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Abstract
Background: Post-transcriptional regulation of gene expression is the dominant regulatory
mechanism in trypanosomatids as their mRNAs are transcribed from polycistronic units. A few cis-
acting RNA elements in 3'-untranslated regions of mRNAs have been identified in trypanosomatids,
which affect the mRNA stability or translation rate in different life stages of these parasites. Other
functional RNAs (fRNAs) also play essential roles in these organisms. However, there has been no
genome-wide analysis for identification of fRNAs in trypanosomatids.

Results: Functional RNAs, including non-coding RNAs (ncRNAs) and cis-acting RNA elements
involved in post-transcriptional gene regulation, were predicted based on two independent
computational analyses of the genome of Trypanosoma brucei. In the first analysis, the predicted
candidate ncRNAs were identified based on conservation with the related trypanosomatid
Leishmania braziliensis. This prediction had a substantially low estimated false discovery rate, and a
considerable number of the predicted ncRNAs represented novel classes with unknown functions.
In the second analysis, we identified a number of function-specific regulatory motifs, based on which
we devised a classifier that can be used for homology-independent function prediction in T. brucei.

Conclusion: This first genome-wide analysis of fRNAs in trypanosomatids restricts the search
space of experimental approaches and, thus, can significantly expedite the process of
characterization of these elements. Our classifier for function prediction based on cis-acting
regulatory elements can also, in combination with other methods, provide the means for
homology-independent annotation of trypanosomatid genomes.

Background
RNA elements that are functional at RNA level, i.e., func-
tional RNAs (fRNAs), are becoming to be appreciated
more and more as their diverse structural, regulatory and
catalytic roles are revealed [1,2]. Several classes of fRNAs
have been identified, including different types of non-
coding RNAs (ncRNAs) such as tRNAs, rRNAs, microR-

NAs (miRNAs), Telomerase RNA, RPR1 (the RNA compo-
nent of nuclear RNase P), small nuclear RNAs (snRNAs)
and small nucleolar RNAs (snoRNAs). The cis-regulatory
elements in the 5'- and 3'-untranslated regions (UTRs) of
mRNAs constitute another class of fRNAs that are mostly
involved in post-transcriptional regulation of gene expres-
sion (see [3,4]). Recent developments in computational
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tools for prediction of fRNAs have shown a widespread set
of RNA elements that are specifically involved in post-
transcriptional regulatory processes [5]. Although crucial
in many different species, post-transcriptional regulation
is especially the major mechanism for regulation of gene
expression in a group of unicellular parasites called
trypanosomatids.

Trypanosomatids, including Trypanosoma brucei, T. cruzi
and different Leishmania species, are the causative agents
of serious human as well as animal diseases, with a very
high incidence and mortality rate if untreated. Genes in
trypanosomatids are transcribed as polycistronic mRNAs
[6] that are further processed via trans-splicing [7]. Regu-
lation of gene expression which occurs mostly during or
after splicing involves several cis-acting fRNA elements,
such as U-rich elements (UREs), short interspersed degen-
erated retroposons (SIDERs), etc. [3,4]. These elements
mostly regulate either the stability or translation rate of
mRNAs via interaction with different trans-acting pro-
teins, many of which are unknown. It has also been pro-
posed recently that miRNAs may play a role in
posttranscriptional gene regulation in T. brucei [8],
although no experimental substantiation has been found.

Experimental identification of cis-acting fRNA elements is
an exhausting task that requires extensive functional
assays with several strains carrying deletion/substitution
mutants of a likely regulatory sequence. The situation is
not better for ncRNAs, as it is not clear in which region(s)
in the genome they should be searched for and for what
particular function the screening experiment should be
designed (as opposed to cis-acting fRNA elements that
occur adjacent to coding sequences and affect gene expres-
sion). Although computational identification of fRNAs
from genome sequences can be an alternative, it is not yet
as robust as identification of protein-coding RNAs, due to
the lack of strong conserved signals in their sequences [9].
Here, we present a computational examination of the
genomes of T. brucei and L. braziliensis in order to identify
a set of conserved ncRNAs that, based on computational
and statistical analysis, are highly reliable. We show that
our methodology is able to find a large number of known
as well as novel potential ncRNAs. We further examine
our candidate ncRNAs for the presence of potential pre-
miRNAs, and show that the existence of miRNA genes that
are conserved between T. brucei and L. braziliensis is highly
unlikely. We also use a different method for homology-
independent identification of short regulatory RNA
motifs in 5' and 3' UTRs of T. brucei genes. These motifs
complement our predicted ncRNAs by providing a set of
the most functionally important regions of potential cis-
regulatory fRNA elements. In addition to offering new
insights about the regulatory mechanisms of protein
expression in T. brucei, these regulatory motifs can be used
for prediction of gene function.

