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Abstract

Background: Time delays are often found in gene regulation though most techniques of building
gene regulatory networks are not capable of capturing such phenomena. Here we look at the
delays in the DNA repair system of Mycobacterium tuberculosis which is unusually slow in the
bacteria. We propose a method based on a skip-chain model to study this phenomena in gene
networks. The Viterbi paths of the underlying Markov chains find the most likely regulatory
interactions among genes, taking care of very long delays. Using the derived networks, we discuss
the delayed regulations and robustness of the DNA damage seen in the bacterium.

Results: We evaluated our method on time-course gene expressions after DNA damage with
Mitocyin C. Several time-delayed interactions were observed with our analysis. The presence of
hubs in the networks indicates that a small number of transcriptional factors regulate the rest of the
system. We demonstrate the use of priors to overcome over-fitting problem in the generation of
networks. We compare our results with the gene networks derived with dynamic Bayesian
networks (DBN).

Conclusion: Different transcription networks are active at different stages, and constant
feedback and regulation is maintained throughout the activities of a biological pathway. Skip-chain
models are capable of capturing, long distant and the time-delayed regulations. Use of a Dirichlet
prior over parameters and Gibbs prior over structure can greatly reduce the over-fitting in the
new model.

Background transduction is transient, the study of dynamics of the
Cellular activities of genes and gene products represented ~ transduction is essential. Further, the distributed nature of
in gene regulatory networks (GRN) provide a basis  cell fate regulation events manifest’s itself as intense
for signal transduction pathways. Since the signal  crosstalk between the nominal pathways. States of gene
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networks are often presumed to be stable, meaning that
slight changes in the state of a few parents do not change
the expression state of the child gene. This phenomena
relates to the redundancy of biological systems which are
to ensure that the system retains functioning inspite of
the perturbations.

In this work, we use Bayesian networks (BN) in the
stochastic framework to represent GRN. Pathways have a
natural representation of BN, where genes are nodes in
the network and edges are causal interactions among
them. The causal dependencies are given as conditional
probabilities which infer ‘cause and effect’ relationships
among genes in the network. A BN being acyclic is not
able to model feedbacks and self-regulation events. The
dynamic Bayesian network (DBN) is defined by a pair of
structures (S;, S;,1) each corresponding to time instances
t and ¢t + 1 and a transition network of interactions
between the two networks [1]. DBN assumes that the
genetic regulation process is first-order Markovian where
parents are from the previous time point and can allow
cyclic events.

However, several time-delayed interactions are known to
exist in biological systems. DBN was extended to a
higher-order where mutual information (MI) has been
used to determine the best time-delay of an interaction
[2]. However, these generative models become intract-
able at very high orders, so we resort to a conditional
skip-chain model. In a skip-chain model, the linear
features model the lower-order delays and the skip
features model long-distant delays [3].

The linear feature attempts to model interactions which
occur instantly or with little delay. The skip feature
model interactions occurring much later in the pathway,
for example, a gene g; inhibits a gene g; to start a process,
and later g; regulates another gene g, towards the end of
the process. The skip-feature probability is decomposed
into a sum of terms for consecutive pairs of genes in the
time-course and the most likely interactions are found
using the Viterbi algorithm. The Viterbi skip-feature can
automatically determine the best time delay in a higher-
order Markov chain representing the instantaneous
network of DBN.

Our approach consists of three stages: first, our method
involves identifying time-delayed interaction features
and predicting the optimal GRN by using a GA. The
fitness function of the GA is modified to include Viterbi
scores of time-delayed interactions by using the skip-
chain model. Next, an application to DNA repair system
of Mycobacterium tuberculosis has been performed. This
bacteria causes tuberculosis in man and is known to have
a very slow growth rate in vitro. In particular, we consider
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the DNA repair pathway which is activated when a
damage to the DNA occurs. The system consists of
proteins LexA and RecA as well as up to 40 genes that are
regulated by these two proteins together. Lastly, we
discuss our findings and directions for future work.

Methods

BN decomposes the joint probability of genes into a
product of conditional probabilities by using the chain
rule and independence of non-descendant genes, given
their parents

n
p(x) = [ [otx: 1a:.0) (1)
i=1
where x = (x, X5, ...., X,), the conditional probability of

gene expression x; given its parents a; is p(x;|a;, 6;), and 6;
denotes the parameters of the conditional probabilities.

