes; rRNAs, ribosomal RNA genes; tRNAs, transfer RNA genes.

analysis tools via Phyloviewer, which supports the interactive graphical presentation of resultant phylogenetic trees. The IMGD, supported by the SNP analysis platform and the SNU Genome Browser, provides a graphical view of mitochondrial genome comparisons. In the near future, additional analysis tools, such as PAML [50] for the determination of positive/negative selection based on dS/dN values, will be integrated into IMGD. Moreover, based on the database of widely sequenced mitochondrial genes, an insect species identification system based on multiple loci can be developed. The IMGD is expected to significantly enhance evolutionary studies on the superclass Hexapoda using rapidly accumulating insect mitochondrial genome sequences.

Drosophila simulans KY007 Mitochondrion

AY518670 (Total Length : 14,946bp)

Range Option	<< < Start 5,4	04 bp		End 7,512	bp > >> Refres	sh
	5500	6000	6!	500	7000	750
	CONTIG REGION INFORMATION					
	GENE REGION INFORMATION					
ORF - AAR91389.	1 ORF - AAR91390.1		ORF - AAR91397.1			
	GC Ratio ()					
	Mid-Value: 0.5					
	1.RNA					
	tRNA-G1y	tRNA-Ala t RNA-Arg	RNA-Ser tRNA-Glu			
	CND	trna-f	Isn 🛲 🕨 tRNA-Phe 🔙			
	SIF	SnpDsK07450000101	S.	npDsK0745000011 sDsK07201000009		
	Duranak di Janak wa Kyanza	- KUME		SnpDsK074500001	21	
	CONTIG REGION INFORMATION	, 11045				
	GENE REGION INFORMATION					
ORF - AAR91406.	1 ORF - AAR91407.1		ORF - AAR91408.1			
	GC Ratio ()					
	Hid Value: 0.5					~_~~~
	+.DNA					
			<u> → → → → → →</u>			
	Drosophila simulans KY007 v CONTIG REGION INFORMATION	s K201				
	GENE REGION INFORMATION		*			
	GC Ratio ()					
	Hid Value; 0.5					-
iewing Option	Contig Region Squi	sh 💌 ORF Pack	View Exon/Intron	Option Display	afresh	
dditional Vie	wing Option Refresh					
AT Skew	None	G Skew	Ione - GC Ra	tio Line		Pack(E) -
RRNA	None • SI	NP F	ack INDEL	None	- =	
	,					
Comparative [ataset Viewing Option	Select Dataset				
rosophila sim	ulans KY007 vs KY045					
/iewing Option	Contig Region Squi	sh 💌 🛛 ORF 🛛 Pack	View Exon/Intron	Option Display 💌 🛛 R	sfresh	
AT Skew	None 💌 🛛 CG	Skew	one 💌 🛛 GC Rati	0 Line 🔻	TRNA	Squish 💌
RRNA	None SN	P	one V V INDEL	None 🔻	₹	
accophilo cim	ulane KY007 vs K201					
rosophila sin	Contig Region Squi	sh 💌 🛛 ORF Squish	View Exon/Intron	Option Display 💌 🛛 🥂	sfresh	
liewing Option						
/iewing Option	None I CG	Skew				None V

🖪 | Refresh 🖉 | Text Browser 🗐 | Table Browser 🖄 | Download Image

Figure 7

Interactive graphical interface for visualizing aligned mitochondrial genomes via the SNU Genome Browser. The SNU Genome Browser displays SNPs/INDELs as well as PCGs, tRNAs, GC contents among the aligned genomes of *Drosophila simulans* KY007, KY045, and K201 strains.

