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Synteny mapping between common bean and
soybean reveals extensive blocks of shared loci
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Abstract

Background: Understanding syntentic relationship between two species is critical to assessing the potential for
comparative genomic analysis. Common bean (Phaseolus vulgaris L.) and soybean (Glycine max L.), the two most
important members of the Phaseoleae legumes, appear to have a diploid and polyploidy recent past, respectively.
Determining the syntentic relationship between these two species will allow researchers to leverage not only
genomic resources but also genetic data for important agronomic traits to improve both of these species.

Results: Genetically-positioned transcript loci of common bean were mapped relative to the recent soybean 1.01
pseudochromosome assembly. In nearly every case, each common bean locus mapped to two loci in soybean, a
result consistent with the duplicate polyploidy history of soybean. Blocks of synteny averaging 32 cM in common
bean and 4.9 Mb in soybean were observed for all 11 common bean linkage groups, and these blocks mapped to
all 20 soybean pseudochromosomes. The median physical-to-genetic distance ratio in common bean (based on
soybean physical distances) was ~120 kb/cM. ~15,000 common bean sequences (primarily EST contigs and EST
singletons) were electronically positioned onto the common bean map using the shared syntentic blocks as
references points.

Conclusion: The collected evidence from this mapping strongly supports the duplicate history of soybean. It
further provides evidence that the soybean genome was fractionated and reassembled at some point following
the duplication event. These well mapped syntentic relationships between common bean and soybean will enable
researchers to target specific genomic regions to discover genes or loci that affect phenotypic expression in both
species.

Background
Comparative genetics and genomics leverages knowledge
from companion species and attempts to define impor-
tant evolutionary relationships. Important to under-
standing these relationships is the physical and genetic
synteny between any two species. Physical synteny can
be used to explain the cytogenetic events that a genome
has undergone as it evolved along a lineage into its cur-
rent structural form. Associated with these genomic
events is the evolutionary repositioning of genes respon-
sible for phenotypes shared between the two species.
This repositioning places genes in different genomic
contexts that could alter the degree and timing of their
phenotypic effects. Understanding the overall position-
ing of genes in two related species can suggest strategies

that aid the cloning of a gene in one species based on
its position in a reference species.
Synteny has been studied quite extensively in plants,

beginning with the early macro comparisons using RFLP
markers. Although these analyses used a limited number
of markers, they revealed major syntenic themes that
have informed much of the research in the field. Closely
related species, such as tomato and potato [1,2], have
highly conserved marker order that is only disturbed by
clearly defined events such as paracentric inversions. At
greater evolutionary distances, as evidenced by tomato
and pepper [3], inter- and intra-chromosomal transloca-
tions have redistributed loci such that only short synten-
tic blocks are observed while the chromosome number
remains unchanged. Finally, a one-to-two mapping of
loci, as seen with sorghum and maize [4], revealed the
effects of polyploidy on synteny. These types of studies,
involving multiple species and using collections of
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shared probes, have revealed major evolutionary rela-
tionships within lineages such as the grasses [5] and
legumes [6]. For the grasses, using 30 segments of the
rice genome as a reference, the genomes of ten other
species could be reconstructed [5].
More recently, Brassicaceae evolution was studied in

depth with a high density set of markers. Using the gen-
ome of the amphidiploid B. napus as a reference, the
duplication history of its two parents, B. rapa and B.
oleracea, revealed earlier rounds of duplication shared
between these two diploid genomes and suggested that
a progenitor with fewer chromosomes was responsible
for the lineage [7]. Finally, a comparison of a dense
genetic map of B. napus, consisting of > 1000 loci
orthologous to Arabidopsis genes, and the genomic
sequence of Arabidopsis, revealed that 90% of the
B. napus genome could be reconstructed from 21 ortho-
logous blocks of Arabidopsis genome while a number of
the Arabidopsis segments were duplicated in the
B. napus genome [8].
With the wide-spread availability of whole genome,