Results and Discussion
Identification of conserved ncRNAs in T. brucei
We compared the genome sequences of T. brucei and L.
braziliensis in order to identify conserved genomic regions.
L. braziliensis is the only trypanosomatid other than T. bru-
cei with available genome sequence in which the putative
components of RNAi machinery have been identified
[10]. Thus, its comparison with T. brucei provides the pos-
sibility of detecting conserved ncRNAs involved in or
processed by this machinery. We used a binomial-based
model [11] to assess the conservation across T. brucei
genome in comparison to the genome sequence of L. bra-
ziliensis. Using this model, we found that about 18% of
the T. brucei genome shows conservation degrees above
the median that would be expected from a random distri-
bution. These regions, in addition to being enriched for
functional elements, have allegedly the highest-quality
alignments compared to the alignments that correspond
to less conserved regions. This conserved subset of the T.
brucei genome consisted of about 5.26 Mbp of protein-
coding sequences and 887 kbp of non-coding sequences.
We used QRNA [12] to identify parts of these conserved
genomic regions that showed patterns of conserved struc-
tural RNA elements. About 37.2 kbp of the non-coding
conserved genomic regions obtained RNA scores above
zero, using QRNA. For the protein-coding conserved
regions, this number was about 16.8 kbp, indicating a
false positive rate of about 0.3%. Assuming this false pos-
itive rate, we would expect about 2.8 kbp of false positives
among non-coding genomic regions and, hence, a preci-
sion of about 92.3% (precision was defined as TP/
(TP+FP), where TP and FP stand for the number of true
positives and false positives among non-coding genomic
regions, respectively).

It should be noted that the estimated false positive rate
from coding sequences would not be applicable to non-
coding sequences if we had included scores other than the
RNA score from QRNA, such as the COD and OTH scores
(COD and OTH scores express the likelihood of being a
coding sequence and a non-RNA, non-coding sequence,
respectively). However, the behavior of QRNA may still be
different between coding regions and non-RNA, non-cod-
ing genomic regions as coding sequence evolves in a very
specific way. Furthermore, RNA structure in coding
sequence may be specifically selected against. We have
thus used a different, more conservative method for esti-
mating the false positive rate of our ncRNA predictions,
which is explained in the section "Identification of highly
significant candidate ncRNAs".

About 5.2 kbp of our found candidate fRNAs overlapped
with already annotated rRNA, snRNA, and tRNA genes,
indicating the capability of our approach in finding non-
coding RNAs. The sensitivity of this approach, i.e., TP/
(TP+FN) where FN indicates the number of false nega-
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tives, showed considerable differences among different
classes of structural RNAs. For example, 30 of our predi-
cated candidates overlapped one of the 65 known tRNAs,
equal to about 50% sensitivity for detection of tRNAs. On
the other hand, only 21 candidates overlapped one of the
106 known rRNA genes, indicating a lower sensitivity for
rRNA detection. This is while we detected none of the 353
known small nucleolar RNAs (snoRNAs). This may indi-
cate the lack of conservation of snoRNA structure between
T. brucei and L. braziliensis.

A complete list of all found ncRNA candidates along with
their associated information can be found in Additional
File 1. Many of these candidates can be grouped into sev-
eral homology clusters, as shown in Figure 1. When sev-
eral homologous sequences are independently predicted
to be ncRNAs, the predictions can be considered highly
reliable. Sequences within clusters 1, 2, 6, 7, 9, 11, 12 and
14 either overlap with or are homologous to known
tRNAs. Similarly, sequences within clusters 3, 4, 8 and 13
seem to represent rRNAs. However, clusters 5, 10 and 15
do not correspond to any known ncRNAs and, thus, may
represent novel ncRNA classes with unknown functions.
Cluster 10 is of particular significance due to its large size,
indicating that the elements of this class may be present at
a high frequency in the genome.

Investigating the presence of conserved miRNA genes
Based on a computational analysis of T. brucei genome, it
has been recently proposed that trypanosomatids may use
miRNAs in order to regulate the levels of particular
mRNAs [8]. However, this report is not consistent with
our current knowledge of miRNA origin [13,14]: regula-
tion via miRNA seems to have emerged in a completely
different branch of life, although its convergent evolution
in several branches is not impossible. Hence, we decided
to investigate the presence of putative miRNA precursors
among our predicted ncRNAs through a relatively simple,
yet specific approach that considers a few structural and
thermodynamic criteria for identification of pre-miRNA
sequences (see Methods section). Using 250 pre-miRNAs
that, as control sequences, were randomly selected from
24 different organisms (Additional File 2), it can be esti-
mated that the sensitivity of pre-miRNA prediction using
our criteria is about 32.4% ± 2.1%. Also, using a set of
30770 randomly selected sequences from T. brucei
genome, the specificity of this method can be estimated at
about 99.1% ± 0.3%.