FGI avo dit : unct naly	Comp rite Bro Delete i ion : BL sis : Ta	poment pwser tems Check all items AST Search <u>IMGD Phylo</u>	ana dia Taona (1911) amin'ny fi				
dit : unct analy	Delete i lon : BL sis : Ta	poment owser Items Check all items AST Search <u>IMGD Phylo</u>	ana dia tang di sila ata hai				
dit : unct naly	rite Bro Delete i ion : BL sis : Ta:	owser tems Check all items AST Search <u>IMGD Phylo</u>	analis Tana / Churt-Itti				
dit : unct unaly	Delete i ion : BL sis : Ta	tems Check all items AST Search <u>IMGD Phylo</u>	anatis Tana / Chustaliti				
unct naly own	ion : BL sis : Ta	AST Search IMGD Phylo	assessive Trans / Churchaltal				
naly own	sis : Ta		idenenc tree (chrecative	DNAPARS PROTPARS DNAML 1	PROML PHYML)		
own		xonomy analysis Seque	ence Statistics tRNA Str	ucture (tRNAScanSE/mFold) IMGD	Annotation Analy	sis	
	load : D	ownload sequences					
				and the second			
	Name	b : trava from complete n	ntDNA [Modify name &	comment]			
C	omment	t:					
reat	ed Date	: 2009-01-11 11:26:48	3 (Update Date : Not m	odified)			
	No	Attribute	ANamer	Species	Anno.	▲ Comment ▼	Order
Chk	140						
Chk	1	Nucleotide Sequence	tRNA-Ser	Bothriometopus macrocnemis			••
Chk	1 2	Nucleotide Sequence Protein Sequence	tRNA-Ser YP_665528.1	Bothriometopus macrocnemis Campodea lubbocki	e		••
Chk	1 2 3	Nucleotide Sequence Protein Sequence Protein Sequence	tRNA-Ser YP_665528.1 YP_001552101.1	Bothriometopus macrocnemis Campodea lubbocki Bothriometopus macrocnemis	0		••
	1 2 1 3 1	Nucleotide Sequence Protein Sequence Protein Sequence Protein Sequence	tRNA-Ser YP_665528.1 YP_001552101.1 YP_001552102.1	Bothriometopus macrocnemis Campodea lubbocki Bothriometopus macrocnemis Bothriometopus macrocnemis	0 0		••
	1 1 2 1 3 1 4 1 5 1	Nucleotide Sequence Protein Sequence Protein Sequence Protein Sequence Protein Sequence	tRNA-Ser YP_665528.1 YP_001552101.1 YP_001552102.1 YP_001552103.1	Bothriometopus macrocnemis Campodea lubbocki Bothriometopus macrocnemis Bothriometopus macrocnemis Bothriometopus macrocnemis	0 0 0		••
	1 1 2 1 3 1 4 1 5 1 6 1	Nucleotide Sequence Protein Sequence Protein Sequence Protein Sequence Protein Sequence Protein Sequence	tRNA-Ser YP_665528.1 YP_001552101.1 YP_001552102.1 YP_001552103.1 YP_001552104.1	Bothriometopus macrocnemis Campodea lubbocki Bothriometopus macrocnemis Bothriometopus macrocnemis Bothriometopus macrocnemis Bothriometopus macrocnemis	e e e o e		••
	1 1 2 1 3 1 4 1 5 1 6	Nucleotide Sequence Protein Sequence Protein Sequence Protein Sequence Protein Sequence Protein Sequence	tRNA-Ser YP_665528.1 YP_001552101.1 YP_001552102.1 YP_001552103.1 YP_001552104.1	Bothriometopus macrocnemis Campodea lubbocki Bothriometopus macrocnemis Bothriometopus macrocnemis Bothriometopus macrocnemis Bothriometopus macrocnemis	e e e e		

Favorite, a personalized virtual space for data storage and further analyses. The browser in Favorite provides four options: 'Edit,' 'Function,' 'Analysis,' and 'Download.' Any sequences listed at the bottom part can be selected by users for analyzing the selected sequences using seven programs and four analysis tools via the web.

Availability and requirements

All data described in this paper can be browsed and downloaded through the IMGD web site at http://www. imgd.org/.

Authors' contributions

WL, JP, SL, and YHL designed and managed this project, JC, JP, and WL construct the IMGD sequence database and WL, JL, JC, and JP curated all sequences in IMGD. KJ designed the IMGD web site and developed SUI. BP developed the interface for Phyloviewer, JP integrated SAP to IMGD and DH conducted mitochondrial genome alignments. JP, JC, BP, KJ, KA, DH and WS constructed and tested the whole web pages. WL, JP and SK wrote the manuscript.