BAC, and EST sequencing, and new approaches to high
density mapping, further aspects of comparative evolu-
tion were revealed. Early comparisons of the genomic
sequence data from Arabidopsis and tomato, two species
whose divergent evolution began 94 MYA at the time of
the Asterid/Rosid divergence [9], revealed a pattern of
segmental duplication followed by local gene loss [10].
A similar pattern, but not to the same degree, was

observed between Arabidopsis and B. oleracea, two spe-
cies that diverged ~20 MYA [11]. The length of the
shared block appears to depend upon the divergence
time. The rice/wheat synteny appears to vary, with some
regions showing extensive microcolinearity [12,13] while
other regions exhibit a history of cytological events that
has reduced the extent of local syntenty [14,15]. Maize
and sorghum are recently related evolutionarily through
a common ancestor that gave rise to sorghum and the
two progeneitors of maize [16]. The species diverged
only 12 MYA [17], yet the synteny between sorghum
and maize appears to be less extensive than that
between sorghum and rice that diverged ~40 MYA
[18,19].
Here we investigate the syntenic relationship between

two important legumes, common bean (Phaseolus vul-
garis L.) and soybean (Glycine max). These two species
are the two most important economically important
legumes, soybean for its many human and animal
usages, and common bean as an important nutritional
crop for many economically poorer countries [20].
These two legume species are members of the Phaseo-
leae (Figure 1), a clade within the economically impor-
tant Papilionoideae legumes. This clade diverged from
the IRLC clade, the other economically important Papi-
lionoideae clade, 54.3 MYA [21,22].
Common bean and soybean diverged 19 MYA [21,22].

Determining those genomic events that followed the
divergence is important as investigators attempt to
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Figure 1 Phylogeny of economically important Phaseoleae legumes. The phylogeny is condensed from that presented in Stefanovic et al.
(2009). The nodal dates are the minimum date of the range based on 32.1 million years ago (MYA) date of “A” node representing the
divergence of the Phaseoleae legumes from Apios americana. The haploid chromosome number and C-value [in piocgrams (pg)] are from the
Plant C-Value Database http://data.kew.org/cvalues/; verified May 5, 2009).
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leverage the recently released soybean genome sequence
[23] as a tool for research within the clade. RFLP map-
ping [24] and EST Ks analysis [25] provide strong evi-
dence that soybean under went a major duplication
event dated at 11 MYA [[25], Mamidi S, Lee RK, Terp-
strea J, Lavin M, Schlueter JA, Shoemaker RC, McClean
PE: Whole genome duplications in the evolutionary his-
tory of legumes, submitted]. Most likely this was an
autopolyploid event [22,26]. By contrast, molecular mar-
ker data [27] show that common bean is a diploid while
EST Ks analysis suggests that its genome has only
undergone localized segmental duplications. Given their
close relationship within the Phaseoleae, common bean
is considered a diploid model for soybean [20]. Low-
density RFLP mapping [28] found that the two species
share a high degree of sequence homology but synteny
is only found only over shorts blocks of the genomes.
This is in contrast to the long stretches of synteny
shared between common bean and mung bean (Vigna
radiate), another member of the Phaseoleae clade.
These two species diverged between 4.9 and 8.0 MYA
[21,22].
To better understand the structural relationships

between the common bean and soybean genome, we
compared the organization of an extensive gene-based
map of common bean with the complete sequence of
the soybean genome. We discovered overwhelming evi-
dence of a one-to-two relationship between common
bean and soybean sequences. In addition, we were able
to trace many of the gene rich regions of all soybean
chromosomes back to specific regions of the common
bean genetic map. Evidence is also provided that, rela-
tive to common bean, soybean is segmentally rear-
ranged. Using this genetic/physical synteny, we have
also been able to electronically map an additional 20,000
common bean EST contigs and singletons relative to
soybean. This result is a major first step in understand-
ing the evolution of the soybean genome relative to a
diploid species within the Phaseoleae clade while provid-
ing a framework for the comparative genetics and geno-
mics of these two species.