The acyclic condition in BN does not allow self
regulation and feedback, which are characteristic of
GRN. To overcome this limitation, dynamic Bayesian
networks (DBN) are used in which a transition network
from one time point to the next characterizes the GRN.
The first-order DBN is defined by a transition network of
interactions between a pair of structures (S, S.1)
corresponding to time instances ¢t and ¢t + 1. The DBN
structure is obtained by unrolling the transition network
over time. In time instance ¢ + 1, the parents of genes are
those specified in the time instant t. The likelihood of
transition network S of interactions between time
instances t and ¢ + 1 is given by

m

n i d i
p(x8,0) = HHﬁHeiﬁk i

=1 i=1 j=1 k=1

where N Ejﬁém) correspond to the number of instances of
Oije = p(xi, 1 = kla;, = j), k is the discretized gene
expression level, and j is the discrete state combination
of parent genes. The first-order DBN has two layers of
genes, and therefore 2n nodes.

The classical DBN is unable to capture complex time-
dependencies and is extended to an o-order Markov
chain (0 > 2). It predicts the expression levels of a set of
genes based on expression upto previous o time points.
However, such an approach cannot handle long range
dependencies because as o increases the search space
becomes intractable. Instead, we employ skip-chain
models which augments linear chain features that
represent local features, with skip-features representing
long range dependencies [4,5]. It then simply factorizes
the prediction probabilities into linear and skip features.
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Linear-chain feature functions f(x;, @j(..o), t) represent
local dependencies that are consistent with an o- order
Markov assumption of gene expressions. But for long
distant interactions, we relax this assumption by using
skip-chain feature functions h(x; a; s, t) which exploit
dependencies between genes that are arbitrarily distant at
time instances s, and ¢, respectively (Fig. 1). Such a skip-
feature models variable length Markov chain upto m - 1
order where m is the number of time points.

We can interpolate the two types of features [6]. The log
likelihood of an expression x; is a weighted sum of linear
and skip-edge scores:

log p(x; [ a;,0;) o< 2f(x;, di(—gy, ) + (1 = A)h(x;, a5, 5, t)
(3)

where 4 < 1 is a weight determined heuristically.

For interactions, we look for causal effects of regulated
genes as features. We can use the Viterbi algorithm to
find a maximum likelihood (ML) path between two
genes at distant time points in a hidden Markov model
(HMM) [7]. The ML can then be used to make a choice
between different time-delayed interactions of the same
pair of genes. For any two genes g; and gj, we choose the
highest Viterbi score among all the possible interaction
features.

A genetic algorithm is used to find the optimal network
structure. Here an individual is defined by matrix
{ci, j}n x n with dimension n x n. Each cell ¢; ; is
randomly initialized with interactions which have MI at
a time lag o0 above a threshold. Here g; is the parent of g;.
The GA then finds the structure with the highest
posterior probability (Eq. 3). The GA provides an
optimal structure maximizing the likelihood asymptoti-
cally. We also explored the use of two priors over the
network.

OO Ot O
HONON® ()

Figure |
A skip chain model. A skip chain model has overlapping
skip-edges which model long-distant dependencies.
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Dirichlet prior over parameters

Most higher-order Markov models are far from optimal.
They are extremely sensitive to change in pathways and
associated data. This happens as most of the data is general
rather than feature specific for an interaction. The goal of
adaption has been to make good use of available feature
data and reduce the over-fitting in the model. Our
adaption model combined the reliable general DBN with
a volatile feature specific HMM for long delays. We further
extend the MLE to a Bayesian learning where a Dirichlet
conjugate prior is imposed on each of the parameters.

Given the set of conditional distributions with para-
meters 6 = {6 i = 1, 2, ... n}, the likelihood can be
written as

plx) = [ pCx| 5,0)p(6 | S)a0 )

The integral can be easily written in a closed form due to
conjugacy between Dirichlet and multinomial distribu-
tion. However, we can alternatively maximize probabil-
ity as (MAP):

Oyiap = argmax p(x | 0)p(©) (5)

Using the linear feature as a Dirichlet conjugate prior [8]
for the skip feature of a gene we get:

n
HMAP = arg max H eihl(xi)h(xi)+af(xi)_l
= (6)

where I(x;) = 2 h(x;)

where h’(x;) is total probability of the skip-path, o is a
weighting factor between the linear and skip features.

Next, we can specify the interpolated probability of gene
g; based on linear and skip-edges.

a

0= Af(x) + (1= A)h(x) where 2= =25

(7)

here, instead of using a constant, 4 is estimated using
prior linear feature and the total probability of the skip
path.

