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Abstract
Background: Multiple Sequence Alignment (MSA) has always been an active area of research in
Bioinformatics. MSA is mainly focused on discovering biologically meaningful relationships among
different sequences or proteins in order to investigate the underlying main characteristics/
functions. This information is also used to generate phylogenetic trees.

Results: This paper presents a novel approach, namely RBT-GA, to solve the MSA problem using
a hybrid solution methodology combining the Rubber Band Technique (RBT) and the Genetic
Algorithm (GA) metaheuristic. RBT is inspired by the behavior of an elastic Rubber Band (RB) on
a plate with several poles, which is analogues to locations in the input sequences that could
potentially be biologically related. A GA attempts to mimic the evolutionary processes of life in
order to locate optimal solutions in an often very complex landscape. RBT-GA is a population
based optimization algorithm designed to find the optimal alignment for a set of input protein
sequences. In this novel technique, each alignment answer is modeled as a chromosome consisting
of several poles in the RBT framework. These poles resemble locations in the input sequences that
are most likely to be correlated and/or biologically related. A GA-based optimization process
improves these chromosomes gradually yielding a set of mostly optimal answers for the MSA
problem.

Conclusion: RBT-GA is tested with one of the well-known benchmarks suites (BALiBASE 2.0) in
this area. The obtained results show that the superiority of the proposed technique even in the
case of formidable sequences.

Background
Multiple Sequence Alignment
Biologists have always tried to understand the basic roles
of nucleotides and genes [1]. One popular approach in
trying to understand the function of a newly found gene

or protein is to compare it with already known genes/
sequences. A very common practice is to attempt to find
one or more sequences in existing literature or databases
that are reasonably close to the sequence in question.
However, due to the fact that the number of known
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sequences is rapidly increasing every year, new classes of
algorithms that are able to search massive data sets are
needed.

Sequence Alignment algorithms are techniques that are
used to find similarity among several DNA/Protein
sequences. These algorithms are classified into two main
categories: Pair-wise and MSA algorithms, each designed
for a special purpose. In Pair-wise algorithms, the main
goal is to find the similar or closely related parts (motifs)
of two sequences; whereas in MSA, the main goal is to find
the consensus parts of more than two sequences. There-
fore, Pair-wise algorithms are mainly used to find similar
sequences in a database; MSAs are mainly used to find the
relationship among several sequences.

Several algorithms and techniques have already been sug-
gested to solve this problem in each of the above two cat-
egories. Among these techniques, there exist several
classical methods, like Dynamic Programming (DP), that
can always find the optimal alignment for any two
sequences (Pair-wise). However, these techniques cannot
always be generalized to MSA cases (due to the excessive
computation that is incurred after the addition of each
extra sequence). Therefore, using classical methods in the
MSA case is almost impossible. In fact, because it has been
shown that MSA is NP-Complete [2], heuristics are mainly
used to solve this problem.

Regardless of the solution methodology, MSAs can be cat-
egorized into three main solution categories: exact, pro-
gressive and iterative [3]. In exact methods, which are
usually the generalized methods of the Needleman and
Wunsch algorithm [4], all sequences are aligned simulta-
neously to find the optimal answer. The main drawback of
this class of algorithms is their massive computational
need, usually impossible to find the answer in polynomial
time. In progressive algorithms, sequences are first aligned
two-by-two (using an appropriate pair-wise algorithm)
before finding the final alignment. Then, an alignment
guidance tree is generated based on these pair-wise align-
ment scores. Sequences are combined step by step to find
the optimal answer by starting from the closest two
sequences. In this case, current sequences are modified to
get the best fit for new combining sequences. Although
this class of algorithms normally manages to find reason-
able alignments (especially for generating phylogeny
trees), their main disadvantage is their sensitivity for get-
ting trapped into local minima. In iterative methods, all
sequences are aligned simultaneously. By using one or
more heuristic algorithms, an initial answer is computed
first. Then, this initial answer is improved iteratively by
using intelligent routines designed for this type of MSAs.
Although these algorithms are not as sensitive as progres-
sive algorithm to falling into local minima, however, they

have their own drawbacks. For example, the accuracy of
the final answer is greatly dependent on the quality of the
seed solution.