Results and Discussion
A few limited studies have investigated the relationship
between the common bean and soybean genomes. Bou-
tin et al. [28] utilized shared RFLP markers and discov-
ered a number of shared common bean/soybean
syntentic markers blocks. In addition, individual markers
showed a more complex pattern of syntenty between the
two species suggesting a pattern of fragmentation in the
evolutionary history of soybean relative to common
bean. Subsequently, Lee et al. [29] built upon these
results and were the first to show a clear one-to-two
relationship between the common bean and soybean

genomes. Although these results are compelling, they
only provided a limited description of the genomic rela-
tionships between these two species. With a richer array
of sequenced-based resources, including an increasing
number of ESTs in common bean and an extensive
draft sequence of the soybean genome, it is now possible
to investigate the syntentic relationships between these
two species at a greater depth.

Common bean and soybean orthologous loci
Our first analysis of common bean and soybean syn-
teny was based on 300 gene-based loci [McConnell M,
Chikara S, Mamidi S, Rossi M, Lee R, McClean PE.
A gene-based linkage map of common bean (Phaseolus
vulgaris), submitted.] that were genetically mapped
using the community-wide P. vulgaris BAT93 × Jalo
EEP558 mapping population and 59 gene-containing
RFLP probes [30,31]. These loci were compared to the
first public release of the soybean genome, consisting
of 20 pseudochromosomes, using the blastn algorithm.
We first limited the hits to those with an E-value < 1
× 10-10. This decision was motivated by our decision
to compare the two genomes by uncovering those soy-
bean loci with some degree of orthology to the com-
mon bean query sequences. A total of 1065 hits were
detected that met this criterion, and the median E-
value for these hits was 2.0 × 10-61. These hits were to
loci on all 20 soybean pseudochromosomes.
Since another goal of this analysis was to determine

the genomic relationships between common bean and
soybean genomes, we next limited the analysis to the
best two soybean hits for each common bean sequence.
This decision was based on the assumption that soybean
underwent a whole genome duplication event since it
divergence from common bean, an assumption sup-
ported by a number of lines of evidence [24,25]. There-
fore, absent a major reduction in newly duplicated
soybean genes, there should be a one-to-two locus cor-
respondence between common bean and soybean.
Under this criterion, a total of 720 hits were observed,
and the median E-value was 3.5 × 10-91. Again, hits to
loci on all 20 pseudochromosomes were observed.
A common bean centric display of the synteny is found
in Figure 2.

Conserved common bean and soybean genomic blocks
A conserved syntenic block was defined as one that
shared three loci between common bean and soybean
and covered a minimum of 4 cM of the common bean
genetic map. A total of 55 syntenic blocks were
observed between the two species. On average, each
block consisted of 7 loci. From a common bean genetic
perspective, the mean size of each syntenic block was
32 cM (with a median of 29 cM). 75% of the blocks
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were > 20 cM in length. Conversely, the mean physical
distance relative to soybean was 4.9 Mb (with a median
of 2.6 Mb). 63% of the blocks were > 2 Mb in length.
By comparing the location of these blocks, it is very

clear that nearly all segments of the common bean gen-
ome mapped to two segments of the soybean genome.
69.3% of the genetic distance of the common bean map
mapped to some region of the soybean genome. Much
of the uncovered regions in common bean fell in larges
gaps on the linkage map. Conversely, these blocks con-
sisted of 271 Mb or 27.9% of the soybean genome
sequence. To better understand the difference in gen-
ome coverage, we needed to integrate additional soy-
bean genomic information into our analysis.
As displayed graphically at Soybase http://soybase.org

and Phyotzome http://www.phytozome.org/soybean, and
captured in Figure 3, much of the soybean genome con-
sists of pericentromeric DNA. Several features of this
class of DNA are important for this analysis here. First,
this DNA is centered around the centromeres and
encompasses 56% of the soybean genome. Further, this

DNA has a much lower gene density than euchromatic
regions at the ends of the chromosomes. Finally, these
regions have a much lower recombination rate than the
euchromatic region. All of these features appear to be
common for eudicot genomes.
As Figure 3 shows, 35 of the 40 of the soybean chro-