After removing low-complexity regions (LCRs, see the
Methods section), only five of the predicted ncRNA
sequences met our criteria for structure and free folding
energy (Additional File 3). However, these rare sequences
are mostly consisted of dinucleotide repeats (particularly

AU repeats), and can be accounted for false positives of
our method. Based on our analysis, it is highly unlikely to
expect any conserved miRNA genes in T. brucei. It should
be mentioned that a large number of the previously pre-
dicted T. brucei miRNAs [8] were potentially targeting var-
iant surface glycoproteins (VSGs), which are absent in L.
braziliensis. However, other predicted miRNAs were target-
ing conserved complexes such as 20S proteasome, and
thus would be expected to be found in this study if they
were conserved. Although this does not exclusively reject
the presence of miRNAs in T. brucei genome, suggests that
a reexamination of this genome for the presence of such
elements is required.

Identification of highly significant candidate ncRNAs
In order to select a highly significant subset from our set
of candidate conserved ncRNAs, we filtered out the candi-
dates whose QRNA scores were not significantly higher
than expected from a random distribution. The random
distribution for each candidate ncRNA was obtained by
computing the QRNA scores of 1000 randomly scrambled
T. brucei-L. braziliensis alignments, as described in the
Methods section. A candidate ncRNA was rejected if it was
outscored by more than three randomized versions (i.e., p
≤ 0.003; this p-value threshold was selected so as the
expected number of false positives would be less than
one). This filtering procedure resulted in 117 highly sig-
nificant novel putative ncRNAs (Additional File 4 and the
first 117 candidates in Additional File 1), of which 53 nei-
ther overlapped nor were homologous to any annotated
features of T. brucei genome and, hence, may represent
completely novel ncRNAs (Table 1). All 117 candidates
that did not overlap with a coding sequence had the high-
est score for the RNA model and not the COD and OTH
models, although they were initially selected only based
on their RNA scores and irrespective of their COD and
OTH scores.

The calculated p-value provides another measure, though
more conservative, for estimating the precision of our
method. For example, a p-value ≤ 0.001 is equal to about
0.887 kbp of false positives (out of 887 kbp of the non-
coding conserved genomic regions), assuming that most
of the non-coding genome is consisted of non-RNA ran-
dom sequences. This is while more than 5.7 kbp of our
candidates (the top 79 candidates in Additional File 1)
were significant at this level, indicating a precision of
about 85% at this level of significance.

These novel ncRNAs did not show any statistically signifi-
cant enrichment in particular genomic positions such as
regions with clustered ncRNAs, strand switch regions
(regions where the coding strand changes) or regions
adjacent to coding sequences (significance was defined as
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p-value < 0.05 in a genomic position permutation test),
indicating a relatively uniform distribution on the
genome. Nonetheless, a crude guess can be made for bio-
logical function of some candidates based on their posi-
tions. For example, eight unclassified candidate elements
occur in the vicinity of a coding sequence. These elements
may represent regulatory structures at 5' or 3' UTRs of cod-
ing sequences, involved in post-transcriptional regulation
of gene expression. Also, one unclassified candidate fRNA

was found to occur in a strand switch region. As transcrip-
tion of polycistronic mRNAs start from strand switch
regions, this fRNA may represent an element in the 5' end
of the resultant transcript, and may be involved in its
localization, posttranscriptional processing or regulation.

Expectedly, none of the previously characterized cis-regu-
latory RNA elements of T. brucei were found among our
set of candidate structural RNA elements. This is not sur-

Homology table for the predicted ncRNAsFigure 1
Homology table for the predicted ncRNAs. Many candidate ncRNAs can be grouped into several homology clusters, 
here shown by color labels (clusters 1–15). In this figure, only ncRNAs are shown for which there is at least one other pre-
dicted ncRNA with homology E-value < 0.0025 and alignment coverage > 50%. The color of each square reflects the BLAST E-
value with the sequence in the corresponding row as the query.
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prising since the known regulatory RNA elements of T.
brucei are not conserved in Leishmania species [3,4]. Fur-
thermore, many of these elements are known via their
sequence, not their structure. We specifically discuss the
computational identification of cis-regulatory RNA ele-
ments in T. brucei in the next section.