Related works
A number of alignment algorithms have been proposed to
solve the MSA problem, such as MULTALIGN [5], MUL-
TAL [6], PILEUP [7] and CLUSTALX [8], which provides a
graphical interface for CLUSTALW [9]. They all use a glo-
bal alignment algorithm in [4] to construct an alignment
for the entire length of the sequences. The main difference
among these methods is in the order they combine the
input sequences. MULTAL deploys a sequential branching
method to align the two closest sequences before building
up the final alignment by subsequently aligning the next
closest sequence to it. MULTALIGN and PILEUP construct
a guide tree using UPGMA [10]. This tree is then used to
align larger and larger groups of input sequences. CLUS-
TALX that uses the alternative neighbor-joining algorithm
[11] to construct a guide tree has one of the most sophis-
ticated scoring systems. It considers sequence weighting,
position dependant gap penalties, and the automatic
switching among scoring matrices based on the degree of
similarity among the input sequences. PIMA [12] uses a
local DP algorithm to align only the most conserved
motifs. Two versions of this method have been developed,
ML_PIMA and SB_PIMA, and they differ in the way they
order the combination of input sequences and maximum
linkage and sequential branching algorithms. DIALIGN
[13] employs local alignment based on segment-to-seg-
ment comparison to construct the final alignment. Then,
an iterative procedure is deployed to combine these seg-
ments toward generating the final alignment. PRRP [14]
iteratively divides the input sequences into two groups
and then subsequently realign them using a global group-
to-group alignment algorithm. SAGA [15] evolves a pop-
ulation of alignments in a quasi evolutionary manner to
gradually improve their fitness. MAFFT [16] identifies the
homologous regions by a Fast Fourier Transform (FFT)
approach. Using its simplified scoring matrix, MAFFT
manages to significantly reduce the CPU time and
increases the accuracy of alignments even for sequences
having large insertions and extensions as well as distantly
related sequences of similar length. ProbCons [17], which
computes posterior-probability matrices and expected
accuracies for each Pair-wise comparison, applies the
probabilistic consistency transformation, and then com-
putes an expected accuracy guide tree to progressively gen-
erate the final alignment. T-Coffee [18] pre-processes a
data set of all pair-wise alignments between the input
sequences to generate a guide tree for the progressive
alignment. T-Coffee not only does focus on the next
aligned sequences but also on the whole set of input
sequences. MUSCLE [19] as one of the very fast algo-
rithms in this field has three stages: draft progressive,
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improved progressive, and refinement. At the completion
of each stage, a multiple alignment is available and the
algorithm can be terminated. The first stage builds a pro-
gressive alignment, the second stage that might be iterated
attempts to improve the tree and builds a new progressive
alignment according to this tree, and, the third stage per-
forms iterative refinement using a variant of tree-depend-
ent restricted partitioning. MUMMALS [20] uses
probabilistic consistency and improves its alignment
quality by using Pair-wise alignment Hidden Markov
models (HMMs). Parameters for such models have been
estimated from a large library of structure-based align-
ments. There are also other HMMs methods that use sta-
tistical models of the primary structure consensus to align
input sequences [21,22]. HMMT [23] uses the simulated
annealing algorithm to maximize the probability that an
HMM represents the sequences to be aligned. RBT [24,25]
is another iterative algorithm that uses the n-dimensional
version of the DP table (n is the number of input
sequences) to find the best alignment among input
sequences. The analogy of a Rubber Band is a unique con-
tribution of this work.

Further, GA based algorithms were among the some of the
most effective approaches used to solve the MSA problem.
In [26], a combination of a GA and DP is used with two
different distance matrices. The main drawback of this
technique is its limitation in performing crossover and
mutation operations. In [27], a GA approach is proposed
with a description of the so-called Center Star Algorithm
(CSA). In addition to this algorithm's convergence prob-
lems, forcing the GA to work around the CSA and the ini-
tial population creates a major disadvantage for this
approach. It leads to the inability of the main search algo-
rithm to explore all parts of the solution space. In [28], a
very different GA approach is presented. In this work, five
mutation operators are designed to be randomly selected
in each cycle of the algorithm. Here, no particular optimi-
zation plan is used; therefore, this greedy algorithm just
moves toward any potential answer. One of the most
appropriate GA approaches to solve the MSA problem is
presented in [29]. Although, the authors carefully define
their chromosome, crossover and mutation operators, the
definition of their scoring function appears to be their
main drawback. In [30] a very interesting divide-and-con-
quer GA based approaches is presented. Here, the
sequences are divided into smaller sequences and then
they are aligned by a GA. If these partial alignments gen-
erate better results, they would be replaced by the original
ones. Although this approach managed to significantly
reduce the simulation time, there is no guarantee that the
aggregation of these partially optimal strings ends up with
the global minimum and/or a reasonable alignment.

In [31], the authors present a very simple implementation
of the GA. In this work, the GA's convergence speed is sig-
nificantly reduced by the simplicity of the algorithm. The
fact that this GA approach discards many offspring is the
main reason for its slow convergence. In [32], the conver-
gence speed of a GA is increased by combining it with a
Simulated Annealing algorithm. The GA in [3] use quan-
tum mechanics concepts by employing a binary matrix to
represent only four chromosomes that are used to solve
the problem. In each GA cycle, the best three solutions are
directly copied to the next generation and only one of
them (the worst one) is selected for the GA operations.
The proposed GA is significantly biased toward good
answers, which strongly prevents it from exploring other
parts of the solution space. Authors of the research in [33]
present a GA based approach to find the optimal cut-off-
points to divide the large sequences to several smaller
ones. Each of these smaller sequences is solved by an Ant-
Colony approach. The limited use of the GA just to find
the cut-off-points is quite time consuming in this
approach.