mosome arms exhibit a signature of conserved synteny
between the two species. Much of the synteny that we
observed here was to orthologous loci in the euchro-
matic regions of the soybean genome. Only a few soy-
bean chromosomes, specifically 10, 12, 14, 17, 18, and
20, contain extensive blocks of common bean loci that
map to soybean pericentromeric DNA. If we exclude
the pericentromeric DNA from our calculations, of the
271 Mb of the soybean that were syntentic to common
bean, 200 Mb mapped to the euchromatic arms. There-
fore, using this limited set of common bean loci, we
were able to determine the ancestry of 42.7% of the
gene rich euchromatic region of soybean. Further, 30 of
the 33 duplicated blocks of soybean genome anchored
to the common bean genetic map were also defined as
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soybean-to-soybean duplicates based on dot blot analysis
of the full genome sequence of soybean [[23]; see Figure
S5 there].
We next compared the ratio of the physical distance

to genetic distance in common bean. To calculate the
physical distance per cM, we used the physical distance
in soybean relative to the genetic distance in common
bean. This same approach was used when the A. thali-
ana and B. napus genomes were compared [8]. The
physical distance per cM was calculated for a total of
245 comparisons of neighboring loci. The average dis-
tance was 290,441 bp/cM. The median ratio was
119,405 bp/cM, and 42% of the comparisons were less
than 100,000 bp/cM. These later values were very simi-
lar to those observed when A. thaliana and B. napus
were compared.

Next, a comparison of the physical to genetic distances
between duplicate blocks from the soybean genome that
were syntentic to the same common bean genetic block
was made. The average difference between these block
was 33,571 bp/cM, while the median was 18,056 bp/cM.
The range of difference spread from 76 to 203,002 bp/cM.
This largest difference was between duplicates on soybean
chromosomes 8 and 18 that were syntenic to a Pv6 block
bounded by markers g2553 and g139 in the interval from
23-47 cM. The ratio for these two blocks (Gm8 = 119,914
bp/cM; Gm198 = 351,548 bp/cM) was much greater than
the genome-wide average. These two soybean blocks ter-
minate in the low recombination region, and the Gm18
blocks goes further into the pericentromeric region. This
probably accounts for the differences in the physical to
genetic distance ratio.
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Figure 3 Syntentic relationships of common bean relative to pseudochromosomes defined in build 1.01 of the soybean genome.
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Electronic mapping of common bean sequences
Given the extensive synteny observed between common
bean and soybean, we considered the possibility of map-
ping other common bean sequences relative to the
observed duplicate syntentic blocks. The underlying
concept is that duplicate soybean blocks could serve as
a reference that would point to the most likely genetic
position for any given common bean sequence. This
concept is analogous to the binning of ESTs in wheat
[32] except rather relying on the physical deletion land-
marks it relies upon the comparative genomic structure
between two species within the same evolutionary line-
age. These electronically mapped loci might also 1)
reveal additional details about the degree of synteny and
the chromosomal history of these two species, and 2)
point to duplication blocks in the soybean genome itself.
To test this concept, we collected all available com-

mon bean sequences for a blastn analysis. This analysis
consisted of 11,043 EST contigs and 9,847 EST single-
tons that were constructed here using the procedure
described by Childs et al. [33]; 85,102 repeat masked
BES [34]; and 694 CDSs from common bean. Several
criteria were used before a sequence was included in
our set of electronically mapped sequences. First, the
sequence must have two hits against different segments
of the soybean genome. Secondly, the e-value for all hits
must be less than 1 × 10-30. Next, the length of the
match of the query to the soybean must be 150 nt or
greater. And finally, to ensure that the homology was
against two different sequences, the distance between
the 3’ end of one sequence and the 5’ beginning of is
neighboring sequence must be greater than 50 nucleo-
tides. Using these criteria an additional 15,091 common
bean sequences were electronically mapped. This con-
sisted of 549 gene-based sequences, 2,548 BES, 4,522
EST singletons, and 7,472 EST contigs. Of these, 316
were previously mapped genetically. This gives a total of
14,775 newly mapped loci. The median distance
between any two sequences, based on their soybean
orthologous location, was 11,068 nucleotides.
In addition to its usefulness for studying common

bean and soybean synteny, this large collection of elec-
tronically mapped common bean sequences greatly
increases the marker set available for common bean
genetics. For this to be the case, it was essential to
determine if the electronic map position of each of
these sequences corresponds to its predicted genetic
position. To test this concept, we focused on a 43 cM
region of Pv7 between markers g2298 and g1378. We
selected this region because although QTL for common
bacterial blight [35] and white mold resistance [36] are
known to map to this location, useful markers have not
yet been developed for marker assisted selection. Pri-
mers were designed to 15 EST contig or singleton