Acknowledgements

This research was supported by Korea Ministry of Environment as "The Eco-technopia 21 project", a grant from by Agricultural R&D Promotion Center, and a grant from Biogreen21 Project (20070301034032) to S.L. It

was also supported by a grant from Crop Functional Genomics Center (CG1141), Korean Research Foundation Grant (KRF-2006-005-J04701), Biogreen21 Project (20080401034044) funded by Rural Development Administration and the Korea Science and Engineering Foundation (KOSEF) grant funded by the Korea government (MEST) (R11-2008-062-03001-0) to Y.H.L. J.P. acknowledges a graduate fellowship provided by the Ministry of Education through the Brain Korea 21 Project.

References

- Rawlings TA, Collins TM and Bieler R: A major mitochondrial gene rearrangement among closely related species. Mol Biol Evol 2001, 18(8):1604–1609.
- Dowton M: Relationships among the cyclostome braconid (Hymenoptera: Braconidae) subfamilies inferred from a mitochondrial tRNA gene rearrangement. Mol Phylogenet Evol 1999, 11(2):283-287.
- 3. Boore JL: Animal mitochondrial genomes. Nucleic Acids Res 1999, 27(8):1767-1780.
- Boore JL and Brown WM: Big trees from little genomes: mitochondrial gene order as a phylogenetic tool. Curr Opin Genet Dev 1998, 8(6):668-674.
- 5. Boore JL, Lavrov DV and Brown WM: Gene translocation links insects and crustaceans. *Nature* 1998, **392(6677):**667–668.
- 6. Ellegren H: Sequencing goes 454 and takes large-scale genomics into the wild. Mol Ecol 2008, 17(7):1629–1631.

- Jameson D, Gibson AP, Hudelot C and Higgs PG: OGRe: a 7. relational database for comparative analysis of mitochondrial genomes. Nucleic Acids Res 2003, 31(1):202-206.
- Lee YS, Oh J, Kim YU, Kim N, Yang S and Hwang UW: Mitome: dynamic and interactive database for comparative mito-8 chondrial genomics in metazoan animals. Nucleic Acids Res 2008, 36:D938-942.
- O'Brien EA, Zhang Y, Yang L, Wang E, Marie V, Lang BF and Burger G: **GOBASE-a database of organelle and bacterial** genome information. *Nucleic Acids Res* 2006, **34:**D697–699. 9.
- 10. Feijao PC, Neiva LS, de Azeredo-Espin AM and Lessinger AC: AMiGA: the arthropodan mitochondrial genomes accessible
- database. Bioinformatics 2006, **22(7):**902–903. Vasconcelos AT, Guimaraes AC, Castelletti CH, Caruso CS, Ribeiro C, Yokaichiya F, Armoa GR, Pereira Gda S, da Silva IT, Schrago CG, Fernandes AL, da Silveira AR, Carneiro AG, Carvalho BM, Viana CJ, Gramkow D, Lima FJ, Correa LG, Mudado Mde A, Nehab-Hess P, Souza R, Correa RL and Russo CA: MamMiBase: a mitochondrial genome database for mammalian phylogenetic studies. Bioinformatics 2005, 21 (10):2566-2567.
- Wolfsberg TG, Schafer S, Tatusov RL and Tatusov TA: Organelle genome resource at NCBI. Trends Biochem Sci 2001, 26 12. (3):199-203.