In this paper, a novel approach, RBT-GA, is presented to
solve the MSA problem. The rest of the paper is structured
as follows. The next section describes the problem, funda-
mentals of GA and RBT, and shows how RBT and GA are
combined to solve the MSA problem. This is followed by
simulation results, discussion and analysis, and conclu-
sion.

Methods
Problem statement

Let {S1 S2 ... SN} be N sequences over the alphabet set ψ,

which contains 4 and 20 characters of DNA and Proteins

sequences, respectively. Also, let ψ' = ψ ∪ {–} be the

superset of ψ with and extra character for a 'gap'. The MSA

problem can be defined as finding  with the

following properties:

1.  = Si for all i = 1, 2,�, N providing that all gaps are

removed from .
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of .

3. The alignment score,
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where  denotes a quotation of similarity

between  and , and, g( ) is related to gaps of .

{ }′ ′ ′S S SN1 2 

′Si

′Si

| | | | | |′ = ′ = = ′S S SN1 2 ′Si

′Si

Score S sim S S g Si j
ji

i
i

( ) ( , ) ( )′ = ′ ′ − ′∑∑ ∑
sim S Si j( , )′ ′

′Si ′S j ′Si ′Si
Page 3 of 11
(page number not for citation purposes)



BMC Genomics 2009, 10(Suppl 1):S10 http://www.biomedcentral.com/1471-2164/10/S1/S10
Based on the above, the MSA can be formulated as an
optimization problem. However, it is important to note
that the complexity of the problem increases exponen-
tially as we add more sequences to the input sequences set
– finding the optimal answer is not always possible. Thus,
this is why classical methods like DP and Needleman's
algorithm can only deal with a small number of short
sequences.

Genetic Algorithms
A Genetic algorithm optimizer
Metaheuristics are powerful classes of optimization tech-
niques. A popular class among these techniques is GAs
that are very robust search methods [34,35]. The overall
procedure of a typical GA is given in Figure 1 though in
some cases modifications might be needed when targeting
certain problems, such as the case in this work.

Initial population
A GA is always initiated with a set of possible solutions of
the problem, known as initial population. The initial popu-
lation consists of several chromosomes. Each chromo-
some is formed from a series of binary or decimal
numbers representing genes. The initial population is nor-
mally constructed by generating several random chromo-
somes that are supposed to represent the solution space
rather homogenously. This attribute is much more impor-
tant that the quality of the individual chromosomes in the
initial population. During the optimization process, the
chromosomes are evaluated by the genetic optimizer and
the best of them are selected to generate the next popula-
tion. In fact, obtaining the optimal answer relies on
appropriately generating the future populations.

The fitness function
In all optimization problems, the aim is to minimize or
maximize a given cost function. Similarly, in a GA, a func-
tion known as fitness function is used to evaluate the good-
ness of each chromosome. This function assigns a positive
number to each chromosome (each possible solution) to

represent the level of its goodness or badness. In maximi-
zation problems, the fitness function is usually propor-
tional to the main cost function, while, in minimization
problems, it is usually inversely proportional to it.

Selecting the best chromosomes
As mentioned earlier, the only way to evaluate chromo-
somes of a population is by their fitness values. In GA, the
best chromosomes from the current population are
selected to produce the next population. The chromo-
somes are selected so that those with higher fitness values
have more chances of being selected. To achieve this, a
roulette wheel from the current chromosomes is con-
structed such that the surface (number of slots) assigned
to each chromosome is proportional to its fitness value.
Then, the wheel is spun and the chromosome that the
wheel picks is selected.

Recombining parent chromosomes
Several operators are used to generate the next population
from the current one. In each optimization cycle, one or
two parents are used to generate the offspring chromo-
somes. These combinations consist of three main opera-
tions: crossover, mutation, and elitism.

Crossover
This operator is used to exchange the genetic materials
(genes) between two parents and create one or two off-
spring. Here, two chromosomes are broken at random
positions, then, the genes between these breakpoints are
exchanged with a given probability.

Mutation
In this operation, several genes of a chromosome are ran-
domly selected and their values are mutated (changed).

Elitism
It is possible sometimes to lose the best solution that the
algorithm has already found after performing crossover
and mutation for several iterations. To prevent this, some
of the best chromosomes from the current population are
directly copied into the next generation without any mod-
ification, i.e. crossover and mutation. This ensures the
existence of good chromosomes in each generation even
if low quality chromosomes emerge for one reason or
another.

Terminating the algorithm
A criterion (or a combination of criteria) must be selected
to terminate the optimization process. The common crite-
ria used in the case of GAs are: total time, number of iter-
ations, best chromosome fitness value, minimum
improvement of the best chromosome, and minimum rel-
ative improvement of the best chromosome.

Overall GA procedureFigure 1
Overall GA procedure.
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Overall procedure of a GA
Rubber Band Technique
The Rubber Band Technique is an iterative heuristic to
solve the MSA[24,25]. In this approach, which is inspired
by the general behavior of a rubber band on a plate with
poles, an initial answer is generated before launching the
main optimization procedure. Using several operators,
this initial answer is modified iteratively to obtain better
alignment scores. The following definitions are essential
for the clarification of this optimization procedure.