Finding informative function-specific regulatory elements
We used a homology-independent approach to investi-
gate the presence of function-specific motifs in 5' and 3'
UTRs of T. brucei genes, using a recently developed algo-
rithm, named FIRE [15]. It has been shown that FIRE is
able to identify many known and novel regulatory ele-
ments, with a near-zero false positive discovery rate, in
upstream and downstream of genes that are clustered
according to their expression patterns. Here, we used FIRE
to find 'function-specific' regulatory elements in 5' and 3'
UTRs of T. brucei genes: genes with similar functions are
usually co-regulated [16], indicating that they should
have similar cis-regulatory elements. Thus, clustering
genes according to their functions can be used as a surro-
gate of clustering them according to their expression pat-
terns. This approach is particularly useful for organisms in
which gene regulation occurs mostly at post-transcrip-
tional levels, such as trypanosomatids (transcript profil-
ing studies cannot identify the dynamics of protein
expression in such organisms; see [17]). We were able to
identify 15 function-specific motifs in 5' UTRs of T. brucei
genes and 21 function-specific motifs in their 3' UTRs
(Figures 2 and 3 and Additional File 5). Based on the
results of running FIRE on 10 permuted sets of gene-func-
tion assignments, we can estimate an expected precision
of 75.3% for discovering function-specific 5' UTR motifs
and 84.8% for 3' UTR motifs.

Most of the motifs that are found by FIRE have orientation
bias, i.e., mostly occur at a particular orientation with
respect to the coding sequence. This property is expected
from RNA motifs. Furthermore, two of the motifs that
were predicted in 3' UTRs have position bias, which
means that they prefer to be at a particular distance from
the stop codon of the upstream coding sequence. This
property has also been observed for many regulatory
motifs in different organisms [15,16], and further
increases the possibility that the predicted motif has a bio-
logical role.

Our predicted function-specific motifs overlap with a
number of experimentally found regulatory sequences in
T. brucei, mostly identified by deleting different parts of
UTRs and evaluating the effects of these deletions on reg-
ulation of a reporter gene: It has been shown that the 3'
UTR of glycosomal phosphoglycerate kinase PGKC can
cause bloodstream form-specific gene expression [18,19].
We found that this regulatory sequence contained six of
our predicted 3' UTR motifs (p < 1 × 10-5), most notably
the glycolysis-specific motif VGGGCCRCV (degenerate
positions are shown using IUPAC nomenclature of mixed
bases [20]). Interestingly, the 5' UTR of the same gene,
which has been shown to affect splicing in procyclic stage
[21,22], also contains two copies of the 5' UTR motif
UHUDUCNH. As another example, the 3' UTR of fructose
bisphosphate aldolase contains an instance of the fructose
metabolism-specific motif MUGGVACAK. This untrans-
lated region has also been reported to be able to cause reg-
ulated expression of genes in T. brucei [18].

It should be noted that our approach is only able to iden-
tify function-specific short RNA motifs, not motifs that are

Table 1: Classification of predicted ncRNAs in T. brucei genome

Classification Within 100 bp of a non-
overlapping coding sequence**

Within/flanking ncRNA cluster 
(no. of ncRNAs >2)***

Within a strand switch 
region***

Elsewhere Tota
l

Overlap CDS 0 0 0 36 36
Overlap pseudogene 0 0 0 1 1
Overlap unlikely proteins 0 0 0 0 0
Homologous to rRNA*,** 0 4 2 1 5
Homologous to tRNA* 1 0 0 0 1
Overlap known ncRNA** 0 25 7 1 26
Overlap Ingi/RIME repeat 0 0 0 0 0
Unclassified 8 1 1 43 53
Total 9 26 8 81 117

Candidate ncRNAs are classified based on either homology with known ncRNAs or overlap with known genomic features. Candidate ncRNAs 
within each class are further divided into subgroups based on their location relative to known genomic features.
* Each candidate may contain several closely located single ncRNAs, some of which may have already been annotated on the current release of the 
T. brucei genome. However, at least one ncRNA within each sequence is unannotated, for which a known homolog is found. These unannotated 
ncRNAs represent novel instances of their classes.
** These categories may overlap.
*** These categories may overlap.
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Function-specific motifs in 5' UTRs of T. brucei genesFigure 2
Function-specific motifs in 5' UTRs of T. brucei genes. The functions in which each motif is significantly overrepresented 
or underrepresented are indicated in the second column using black and blue text colors, respectively. Column headings: (a) 
Mutual information value; (b) Z-score associated with the MI value; (c) Robustness, obtained from ten jack-knife trials of ran-
domly removing one-third of the genes and reassessing the statistical significance of the resulting MI values; (d) Position bias 
indicator – "Y" if a position bias is observed; (e) Orientation bias, indicating the orientation of the motif with respect to its 
associated coding sequence.
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Pyrimidine metabolism 0.026 26.403 5/10 - -