- Boykin LM, Shatters RG Jr, Rosell RC, McKenzie CL, Bagnall RA, De Barro P and Frohlich DR: Global relationships of Bemisia 13. tabaci (Hemiptera: Aleyrodidae) revealed using Bayesian analysis of mitochondrial COI DNA sequences. Mol Phylogenet Evol 2007, 44(3):1306-1319.
- Morlais I and Severson DW: Complete mitochondrial DNA sequence and amino acid analysis of the cytochrome C oxidase subunit I (COI) from Aedes aegypti. DNA Seq 2002, 13 (2):123–127.
- Waeschenbach A, Telford MJ, Porter JS and Littlewood DT: The 15 complete mitochondrial genome of Flustrellidra hispida and the phylogenetic position of Bryozoa among the Metazoa. Mol Phylogenet Evol 2006, 40(1):195–207. Kress WJ and Erickson DL: DNA barcodes: genes, genomics, and bioinformatics. Proc Natl Acad Sci USA 2008, 105
- 16. (8):2761–2762.
- Ratasingham S and Hebert PDN: BOLD: The Barcode of Life 17. Data System http://www.barcodinglife.org. Mol Ecol Notes 2007, 7(3):355-364.
- Hajibabaei M, Janzen DH, Burns JM, Hallwachs W and Hebert PD: DNA barcodes distinguish species of tropical Lepidoptera. Proc Natl Acad Sci USA 2006, 103(4):968-971.
- Stahls G and Savolainen E: MtDNA COI barcodes reveal cryptic 19 diversity in the Baetis vernus group (Ephemeroptera, Baetidae). Mol Phylogenet Evol 2008, 46(1):82–87. Pfenninger M, Nowak C, Kley C, Steinke D and Streit B: Utility of
- 20. DNA taxonomy and barcoding for the inference of larval community structure in morphologically cryptic Chirono-mus (Diptera) species. Mol Ecol 2007, 16(9):1957-1968.
- Nelson LA, Wallman JF and Dowton M: Using COI barcodes to identify forensically and medically important blowflies. Med Vet Entomol 2007, 21(1):44-52.
- Roe AD and Sperling FA: Patterns of evolution of mitochon-drial cytochrome c oxidase I and II DNA and implications 22. for DNA barcoding. Mol Phylogenet Evol 2007, 44(1):325-345.
- 23. Caterino MS, Cho S and Sperling FA: The current state of insect molecular systematics: a thriving Tower of Babel. Annu Rev Entomol 2000, 45:1-54.
- Park J, Park B, Jung K, Jang S, Yu K, Choi J, Kong S, Park J, Kim S, Kim H, Kim S, Kim J, Blair J, Lee K, Kang S and Lee Y-H-: **CFGP: A** 24. Web-based, Comparative Fungal Genomics Platform. Nucleic Acids Res 2008, 36:D562–D571.
- 25. Jung K, Park J, Choi J, Park B, Kim S, Ahn K, Choi J, Choi D, Kang S and Lee Y-H: SNUGB: a versatile genome browser supporting comparative and functional fungal genomics. BMC Genomics 2008, 9:585.
- 26. McGinnis S and Madden TL: BLAST: at the core of a powerful and diverse set of sequence analysis tools. Nucleic Acids Res 2004. 32:W20-25.
- 27. Lowe TM and Eddy SR: tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 1997, 25(5):955–964.
- 28. Zuker M: Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 2003, 31 (13):3406-3415