Grid Answer Space
The Grid Answer Space (GAS), which is the extended ver-
sion of the grid table used in DP for pair-wise alignment,
is a multi-dimensional table with a sequence placed in
one of its axes. The use of this table provides a unique one-
to-one relationship between any possible answer of a MSA
and the associated arrowed line as depicted in Figure 2.

Rubber Band
Any answer for a MSA can be presented by one and only
one arrowed line. This unique arrowed line for each
answer is called a Rubber Band (RB). There are two restric-
tions on each RB to make a valid alignment, they are as
follows:

1. Each RB must start from the upper left corner (0,
0,..., 0) and finishes at the lower right corner (|S1| + 1,
|S2| + 1,..., |SN| + 1) of the GAS.

2. There cannot be any backward section in each RB.
That is, each section can only be diagonal or parallel
to the one of its GAS' axes.

Primary Pole
A Primary Pole (PP) refers to a fixed point in GAS that the
RB is ought to pass by. In fact, PPs are the sections of the
GAS that force the optimization procedure to align a pre-
defined number of characters (of each sequence) with
each other.

Secondary Pole
Secondary Poles refer to grid points in GAS that a RB
passes through one-by-one to generate the final answer.
Now, PPs can be far apart from one other, however, sec-
ondary poles need to be adjacent. This type of poles is
only used to connect PPs to each other. For brevity pur-
poses, secondary poles are referred to as 'poles' for the rest
of this paper.

Primary Pole Score
As described earlier, each PP points out predefined loca-
tions of input sequences that need to be aligned with each
other. If the related to these locations are augmented in a
single string, the Primary Pole Score for that particulate PP

is defined as the alignment score of that augmented string
(with respect to the scoring matrix used for the whole
alignment).

Sticky Poles
Sticky Poles (SPs) are imaginary poles in the system
related to locations in a GAS with high Primary Pole
Scores. That is, the optimization procedure can have a
pole with a high Primary Pole Score if it places a PP on
that special place. Therefore, each SP is located in a GAS
to represent a column from the input sequences to align
identical or closely related nucleotides from different
input sequences with one another.

Alignment Score
In each MSA instant, an Alignment Score is defined to
evaluate the quality of each answer. The Sum-of-Pairs

GAS and RBFigure 2
GAS and RB.
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Score (SPS) with Penalized Gap Opening is the criterion
used in this approach. In SPS, each column in an align-
ment is scored by summing the scores of all pairs of char-
acters in that column. The score of the final alignment is
then summed over all column scores. In the Penalized
Gap Opening scheme, there are two factors to calculate
the score/cost of a gap: opening and extension. Gap open-
ing is applied to each gap once and the gap extension cor-
responds to the length of each gap. The cost of a gap
opening is usually considered to be 5–10 times more than
that of a gap extension [24,25]. The use of two factors in
calculating a gap is related to a well-known biological fact
that having few longer gaps is more plausible than having
several short gaps in an alignment.

Combination of GA and RBT to solve MSA
The overall procedure of RBT-GA is depicted in Figure 3.
Details are as follows.

Chromosomes in RBT-GA
The way the chromosomes are defined represent the most
important part of any application of a GA. In RBT-GA,
each chromosome consists of a predefined number genes
assigned before launching the main algorithm. In RBT-
GA, each gene is not a simple binary or decimal number;
rather a complex vector representing a PP in the GAS.
Therefore, each chromosome is a set of PPs plus two fixed
PPs (the first and the last) in the RBT framework. The first
and last genes are always fixed to the upper left corner and
lower right corner of the GAS, respectively. These two
fixed genes guarantee generating a valid chromosome,
and therefore a valid alignment.

Generate the Initial Population
SPs of the RBT are used to generate the initial population
in RBT-GA. The following procedure is designed to gener-
ate N chromosomes, each with the length of M.

Step 1: Locate All Sticky Poles and save in ArrSticky-
Poles

Step 2: For N times, repeat steps 3–8

Step 3: Prepare a DummyChrm with the length of M

Step 4: For M times repeat Steps 5–6

Step 5: Select a random SP from ArrStickyPoles.

Step 6: Add SP to DummyChrm

Step 7: Fix DummyChrm

Step 8: Add DummyChrm to Initial Population

In Step 7, every DummyChrm that is made is modified to
generate a valid RB. Here, genes of each DummyChrm are
reordered so that their PP are guiding the RB from upper
left corner of a GAS to its lower right corner without vio-
lating any of the two RB's restrictions. If there were several
PPs that do not satisfy the mentioned criteria, one or two
of them are jammed to each other to fix this problem. This
procedure, namely Jam Primary Poles (JPP) as shown in
Figure 3, is borrowed from the RBT framework.