Pyrimidine metabolism 0.0293 31.957 4/10 -

Oxidative phosphorylation 0.0297 34.309 7/10 - -

Ubiquitin mediated proteolysis 0.0277 29.528 6/10 -

Inositol phosphate metabolism 0.0258 15.789 4/10 -

Benzoate degradation via CoA ligation 0.0325 20.148 8/10 -

Phosphatidylinositol signaling system 0.0254 15.536 3/10 -

Inositol phosphate metabolism 0.0374 23.457 9/10 -

Benzoate degradation via CoA ligation 0.0277 16.623 8/10 - -

Phosphatidylinositol signaling system 0.0409 25.678 10/10 -

Ribosome 0.0254 15.979 6/10 -

Proteasome 0.0415 26.471 9/10 -

Ribosome 0.0655 43.401 10/10 - -

Aminoacyl-tRNA biosynthesis 0.0307 34.474 5/10 -

Glycine, serine and threonine metabolism 0.0363 29.553 7/10 -

Fructose and mannose metabolism 0.0334 33.335 7/10 -

Alanine and aspartate metabolism 0.0392 42.428 7/10 -

Carbon fixation 0.0316 29.288 8/10 -

Propanoate metabolism 0.0477 49.555 9/10 - -

Limonene and pinene degradation 0.0207 19.954 3/10 - -

Glycolysis / Gluconeogenesis 0.0136 7.577 0/10 - -

Pyruvate metabolism 0.0389 22.893 6/10 -
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Function-specific motifs in 3' UTRs of T. brucei genesFigure 3
Function-specific motifs in 3' UTRs of T. brucei genes. The functions in which each motif is significantly overrepresented 
or underrepresented are indicated in the second column using black and blue text colors, respectively. Column headings are 
the same as in Figure 2.
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Glycerophospholipid metabolism 0.0285 15.782 4/10 -

Purine metabolism 0.0327 18.225 8/10 -

Purine metabolism 0.0538 33.373 9/10 -

Glycerolipid metabolism 0.0317 24.18 5/10 -

SNARE interactions in vesicular transport 0.0285 15.918 7/10 -

Ubiquitin mediated proteolysis 0.0212 22.356 4/10 -

Inositol phosphate metabolism 0.0199 11.472 1/10 -

Benzoate degradation via CoA ligation 0.0274 16.34 5/10 -

Phosphatidylinositol signaling system 0.0246 14.37 4/10 -

Inositol phosphate metabolism 0.0396 25.365 9/10 Y

Benzoate degradation via CoA ligation 0.0347 21.319 7/10 Y

Phosphatidylinositol signaling system 0.0415 26.458 9/10 Y

Inositol phosphate metabolism 0.0202 11.061 1/10 -

Phosphatidylinositol signaling system 0.0239 13.24 3/10 -

Inositol phosphate metabolism 0.0315 29.029 5/10 -

Benzoate degradation via CoA ligation 0.0211 20.469 2/10 -

Ribosome 0.0535 33.667 10/10 -

Aminoacyl-tRNA biosynthesis 0.0301 16.979 3/10 -

Methionine metabolism 0.0255 16.214 6/10 -

Aminosugars metabolism 0.0392 22.565 5/10 -

Glycine, serine and threonine metabolism 0.0288 15.751 5/10 -

Ribosome 0.0255 15.04 4/10 -

Fructose and mannose metabolism 0.0269 29.239 2/10 -

Fructose and mannose metabolism 0.0336 31.962 6/10 -

Valine, leucine and isoleucine degradation 0.0303 32.565 5/10 -

Butanoate metabolism 0.0205 21.474 3/10 Y

Propanoate metabolism 0.0185 17.977 4/10 -

Limonene and pinene degradation 0.0257 25.184 4/10 -

Glycolysis / Gluconeogenesis 0.0311 22.104 6/10 -
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involved in regulation of expression in a rather genome-
wide scope, or in a gene-specific manner. Thus, it is not
surprising to see that some of the previously identified
regulatory elements, such as the widely used U-rich ele-
ments [4] are not among our motifs. Structural RNA ele-
ments also cannot be identified using FIRE; nonetheless,
some of our found short motifs may represent the most
functionally important regions of RNA structural ele-
ments.