sequence loci within the interval, and the amplification
products from BAT93 and Jalo EEP558 were sequenced.
Of these we detected 7 polymorphic loci. CAPs markers
were developed, and the loci were mapped on the
BAT93 × Jalo EEP558 community mapping population.
All 7 of the loci mapped within the interval that was
selected for study. Five of the seven mapped exactly as
predicted. The positions of the remaining two loci were
inverted relative to the positions of the two soybean
orthologs. This result strongly suggests that the electro-
nic mapping approach provides extensive physical and
genetic position information not previously available for
common bean.
These results allowed us to systematically extend the

distance of the common bean syntenic block (Figure 3).
The principle we applied is to search for a common
bean genetic block shared by two soybean regions and
extend the borders in either or both directions until
sequence colinearity between the two soybean blocks is
broken. For example, the Pv 9 block from 44-89 cM is
shared with both Gm4, from positions 41.1 to 45.9 Mb,
and Gm6, from positions 11.9 and 16.2 Mbp. By apply-
ing the principle described above, we see an unbroken
block in the same orientation from 36.0-49.0 Mbp on
Gm4 and from position 8.6-19.5 Mbp on Gm6. By
applying this concept, we were able to extend the degree
of synteny relative to this one Pv9 block from 9.1 Mbp
to 23.1 Mbp. We reexamined the synteny between the
two species and applied the same principle we used
with the Pv9 to the entire genome. Using this newly
derived information, we can account for an additional
187 Mbp of syntentic regions between common bean
and soybean. All of our approaches here allow us to
trace the ancestry of 456 Mbp of the soybean genome
relative to the diploid common bean genome.

Duplication history of soybean
Given that soybean has undergone a major duplication
event in its history, it is reasonable to expect that many
common bean sequences should map to two locations
in soybean. Our extensive Blastn analysis using all avail-
able common bean sequences clearly showed this to be
the case. Given that common bean is a diploid relative
of soybean, the common bean sequences can then be
used as a reference point that links two duplicate
regions in soybean. This approach does have limitations,
although not serious. First, any sequence or sequence
block unique to the soybean lineage will not have a
common bean sequence signal, and any duplication
associated with those sequences will not be uncovered.
Also, given that 83% of the sequences we were able to
map electronically were gene-based, and that most
genes are found in the euchromatic regions near the
ends of eukaryotic chromosomes, the strongest evidence
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regarding the duplication history will come from those
gene-rich regions.
To investigate the duplication history of each soybean

chromosome relative to the remainder of the soybean
chromosome set, we first ordered all of the common
bean sequences relative to their soybean ortholog on a
chromosome-by-chromosome basis. That ordering was
cross-referenced to the duplicate with the lowest E-value
on a second soybean chromosome. These defined blocks
of loci that mapped to the same duplicate chromosome.
It was required that each block consist of ten common
bean loci, and that the loci must be in consecutive order.
Figure 4 summarizes the duplicated block data for

chromosomes Gm5 and Gm8 in graphical form. These
two were chosen because they are representative of the
other chromosomes, and because they share synteny to
the same regions on common bean Pv2. The most
apparent observation is the modular nature of each
chromosome with regards to their duplicate blocks.
Gm5 shares duplication blocks with three other soybean
chromosomes (Gm8, Gm17, Gm19) while Gm8 shares
duplication blocks with Gm5, Gm7, Gm12, Gm15, and
Gm18. Furthermore, the modular blocks from the dupli-
cate chromosome are not contiguous. For example,
beginning at position 0 on Gm8, there is about 12 Mbp
of sequences duplicated on Gm5 in three non-contigous

blocks. These blocks are interrupted by a duplicate
block from Gm7. Two of the blocks on both Gm5 and
Gm8 are syntenic to common bean Pv2. Furthermore,
of the two chromosomes, Gm8 shares duplications with
more Gm chromosomes which in turn trace back to five
different common bean linkage groups.
Using both the Pv/Gm syntentic data as well the