Genetic Algorithm Operators
Three GA operators are also used for RBT-GA. For Elitism,
a predefined percentage of each population is directly
copied to the next one. In Crossover, two chromosomes
are split from a random point to swap genes between. In
Mutation, each coordinate of each gene (PP) of a chromo-
some is added by a small random number. Note that, after
performing Crossover followed by Mutation operators,
PPs in each of the generated chromosomes may not satisfy
the two major restrictions of a valid RB. Therefore, the Jam
Primary Pole procedure is launched again to fix every gen-
erated offspring, leading to valid alignments.

RBT-GA Termination
RBT-GA's optimization process is terminated when no
improvement is met for a predefined number of itera-
tions. The best alignment score for the current population
is used as the criterion for this purpose.

RBT-GA final tuning
After termination the RBT-GA's optimization process,
another procedure is launched for the final tuning of the
obtained chromosomes. This process is the Final Tuning
procedure which is borrowed from the RBT framework
[24,25].

Results
Normally, when solving MSA problems, the optimal
answer is unknown and there is no concrete criterion to
evaluate the quality of a given algorithm, unlike the case
for Pair-wise alignment where an optimal solution can
always be found. Therefore, standard benchmarks, like
BALiBASE, are provided to measure the efficiency of MSA
algorithms.

RBT-GA overall procedureFigure 3
RBT-GA overall procedure.
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The first version of BAliBASE [36] was dedicated to the
evaluation of multiple alignment programs and was
divided into five hierarchical reference sets of: (1) equidis-
tant sequences with various levels of conservation, (2)
families aligned with a highly divergent 'orphan'
sequence, (3) subgroups with less than 25% residue iden-
tity between groups, (4) sequences with N/C-terminal
extensions, and (5) internal insertions. For release 2.0 of
BAliBASE, these alignments have been manually verified
and corrected by superposition of all known three-dimen-
sional structures, using the lsqman program [37]. In this
benchmark, an open source program is also provided to
score the quality of each answer by comparing it with the
one found manually. The maximum score is 1.0 and is
assigned to the alignments that are identical to the bench-
mark's answer; minimum is 0.0 and is assigned to unre-
lated/unrealistic answers; and, a number between 0.0 and
1.0 for the others. The score would be higher when the
generated answer is closer the manually calculated one.

To demonstrate the performance of the approach pro-
posed in this paper, RBT-GA is used to solve all bench-
marks from Reference #2 and #3 of BALiBASE 2.0 [38].
For all these benchmarks, the BLOSUM62 scoring matrix
with the gap penalty of 10 and 1 for the Gap Opening and
Gap Extension, respectively, is selected. Figure 4 shows the
bar graph representation of the performance of RBT-GA
compared with other approaches (including our previous
approaches RBT-I [24], and RBT-L [25]) formerly designed
to solve the stated benchmarks in Reference #2. Figure 5
shows similar results for Reference #3. All RBT-I/L/GA are
executed ten times to solve each of these benchmarks.
Each algorithm is run ten times to show the robustness of
these optimization techniques although they include sto-
chastic optimization steps. For RBT-L, the maximum,
average, and minimum of these ten runs are separately
depicted to show the robustness of these approaches. For
RBT-I, only the best run of these ten executions is
reflected; because the other nine answers were not so apart
from the best one (always less than %5 in relation to the

RBT-GA in Reference #2Figure 4
RBT-GA in Reference #2.
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final Alignment Score); and therefore omitted in these fig-
ures. The reason for obtaining different answers for differ-
ent runs is significantly related to the nature of this
optimization process and its operators, as all of them
undertake their optimization steps randomly. Therefore,
it is not surprising that they will always fall into different
parts of the solution space, yet close enough to each other
as a sign of the algorithm's robustness and repeatability.

Discussion
The results obtained by using RBT-GA were quite different
and interesting, covering a vast variety of situations. In
summary, similar to other approaches formerly presented
to solve this problem, although RBT-GA did not manage
to find the identical alignments to benchmark answers, it
was generally successful. The following sections explain
this in more detail.

Alignment Score vs. BALiBASE score
The first observation made after analyzing the solution
trajectory of the benchmarks was the imperfect relation-
ship between Alignment Score, which is purely dependent
on the Scoring matrix (BLOSUM62 in this case), and the
BALiBASE score, which is purely based on biological facts.
However, they seemed to be fairly related. In several cases,
gaining higher Alignment Scores yields better BALiBASE
scores; although, this cannot be always guaranteed. To
investigate this relationship further, we executed the algo-
rithm with different scoring matrices, gap opening and
extension values. In almost all cases, the Alignment Score
and BALiBASE score showed the same level of uncorrela-
tion. Nevertheless, it seems that in most cases, alignments

with higher Alignment Scores have better BALiBASE score
as well. Figure 6 shows a sample of this uncorrelation for
1 wit from Reference#3.

RBT-GA and Reference #2
Reference #2 of the BALiBASE 2.0 is dedicated to 'orphan'
sequences. These sequences are significantly different in
their number of sequences and their sequences' length.
For this class of sequences, RBT-GA has shown different
performances. As it was shown in Figure 4, in several cases
(like 1idy, 1csy, 1tvxA, 1ubi and 1ajsA), RBT-GA managed
to significantly outperform the existing methods. In sev-
eral other cases, RBT-GA's performance was just fairly
comparable to the others, like 1uky, 1tgxA and 2trx. And
finally, there were cases that RBT-GA did not significantly
outperform the existing alignment methods, like 1cpt,
2myr and 1lvl.