Function prediction using regulatory RNA motifs
We devised a naïve Bayesian network that based on the
pattern of presence and absence of motifs in 5' UTRs and
3' UTRs can predict whether a gene belongs to a particular
pathway (see Methods section). For many pathways, this
naïve Bayesian network can be used to classify T. brucei
genes with acceptable reliability (see Figure 4 for an exam-
ple). As it is shown in Figure 4A, only a few motifs are
needed to reach the maximum possible prediction power.
However, adding more motifs to this classifier does not
reduce the prediction power, which simplifies the design
of effective naïve Bayesian networks. We expect that by
combining this method with other function prediction
methods, we will be able to expand the functional anno-
tations of T. brucei genes extensively. A complete assess-

ment of function prediction in T. brucei using our method
can be found in Additional File 6.

Conclusion
The ncRNAs predicted in this study can provide candi-
dates for experiments that are focused on understanding
the functional RNA repertoire of trypanosomatids. The
most interesting candidates are perhaps those that do not
have characterized homologs, as they most probably rep-
resent novel ncRNA classes in T. brucei. Unraveling the
function of these ncRNAs will help us to understand the
biology of these parasites more clearly. However, it
should be noted that our set of predicted ncRNAs is far
from complete, as we only considered two genomes in
this study. Considering a larger number of trypanosoma-
tid genomes may reveal other ncRNAs and provide a more
thorough view of the non-coding functional transcrip-
tome of these organisms.

Prediction of gene functions based on our set of function-
specific short motifs can also provide a very useful alterna-
tive to homology-based annotation methods, especially
that a huge number of trypanosomatid genes are not con-
served in other organisms. We anticipate that combining
this method with other established systems-based func-

Function prediction using regulatory motifs in T. bruceiFigure 4
Function prediction using regulatory motifs in T. brucei. This figure shows inositol phosphate metabolism 
(KEGG:tbr00562) as an example. (A) The performance of our naïve Bayesian network using different numbers of motifs for 
prediction of inositol phosphate metabolism genes. We used a two-fold cross-validation for assessing the prediction power, 
where half of the dataset was used for training and the other half for validation. Cross-validation was repeated 100 times for 
each number of motifs, and each time the AUC (area under the curve) of the ROC curve was measured as the prediction 
power. Standard deviation of AUC is shown by the error bars. (B) The ROC curve for prediction of inositol phosphate metab-
olism genes using all 36 predicted motifs. Standard deviation of sensitivity is shown by the grey shaded region. The diagonal line 
shows the performance that would be expected if our naïve Bayesian network was not able to predict inositol phosphate 
metabolism genes. This classifier has a very high specificity (~99%) at sensitivities of up to 20% for this pathway.
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tion prediction approaches provides a robust method that
can be applied to many genomes.

Methods
Identification of conserved genomic regions
Conserved genomic regions were identified using a bino-
mial-based model [11]. Briefly, after masking LCRs using
mreps, the two genomes of T. brucei and L. braziliensis
were aligned using BlastZ [23]; for each window of 25
nucleotides, N, the number of conserved nucleotides, was
determined; the probability of observing N conserved
nucleotides out of 25 nucleotides was calculated under
the null hypothesis of neutral substitution and based on
binomial distribution of mutations; and regions showing
evidence of negative selection were chosen. Finally, con-
served regions that were less than 25 nucleotides apart
were connected to each other as a single region (see [11]
for detailed description of the method).

Identification of conserved ncRNAs
We used QRNA [12] to identify parts of the conserved
genomic regions (see above) that showed patterns of con-
served structural RNA elements. Long sequences were bro-
ken into smaller overlapping fragments of 80 nucleotides,
each of which having 40 nucleotides overlap with its adja-
cent fragments. Overlapping sequences with RNA scores
higher than zero were merged again, QRNA scores were
recalculated, and those with final positive RNA scores
were selected as putative fRNAs. False positive rate was
calculated as the fraction of conserved coding sequences
that were classified as fRNA. LCRs were determined using
a combination of 'mreps' and 'mdust' from TIGR, marked
in Additional File 1 by lowercase letters. Significance of
each candidate was assessed by comparing its QRNA score
to a distribution obtained by randomizing T. brucei-L. bra-
zilensis alignments: the alignment of each ncRNA candi-
date was considered separately, and columns with similar
conservation patterns were shuffled randomly (i.e., a col-
umn containing a gap was swapped only with another
gap-containing column, mismatch with mismatch, and
match with match [24]). The fraction of random align-
ments outscoring the original alignment was considered
as the p-value (Additional File 1, column H).