Gibbs prior over graph

We can use a Gibbs Markov network (MN) to model the
prior P(S) of the gene network. A Gibbs distribution
takes the form of P(S) « e - “®) where energy of the graph
E(S) can be factorized into a sum of interaction
potentials Uj;; between genes g; and g;. If an interaction
exists in the target network, we set U; = o; otherwise
Uj; = 0,. The total energy of the graph over existing edges
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is E(S) = Xy, jy < s Uj. The posterior probability of the
graph is then given by

log p(S | x) = logp(x|$) = Y. U,

{i.j}es

(8)

A small o, and a large o, will reflect the prior target
network more in the GRN and vice-versa.

Experiments and results

We evaluated our method on a DNA repair system of
Mycobacterium tuberculosis by building regulatory networks
with DBN, HDBN, and skip-chain model. Here we looked at
the response of bacteria to drug-induced stress. Treatment
with Mitomycin C caused DNA damage and hence led to the
upregulation of associated repair genes. Eight time points
are available at NCBI Gene Expression Omnibus (GSE1642-
GPL1396 series) 0.33 hr, 0.75 hr, 1.5 hr, 2 hr, 4 hr, 6 hr, 8 hr
and 12 hr after DNA damage. The data was discretized into 1
for upregulation and 0 for downregulation by using an
approach described previously [9].

The corresponding skip probabilities were calculated as
described in methods. Upto seven time points of delays

were allowed. Firstly, we used 9 genes previously specified

Table I: Time-delayed interactions in predicted network
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[10]. In order to get an expanded dataset, the original dataset
was subjected to ICA and the components closest to 9 genes
were identified [11,12].

This gave us a second dataset of 32 genes. A GA was used to
find the optimal structure. Only linear interactions
determined by mutual information (MI) upto a time lag
of four were allowed. The GA chooses the network with the
best combination of skip and linear edges. Simulation
was done at different numbers of individuals (N) and
generations (G) (N =200/300/400 and G = 300/400/500)
for both HDBN and skip-chain model. The GA stops when
the maximum number of generations is reached or if the
score does not change for 20 consecutive generations. A
similarity threshold of 0.7 in each generation prevents local
maxima. The best prediction among all five runs was
considered. Table 1 explains the predictions of GRN by
using a single time-delay DBN, upto four time delays
HDBN, and upto four time delays skip-chain model for
both datasets. It can be seen that the ML of the underlying
skip-chain prediction is much higher than the DBN or
HDBN, confirming that the network fits data well.

We also looked at the use of Gibbs prior over the
structures, Dirichlet prior over parameters and the combi-
nation of the two priors together (Table 2). Using priors

Higher-order edges

# Genes Model:o ML | 2 3 4 5
9 DBN:1 -14.7 9
HDBN:3 -8.69 8 2 7
SKIP-CHAIN: | -6.05 13 (3)
32 DBN:I -48.9 36
HDBN:4 -39.4 20 6 14 20
SKIP-CHAIN:2 -37.2 54 18 (41) 4)

Time delayed interactions in predicted DBN, HDBN, and skip-chain: (n) denotes overlapping skip-edges and o is order of the model.

Table 2: Time-delayed interactions in predicted network using prior

Higher-order edges

# Genes Model:o ML | 2 3 4 5
9 SKIP-CHAIN: -6.05 13 3)
SKIP-CHAIN(Gibbs):1 -5.8 Il (2)
SKIP-CHAIN(Dirichlet):2 -5.2 7 13 (1 (O]
SKIP-CHAIN(Gibbs and Dirichlet):3 -3.27 2 7 4) (5)

32 SKIP-CHAIN:2 -37.2 54 18 (41) 4
SKIP-CHAIN(Gibbs):3 -35.7 37 16 24 (40) (3)
SKIP-CHAIN(Dirichlet):2 -35.05 54 16 37) (©)
SKIP-CHAIN(Gibbs and Dirichlet):2 -34.54 50 15 (41) 4)

Time delayed interactions in predicted skip-chain without prior, with Dirichlet prior, with Gibbs prior and combination of both priors: (n) denotes

overlapping skip-edges and o is order of the model.
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further increased likelihood and gave many new time-
delayed interactions. Though Dirichlet is a better prior than
Gibbs, the combined use of both priors is optimal. Our
method also detects many long-time delayed interactions.
Some interactions are also observed at order-5 or 6 hrs
from the start of the experiment.

The earlier network of 16 interactions predicted using
correlations is shown in Fig. 2(a). It can be seen we
compare well with this network. Fig. 2(b) gives the color
code. Fig. 3 and 4 are predicted networks by our
algorithm. The prediction using the first-order DBN
and third-order HDBN are shown in Fig. 3(a) and 3(b).
The HDBN detects lexA-linB as a time-delayed interac-
tion over 2 hrs. Some interactions are correctly detected
by HDBN over DBN, for example: ruvC-fadD23. The
skip-chain model in Fig. 3(f) detects inhibition of ruvC
by recA even at 4 hrs. This is biologically plausible as the
DNA repair in the genome spans over 10 hrs. The
interaction between lexA-fadD21 is also detected by the
skip-chain.