- Felsenstein J: PHYLIP (PHYLogeny Inference Package).Seattle: 29. Distributed by the author, Department of Genetics, University of Washington, Śeattle, WA; 3.6a21993.
- Thompson JD, Higgins DG and Gibson TJ: CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994, 22 (22):4673-4680.
- 31. Guindon S, Lethiec F, Duroux P and Gascuel O: PHYML Online-a web server for fast maximum likelihood-based phylogenetic inference. Nucleic Acids Res 2005, 33:W557-559.
- Choi J, Park J, Jeon J, Chi MH, Goh J, Yoo SY, Park J, Jung K, Kim H, Park SY, Rho HS, Kim S, Kim BR, Han SS, Kang S and Lee YH: Genome-wide analysis of T-DNA integration into the 32. chromosomes of Magnaporthe oryzae. Molecular Microbiology 2007, 66(2):371-382.
- 2007, **60**(2):371-382. Jeon J, Park SY, Chi MH, Choi J, Park J, Rho HS, Kim S, Goh J, Yoo S, Choi J, Park JY, Yi M, Yang S, Kwon MJ, Han SS, Kim BR, Khang CH, Park B, Lim SE, Jung K, Kong S, Karunakaran M, Oh HS, Kim H, Kim S, Park J, Kang S, Choi WB, Kang S and Lee YH: **Genome-wide functional analysis of pathogenicity genes in the rice blast fungus.** Nat Genet 2007, **39**(4):561–565.
- Park J, Park B, Veeraraghavan N, Jung K, Lee YH, Blair J, Geiser DM, Isard S, Mansfield MA, Nikolaeva E, Park SY, Russo J, Kim SH, Greene M, Ivors KL, Balci Y, Peiman M, Erwin DC, Coffey MD, Rossman A, Farr D, Cline E, Crünwald NJ, Luster DG, Schrandt J, Martin F, Ribeiro OK, Makalowska I and Kang S: Phytophthora Database: A Forensic Database Supporting the Identification and Monitoring of Phytophthora. Plant Dis 2008, 92 (6):966-972
- Park J, Park J, Jang S, Kim S, Kong S, Choi J, Ahn K, Kim J, Lee S, Kim S, Park B, Jung K, Kim S, Kang S and Lee YH: **FTFD: An Informatics Pipeline Supporting Phylogenomic Analysis of Fungal Transcription Factors.** *Bioinformatics* 2008, 24 (7):1024-1025
- Park J, Lee S, Choi J, Ahn K, Park B, Park J, Kang S and Lee YH: Fungal Cytochrome P450 Database. BMC Genomics 2008, 9 36. (I):402.
- 37. Xi H, Park J, Ding G, Lee YH and Li Y: SysPIMP: the web-based systematical platform for identifying human disease-related mutated sequences from mass spectrometry. Nucleic Acids Res 2008, 37:D913-D920.
- Hong MY, Lee EM, Jo YH, Park HC, Kim SR, Hwang JS, Jin BR, Kang PD, Kim KG, Han YS and Kim I: **Complete nucleotide** sequence and organization of the mitogenome of the silk moth Caligula boisduvalii (Lepidoptera: Saturniidae) and comparison with other lepidopteran insects. Gene 2008, 413 (1-2):49-57
- 39. Sheffield NC, Song H, Cameron SL and Whiting MF: A comparative analysis of mitochondrial genomes in Coleoptera (Arthropoda: Insecta) and genome descriptions of six new beetles. Mol Biol Evol 2008, 25(11):2499-2509.
- Cameron SL, Lambkin CL, Barker SC and Whiting MF: A mitochondrial genome phylogeny of Diptera: whole genome sequence data accurately resolve relationships over broad timescales with high precision. Syst Entomol 2007, 32(1):40-59.
- Boore JL, Collins TM, Stanton D, Daehler LL and Brown WM: 41. Deducing the pattern of arthropod phylogeny from mito-chondrial DNA rearrangements. Nature 1995, 376 (6536):163-165.
- Johnson KP and Whiting MF: Multiple genes and the monophyly of Ischnocera (Insecta: Phthiraptera). Mol Phylogenet Evol 2002, 42 22(1):101-110.
- Johnson KP, Cruickshank RH, Adams RJ, Smith VS, Page RD and 43. Clayton DH: Dramatically elevated rate of mitochondrial substitution in lice (Insecta: Phthiraptera). Mol Phylogenet Evol 2003, 26(2):231-242.
- Price RD and Johnson KP: Four new species of Myrsidea Waterston chewing lice (Phthiraptera: Menoponidae) from the Malagasy warblers (Passeriformes). Zootaxa 2006, 44. 1297:47-55
- Klass K-D, Picker MD, Damgaard J, van Noort S and Tojo K: The Taxonomy, Genitalic Morphology, and Phylogenetic Rela-tionships of South African Mantophasmatodea (Insecta). Entomol Abh 2003, 61(1):3–67. 45.
- Damgaard J, Klass KD, Picker MD and Buder G: Phylogeny of the Heelwalkers (Insecta: Mantophasmatodea) based on mtDNA sequences, with evidence for additional taxa in South Africa. Mol Phylogenet Evol 2008, 47(2):443-462.

- 47. Cameron SL and Whiting MF: Mitochondrial genomic comparisons of the subterranean termites from the Genus Reticulitermes (Insecta: Isoptera: Rhinotermitidae). Genome 2007, 50(2):188-202.
- Yukuhiro K, Sezutsu H, Itoh M, Shimizu K and Banno Y: Significant levels of sequence divergence and gene rearrangements have occurred between the mitochondrial genomes of the wild mulberry silkmoth, Bombyx mandarina, and its close relative, the domesticated silkmoth, Bomby'x mori. Mol Biol Evol 2002, 19(8):1385-1389.
- 49. Solignac M: Mitochondrial DNA in the Drosophila melanoga-
- Ster complex. Genetica 2004, 120(1-3):41-50. Yang Z: PAML 4: phylogenetic analysis by maximum like-lihood. Mol Biol Evol 2007, 24(8):1586–1591. 50.