Examining the candidate ncRNAs for the presence of 
potential pre-miRNAs
We used a set of simple, yet powerful criteria for detection
of potential miRNA precursors among our candidate
fRNAs. A nucleotide sequence of length 80 nt was consid-
ered a potential pre-miRNA if it could be folded into a
structure with (i) a single stem-loop (ii) whose free fold-
ing energy was <= -25 kcal/mol [25], (iii) which con-

tained an at least 9 bp-long continuous paired region with
no internal loops or bulges, (iv) and contained no
unpaired internal segment (internal loop or bulge) longer
than 3 nucleotides. These criteria, while selected empiri-
cally to optimize for specificity and sensitivity, are in
agreement with previous studies on pre-miRNA structure
[26]. We used RNAfold from Vienna RNA package for
folding the sequences.

The sensitivity and specificity of these criteria were tested
on a set of 250 pre-miRNAs from 24 different organisms
(Additional File 2) and a set of 30770 randomly selected
sequences from T. brucei genome (random sequences
matching the selected criteria were considered false posi-
tives, based on which the specificity was estimated). To
estimate the standard deviations of sensitivity and specif-
icity, we performed 10 jack-knife trials in each of which
one third of all sequences were randomly removed and
the performance was reevaluated on the remaining two
thirds. Then, all T. brucei genomic sequences of length 80
nt which overlapped with at least one nucleotide of one of
the predicted ncRNAs, as well as the reverse complements
of such genomic sequences, were examined using the
above criteria for presence of pre-miRNAs.

Finding informative regulatory elements in 5' and 3' UTRs
A recently developed algorithm, named FIRE, is able to
identify DNA and RNA motifs that are unevenly distrib-
uted among different clusters of sequences, i.e., are over-
represented in some clusters while underrepresented in
some others [15]. Here, we used FIRE to identify motifs
that are unevenly distributed among different functions.
Functional annotations of T. brucei genes were retrieved
from KEGG pathway database [27]. For each pathway, we
grouped the genes into two clusters based on whether they
were involved in that pathway or not. Then we used FIRE
to find 5' UTR or 3' UTR motifs that showed significant
overrepresentation or underrepresentation in either of the
two clusters. The sequences of mature 5' and 3' UTRs were
isolated from T. brucei genome based on splicing site pre-
dictions reported previously [7]. The resulting motifs from
different functions were collected, and duplicate motifs
were removed.

The same procedure was repeated for 10 sets of randomly
shuffled gene-function assignments, and the average
number of motifs reported by FIRE was used as an esti-
mate of the expected number of false positives. The
expected precision was consequently calculated as E(Preci-
sion) = E(TP)/P = [P-E(FP)]/P. Here, E(X) denotes the
expected value of X, TP stands for true positive, P stands
for positives (motifs detected by FIRE from actual data-
Page 9 of 11
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set), and FP indicates false positives (motifs detected by
FIRE from shuffled datasets).

It should be noted that KEGG annotations may not corre-
spond to the precise function of the genes, since KEGG
uses an automated pipeline for assigning the genes to tem-
plate pathways based on homology with known proteins.
However, we expect that the relationships of the genes are
conserved through this procedure, e.g., if two genes are
assigned to the same pathway in KEGG, they most proba-
bly have very closely related functions, even if the exact
assigned functions in KEGG are not correct.

Function prediction using regulatory motifs
We used a naïve Bayesian network to predict gene-func-
tion assignments based on the predicted regulatory motifs
in 5' and 3' UTRs. Naïve Bayesian networks assume that
the properties based on which they classify the objects are
independent. Thus, the likelihood that gene g belongs to
cluster α given a set of known motifs is calculated as:

Here, M is the set of motifs that are used for classification
of g, and FM = {f1, f2, ..., f|M|} where fi is {1} if the ith motif
is present in gene g, and {0} otherwise. L(g ∈ α | FM) is the
likelihood that g belongs to α given FM, and L(g ∈ α | fi)
represents the likelihood that g belongs to α given the sta-
tus of the ith motif in g, i.e., fi. For more information
about the calculation of conditional likelihoods and
implementation of naïve Bayesian networks, refer to [28].