RBT-GA and Reference #3
Reference #3 of the BALiBASE 2.0 is dedicated to sub-
groups of sequences with less than 25% residue identity
between groups. Performance of RBT-GA in this category
was quite different compare to Reference #2. Here,
although RBT-GA manages to outperform few of the exist-
ing methods, it could not significantly outperform any of
them. Overall, the performance of RBT-GA was fairly bet-
ter than several other algorithms.

RBT-GA and BALiBASE Score
One of the noticeable facts about RBT-GA answers is its
non-zero BALiBASE score at all times. Examining Figures
4 and 5, it can be seen that, several of the existing align-

RBT-GA in Reference #3Figure 5
RBT-GA in Reference #3.
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ment algorithms have significant performance diversity in
their results. For example, Figure 4 shows that PRRP and
ML_PIMA received BALiBASE score 0.0 and 0.905 for 1idy
and 1r69, respectively. In other words, in these two cases,
the final alignment of these two algorithms manifests no
biological relationship in one case and almost maximum
biological relationship in the other case. In contrast, RBT-
GA was always able to identify some biological relation-
ship in the aligned sequences. In some cases, it found the
identical answer, such as, 1idy in Reference #2. In other
cases where the biological relationship in the input
sequences was subtle and no method could find a reason-
able answer, RBT-GA performed reasonably, like 1ajsA in
Reference #3.    

Overall Performance of RBT-GA
The RBT-GA had a reasonable performance in almost all
cases. Although there were instances that some of the
existing methods found better solutions, with respect to
BALiBASE score, in most cases, the quality of RBT-GA's
alignments were as good as or better than the other meth-
ods. In some cases, it could even significantly outperform
existing methods, such as 1idy and 1ubi in Reference #2.

Figures 7 and 8 show the overall performance of RBT-GA
as compared with other approaches. In these figures, the
alignment algorithms are sorted according to their average
BALiBASE score throughout the whole benchmark. Figure
7 shows that RBT-L-Max slightly outperformed RBT-GA-
Max, while RBT-GA-Max significantly outperformed all

other methods in Reference #2, almost %20 better than
the fourth best, SAGA. Figure 8 shows that RBT-GA-Max is
ranked fourth based on its average BALiBASE score in Ref-
erence #3, although its average BALiBASE score is just 7%
below the best approach, PRRP.

RBT-GA versus RBT-I/L
Figures 4, 5, 7 and 8 show that RBT-GA significantly out-
performs RBT-I. These figures show that even the worse
alignment of RBT-GA (RBT-GA-Min) is almost 20% and
10% better than RBT-I for References #2 and #3, respec-
tively.

RBT-L and RBT-GA on the other hand show very similar
performances. However, Figures 4, 5, 7 and 8 also show
that RBT-GA-Max is slightly worst (around 1%) than RBT-
L-Max in both References. In contrast, RBT-GA-Avg is bet-
ter than RBT-L-Avg for almost 6% in both References.
Thus, the worse alignment that each of these techniques
has found is used for the sake of comparison. RBT-GA-
Min significantly outperforms RBT-L-Min for 14% and
17% in Reference #2 and #3, respectively. Also, in both
References, the worse alignment found by RBT-GA is bet-
ter than the average alignment found by RBT-L.

The above comparisons imply that having so many SPs,
biologically meaningful or not, increase the chance of
misleading the main optimization algorithm. This could
be the reason why RBT-L managed to perform as well as
RBT-GA in the best scenarios and significantly performed
less efficiently in the worse cases.

These observations imply that the way in which SPs are
generated at the start of the main optimization process is
the key to better alignments. In conclusion, one can state
that the location of an AA is more important than its index
in a protein.

Overall performance of RBT-GA in Reference #2Figure 7
Overall performance of RBT-GA in Reference #2.
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Conclusion
In this paper, a novel approach (RBT-GA) based on the
combination of Rubber Band Technique and a Genetic
Algorithm is presented to solve the Multiple Sequence
Alignment problem. RBT-GA is a population based opti-
mization algorithm that starts from a set of possible
answers (initial population), and gradually improves it to
find the optimal alignment. In this approach, GA is used
to gradually improve the quality of different answers in
the population (presented as different chromosomes).
Here, genes of each chromosome are in fact RBT's Sticky
Poles that are used to identify locations in the input
sequences that are most likely biologically related
(motifs). RBT-GA is tested by solving several benchmarks
from the BALiBASE 2.0. The results showed great promise
of the proposed approach.

Based on the promising results obtained from RBT-GA,
the future direction is (1) to investigate more optimiza-
tion techniques to adopt in this framework, and (2) to
improve the convergence speed of RBT-GA through paral-
lelization.

Competing interests
The authors declare that they have no competing interests.