The presence of hubs or single genes regulating several
other genes are also seen in the network. These networks
can buffer environmental variations. It can be seen that a
small number of transcription factors (TF) regulate the
rest of the repair system. At the same time the in-degree
is low, as each gene is regulated by just one TF. RecA
causes inactivation of lexA which suppresses DNA repair
genes. We observe binding of recA(DNA repair) to dnaB
(DNA replication) helicase. RecA also activates linB
which causes dehalogenation needed for transformation

http://www.biomedcentral.com/1471-2164/10/S3/S28

events in dna repair. The Fadd genes initiate apoptosis
and are also required for cell-wall formation.

The second dataset of 32 genes indicated that our
method is good for identifying core genes (Fig. 4).
RecA and lexA are shown to be critical hub by both DBN
and HDBN. The HDBN showed several time-delayed
interactions at 2 and 4 hrs. The skip-chain gave a fewer
interactions though it also showed interactions at 6 hrs.
Use of prior gives better networks with few hubs in
Fig. 4(f). They could detect new hubs like ruvC, fadD21
and fadD23.

Discussion and conclusion

An organism responds to changes in its environment by
altering the level of expression of critical genes. The
virulence of Mycobacterium tuberculosis depends on the
ability of the bacilli to switch between replicative
(growth) and non-replicative (dormancy) states in
response to host immunity. Different transcription
networks are active at different stages of the response.
The coordinated repression of genes are likely to
contribute to survival by conserving energy and pre-
cursors under nutrient-limiting conditions and/or mini-
mizing expression of potential antigens.

M. tuberculosis is known to have an unusally long period
of 10 hrs for the DNA replication fork to traverse the
chromosome. Our results showed several interactions at
4 hrs in the DNA repair pathway. An order-4 HDBN with
skip-chain dependencies was shown to outperform
ordinary HDBN's. For genes to interact they both have

inD RV2719C
draB Order 1
Order 2
Order 3
Order 4
Order 5
fadde3
(a) (b)
Figure 2
Target network and color code. (a) Network determined by correlation and (b) color code.
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Figure 3

Time-delayed interactions in predicted network of 9 genes. Time-delayed interactions in predicted network of 9 genes
(a) DBN network, (b) HDBN network, (c) Skip-chain network, (d) Skip-chain network with Gibbs prior, (e) Skip-chain
network with Dirichlet prior, (f) Skip-chain network with Gibbs and Dirichlet prior.
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Figure 4

Time-delayed interactions in predicted network of 32 genes. Time-delayed interactions in predicted network of 32
genes (a) DBN network, (b) HDBN network, (c) Skip-chain network, (d) Skip-chain network with Gibbs prior, (e) Skip-chain
network with Dirichlet prior, (f) Skip-chain network with Gibbs and Dirichlet prior.
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to be upregulated. We use this property to select events
where a pair of genes are both upregulated at similar or
delayed time points. It is well established that interacting
genes have correlated expression patterns. To this end,
we add the interactions at non-consecutive time points.
This is because a DBN assumes a first-order network and
is not able to model complex time-delayed interactions.
We assumed that all interactions had equal priors.
However our method is able to distinguish between
short- and long-term interactions and hence allow us to
make a better judgement on DNA repair.

To include time-delays, we used a skip-chain model. The
Viterbi shortest path allowed us to choose between time
delayed interactions of two genes of same and different
time delays. This lets us identify the best interaction
information from the dataset. By using a single parent
Viterbi path to model the upregulated events, we were
able to focus on special cases in the DBN. This
significantly reduces the search space for the GA. Our
search is however constrained by various parameters like
MI and number of parents.

Skip-chain models address the difficulties of a DBN by
easily incorporating overlapping input features. We also
see that using approximate inference leads to lower total
training time without loss in accuracy. The skip-chain BN
is not an HDBN because usually different long-distance
dependencies are used by skipping the intermediate time
points. We proposed a method that can extract long
distant regulations and demonstrated it on DNA repair
of tuberculosis. Our approach may be useful for under-
standing complex gene regulation mechanisms.

Lastly, using priors gave us higher likelihood and
improved the over-fitting in building the regulatory
networks. The Dirichlet prior gave fewer hubs as
compared to the Gibbs prior and gave a higher like-
lihood. The combination of the two priors gave us the
best regulatory networks. We can see that the prediction
with prior allows higher-orders of linear model aswell.
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