M is chosen in a way to maximize the prediction power.
Briefly, motifs are selected iteratively, starting from the
one that can best distinguish between α and α'. Then, at
each iteration, all motifs are tested and the one whose
addition to M results in the maximum prediction power is
selected. Prediction power is assessed by the area under
the ROC curve (Receiver Operating Characteristic or ROC
curve plots sensitivity against false positive discovery
rate). This procedure is repeated until M contains a prede-
fined number of motifs. We removed paralogues prior to
training and testing our naïve Bayesian network in order
to avoid any biases towards duplicated UTRs.
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Additional file 1
List of all conserved candidate fRNAs in Trypanosoma brucei 
genome. Candidates with QRNA scores > 0.0 are included in this file. 
Explanation of the columns: (A) the nucleotide sequence of each candi-
date. Lower case letters indicate low complexity regions; (B-E) the chro-
mosome where each candidate is located, its position on this chromosome, 
and its length, respectively; (F-H) QRNA score for the RNA model, Z-
score, and the fraction of the shuffled variants scoring better than the can-
didate, respectively; (I) the annotated sequence closest to the left of the 
candidate (called L-neighbor), excluding unlikely proteins; (J) the exact 
description/name of the L-neighbor of the candidate; (K) the ID of the L-
neighbor in the context of a working GeneDB link; (L) the distance 
between the candidate and its L-neighbor (red if within 100 nucleotides 
of a coding sequence, pink/purple if within 100 nucleotides of an 
ncRNA); (M) the strand on which the L-neighbor is found; (N-R) the 
same as I-M but for the nearest annotated sequence to the right of the can-
didate (called R-neighbor); (S-U) same as I-K for the annotated 
sequence(s) overlapping the candidate (called O-element); (V) the part 
of the candidate that overlaps its O-element sequence (left, right, middle 
or all). (W) the percentage of the candidate that overlaps its O-element. 
(X) strand on which the O-element is found; (Y-AD) the same as S-X, for 
the candidate's best homologous known ncRNA, with addition of the col-
umn AB (see below); (AB) the number of T. brucei ncRNA copies at dif-
ferent locations that are homologous to the candidate; (AE) the E-value of 
the best homologue; (AF) the homology cluster to which the candidate 
belongs (see Figure 1 of the main article); (AG) additional notes: whether 
the candidate is near unlikely proteins, known ncRNAs, strand-switch 
regions, etc.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-10-355-S1.xls]

Additional file 2
List of microRNA sequences that were used for assessing the sensitivity 
of our microRNA prediction method. Accession numbers correspond to 
miRBase http://microrna.sanger.ac.uk/sequences/.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-10-355-S2.txt]

Additional file 3
miRNA-like predicted ncRNAs. Candidate ncRNAs whose predicted sec-
ondary structures match our criteria for miRNA prediction are shown in 
this figure. It can be seen that their sequences are mostly consisted of AU 
repeats, rendering them unlikely candidates for being miRNA.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-10-355-S3.pdf]

Additional file 4
The most significant ncRNA candidates in EMBL format. We suggest 
viewing the files in this ZIP compressed package by Artemis http://
www.sanger.ac.uk/Software/Artemis/. Open the EMBL file containing 
the sequence of each T. brucei chromosome (downloadable from http://
www.ebi.ac.uk/genomes/eukaryota.html) by Artemis and then load the 
corresponding fRNA prediction file using "Read Entry..." option. This will 
add the predictions on the chromosome view with interactive capabilities.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-10-355-S4.zip]
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Additional file 5
Function-specific regulatory motifs that were identified in 5' and 3' 
UTRs of T. brucei. Each row represents one motif, while each column 
stands for one function. Overrepresentation of a motif in a function is 
indicated by a yellow square, while underrepresentation is shown by blue. 
The probabilities of overrepresentation or underrepresentation were calcu-
lated based on hypergeometric distribution assumption and are shown 
here by the color gradient on log scale.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-10-355-S5.pdf]

Additional file 6
Function prediction using regulatory motifs. This ZIP compressed file 
should be unpacked before viewing its contents. The results for prediction 
of each pathway are presented in a separate folder, named after the acces-
sion number of that pathway in KEGG database. Each folder contains sev-
eral files named "validation.N.out", each of which represents the results 
of a hundred times two-fold cross-validation for that pathway, using N 
predicted motifs. Each cross-validation is shown in one row; plotting each 
row against the number of false positives will result in the ROC curve asso-
ciated with the corresponding cross-validation experiment. The trained 
network is stored in "total.out", in which motifs are ordered according to 
their prediction power. L(α|MOTIF): the likelihood of being in pathway 
α given that the indicated motif is present in the indicated location of an 
mRNA; L(α|MOTIF): the likelihood of being in pathway α given that the 
indicated motif is NOT present in the indicated location of an mRNA.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-10-355-S6.zip]
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