Authors' contributions
JT and AYZ developed the framework for the new MSA
method. JT implemented the framework and developed
the associated software and simulations. JT and AYZ wrote
and edited different versions of the manuscript.

Acknowledgements
This work was funded by an Australian Research Council grant number 
DP0667266.

This article has been published as part of BMC Genomics Volume 10 Supple-
ment 1, 2009: The 2008 International Conference on Bioinformatics & 
Computational Biology (BIOCOMP'08). The full contents of the supple-

ment are available online at http://www.biomedcentral.com/1471-2164/
10?issue=S1.

References
1. Watson JD, Crick FHC: A Structure for Deoxyribose.  Nucleic

Acid Nature 1953, 171:737-738.
2. Wang L, Jiang T: On the complexity of the multiple sequence

alignment.  Journal of Computational Biology 1994, 1:337-348.
3. Abdesslem L, Soham M, Mohamed B: Multiple sequence align-

ment by quantum genetic algorithm.  20th International Parallel
and Distributed Processing Symposium (IPDPS 2006) 2006.

4. Needleman SB, Wunsch CD: A general method applicable to
the search for similarities in the amino acid sequence of two
proteins.  Journal of Molecular Biology 1970, 48:443-453.

5. Barton GJ, Sternberg MJE: A strategy for the rapid multiple
alignment of protein sequences.  Journal of Molecular Biology 1987,
198:327-337.

6. Taylor WRA: Flexible method to align large numbers of bio-
logical sequences.  Journal of Molecular Biology Evolution 1988,
28:161-169.

7. Devereux J, Haeberli P, Smithies O: A comprehensive set of
sequence analysis programs for the VAX.  Nucleic Acids Research
1984, 12:387-395.

8. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG: The
CLUSTAL_X windows interface: flexible strategies for mul-
tiple sequence alignment aided by quality analysis tools.
Nucleic Acids Research 1997, 24:4876-4882.

9. Thompson JD, Higgins DG, Gibson TJ: CLUSTAL W: improving
the sensitivity of progressive multiple sequence alignment
through sequence weighting, position-specific gap penalties
and weight matrix choice.  Nucleic Acids Research 1994,
22:4673-4680.

10. Sneath PHA, Sokal RR: Numerical Taxonomy.  WH Freeman and
Company, San Francisco, California, USA; 1973:230-234. 

11. Saitou , Nei : The neighbor-joining method: a new method for
reconstructing phylogenetic trees.  Journal of Molecular Biology
and Evolution 1987, 4:406-425.

12. Smith RF, Smith TF: Pattern-induced multi-sequence alignment
(PIMA) algorithm employing secondary structure-depend-
ent gap penalties for use in comparative protein modelling.
Protein Engineering 1992, 5:35-41.

13. Morgenstein B, Dress A, Werner T: Multiple DNA and protein
sequence alignment based on segment-to-segment compar-
ison.  Proceedings of the National Academy of Sciences
1996:12098-12103.

14. Gotoh O: Significant improvement in accuracy of multiple
protein sequence alignments by iterative refinement as
assessed by reference to structural alignments.  Journal of
Molecular Biology 1996, 264(4):823-838.

15. Notredame C, Higgins DG: Saga – sequence alignment by
genetic algorithm.  Nucleic Acids Research 1996, 24(8):1515-1524.

16. Katoh K, Misawa K, Kuma K, Miyata T: MAFFT: a novel method
for rapid multiple sequence alignment based on fast Fourier
transform.  Nucleic Acids Research 2002, 30(14):3059-3066.

17. Do CB, Mahabhashyam MS, Brudno M, Batzoglou S: ProbCons:
Probabilistic consistency-based multiple sequence align-
ment.  Genome Research 2005, 15(2):330-340.

18. Notredame C, Higgins DG, Heringa J: T-Coffee: A novel method
for fast and accurate multiple sequence alignment.  Journal of
Molecular Biology 2000, 302:205-217.

19. Edgar RC: MUSCLE: multiple sequence alignment with high
accuracy and high throughput.  Nucleic Acids Research 2004,
32:1792-1797.

20. Pei J, Grishin NV: MUMMALS: multiple sequence alignment
improved by using hidden Markov models with local struc-
tural information.  Nucleic Acids Research 2006, 34(16):4364-4374.

21. Baldi P, Chauvin Y, Hunkapiller T, McClure MA: Hidden Markov
models of biological primary sequence information.  Proceed-
ings of the National Academy of Sciences 1994:1059-1063.

22. Krogh A, Mian I, Haussler D: A hidden Markov model that finds
genes in Escheria Coli DNA.  Nucleic Acids Research 1994,
22:4768-4778.

23. Eddy SR: Multiple Alignment Using Hidden Markov Models.
3rd ISMB 1995:114-120.

Overall performance of RBT-GA in Reference #3Figure 8
Overall performance of RBT-GA in Reference #3.
Page 10 of 11
(page number not for citation purposes)

http://www.biomedcentral.com/1471-2164/10?issue=S1
http://www.biomedcentral.com/1471-2164/10?issue=S1
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8790475
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8790475
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=5420325
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=5420325
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=5420325
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3430611
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3430611
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6546423
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6546423
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7984417
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7984417
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7984417
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1631044
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1631044
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8980688
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8980688
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8980688
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8628686
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8628686
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12136088
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12136088
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12136088
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15687296
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15687296
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15687296
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10964570
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10964570
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15034147
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15034147
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16936316
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16936316
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16936316
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7984429
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7984429


BMC Genomics 2009, 10(Suppl 1):S10 http://www.biomedcentral.com/1471-2164/10/S1/S10
Publish with BioMed Central   and  every 
scientist can read your work free of charge

"BioMed Central will be the most significant development for 
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central 

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

24. Taheri J, Zomaya AY, Zhou BB: RBT-I: A Novel Approach for
Solving the Multiple Sequence Alignment Problem.  The 6th
ACS/IEEE International Conference on Computer Systems and Applications
(AICCSA-08); Qatar 2008 in press.

25. Taheri J, Zomaya AY, Zhou BB: RBT-L: A Location Based
Approach for Solving the Multiple Sequence Alignment
Problem.  The University of Sydney Technical Reports 2008, 626:.

26. Zhang C, Wong AKC: Toward efficient multiple molecular
sequence alignment: a system of genetic algorithm and
dynamic programming.  IEEE Transactions on Systems, Man and
Cybernetics, Part B 1997, 27:918-932.

27. Cai L, Juedes D, Liakhovitch E: Evolutionary computation tech-
niques for multiple sequence alignment.  Proceedings of the Con-
gress on Evolutionary Computation 2000, 2:829-835.

28. Thomsen R, Fogel GB, Krink T: Improvement of clustal-derived
sequence alignments with evolutionary algorithms.  The 2003
Congress on Evolutionary Computation (CEC '03) 2003, 1:312-319.

29. Nguyen HD, Yamamori K, Yoshihara I, Yasunaga M: Improved GA-
based method for multiple protein sequence alignment.  The
2003 Congress on Evolutionary Computation (CEC '03) 2003,
3:1826-1832.

30. Hsiao Y-T, Chuang C-L, Chien C-C: A novel GA-based algorithm
approach to fast biosequence alignment.  IEEE Conference on
Cybernetics and Intelligent Systems 2004, 1:602-607.

31. Liu Lf, Huo Hw, Wang Bs: Aligning multiple sequences by
genetic algorithm.  International Conference on Communications, Cir-
cuits and Systems (ICCCAS 2004) 2004, 2:994-998.

32. Omar MF, Salam RA, Rashid NA, Abdullah R: Multiple sequence
alignment using genetic algorithm and simulated annealing.
Proceedings of International Conference on Information and Communica-
tion Technologies: From Theory to Applications 2004:455-456.

33. Chen Y, Pan Y, Chen J, Liu W, Chen L: Partitioned optimization
algorithms for multiple sequence alignment.  20th International
Conference on Advanced Information Networking and Applications (AINA
2006) 2006, 2:.

34. Goldberg DE: Genetic Algorithms in Search, Optimization and Machine
Learning Boston, MA: Kluwer Academic Publishers; 1989. 

35. Goldberg DE: The Design of Innovation: Lessons from and for Competent
Genetic Algorithms Reading, MA: Addison-Wesley; 2002. 

36. Thompson JD, Plewniak F, Poch O: BAliBASE: a benchmark
alignment database for the evaluation of multiple alignment
programs.  Bioinformatics 1999, 15:.

37. Kleywegt GJ, Jones TA: Where freedom is given, liberties are
taken.  Structure 1995, 3:535-540.

38. Nucleic Acids Research [http://www.pubmedcentral.nih.gov/
articlerender.fcgi?artid=29792] visited Aug-2007   [http://
www.pubmedcentral.nih.gov/articlerender.fcgi?artid=29792]
Page 11 of 11
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10068696
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10068696
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10068696
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8590014
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8590014
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=29792
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=29792
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=29792
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Multiple Sequence Alignment
	Related works

	Methods
	Problem statement
	Genetic Algorithms
	A Genetic algorithm optimizer
	Initial population
	The fitness function
	Selecting the best chromosomes
	Recombining parent chromosomes
	Crossover
	Mutation
	Elitism

	Terminating the algorithm
	Overall procedure of a GA
	Rubber Band Technique
	Grid Answer Space
	Rubber Band
	Primary Pole
	Secondary Pole
	Primary Pole Score
	Sticky Poles
	Alignment Score

	Combination of GA and RBT to solve MSA
	Chromosomes in RBT-GA
	Generate the Initial Population
	Genetic Algorithm Operators
	RBT-GA Termination
	RBT-GA final tuning


	Results
	Discussion
	Alignment Score vs. BALiBASE score
	RBT-GA and Reference #2
	RBT-GA and Reference #3
	RBT-GA and BALiBASE Score
	Overall Performance of RBT-GA
	RBT-GA versus RBT-I/L

	Conclusion
	Competing interests
	Authors' contributions
	Acknowledgements
	References