duplications found in Gm using the large data set from
Pv, several conclusions can be drawn regarding the
chromosomal history of soybean. First, the one-to-two
mapping of Pv to Gm sequences provides further com-
pelling evidence that a major duplication event is part of
the history of the soybean genome [25]. The modular
nature of the both the Pv/Gm synteny and soybean
duplications suggest that either coincident with the
duplication, or shortly after, the duplicated chromo-
somes were fractionated or new chromosomes were
reassembled. A dramatic example is found by comparing
the Gm15 duplicates to Gm8. Here we see three dupli-
cate blocks from the end of Gm15 organized non-con-
tiguously. These are right next to a block from the
beginning of the same chromosome. A chromosome-
wide analysis suggests that at least 19 blocks rearranged
to form Gm8. Because of a lack of significant sequences
homologous much of the pericentromeric region, we
could not determine the modular nature of that region.
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Conclusions
We have used the first public release of the soybean
genome to evaluate the syntentic relationship between
this important economic species and common bean,
another member of the Phaseoleae legumes. It appears
that extensive regions of synteny exist between these
two species. These relationships further suggest that the
soybean genome has undergone a whole genome dupli-
cation based on the fact that nearly all of the common
bean sequences that map to a single location, have two
copies in the soybean genome. Furthermore, soybean
appears to have undergone extensive chromosome
breakage and rearrangement. This conclusion is based
on the observation that most soybean chromosomes
consist of fragments from multiple common bean chro-
mosomes. Whether these rearrangements occurred prior
to, coincident with, or following the duplication event is
unclear at this time. From an applied perspective, these
results suggest that a comparative genomics approach to
gene discovery is feasible for these two evolutionarily
related species.

Methods
EST contiging and BAC-end sequence processing
The 83,448 Phaseolus vulgaris sequences in the National
Center for Biotechnology Information (NCBI) EST data-
base available on August 1, 2008 were downloaded from
http://www.ncbi.nlm.nih.gov/sites/entrez?db=nucest.
EST contigs and singletons were defined using the pro-
cedures described in Childs et al. [33]. The procedure
was performed using the following stand-alone software:
SeqClean (http://www.tigr.org/tdb/tgi/software; default
parameters), Megablast [[37]; http://www.ncbi.nlm.nih.
gov/blast/megablast.shtml; default parameters], and
CAP3 [[38]; default parameters]. All 89,017 BAC-end
sequences (BES) were downloaded from the NCBI GSS
database http://www.ncbi.nlm.nih.gov/sites/entrez?
db=nucgss on August 1, 2008. We limited our analysis
to those 85,102 BES representing sequences from both
ends of 42,551 sBACs. Prior to the blastn analyis, these
BES were analyzed using RepeatMasker (http://www.
repeatmasker.org; default parameters, v. 3.15) with the
Fabaceae repeats database obtained from Plant Repeat
Database [[39]; http://plantrepeats.plantbiology.msu.edu/
; file: TIGR_Fabaceae_Repeats.v2_0_0.fsa.txt]. A fasta file
containing the singletons and EST contigs is available
upon request from the corresponding author.

Blastn analysis
The 20 pseudochromosomes from the version 1.01
release of the soybean assembly were downloaded from
ftp://ftp.jgi-psf.org/pub/JGI_data/Glycine_max/Glyma1/
assembly/sequences/ and used as a database for all

blastn analyses. First, 300 EST or singletons, originally
developed by Ramirez et al. [40], using a set of 21,026
EST, and 15 other sequences, all mapped onto the 11
common bean linkage groups at a LOD value of 2
[McConnell M, Chikara S, Mamidi S, Rossi M, Lee R,
McClean PE. A gene-based linkage map of common
bean (Phaseolus vulgaris), submitted.], were used as a
query. Subsequently, blastn analyses were performed
using the new set of ESTs (11,043) and singletons
(9,847) as one query, and the 85,102 BES as a second
query. A final query consisted of 694 complete P. vul-
garis coding sequences (CDS) downloaded from NCBI
http://www.ncbi.nlm.nih.gov/ on August 8, 2008.
Because we were looking for significant levels of orthol-
ogy between common bean and soybean sequences, we
initially limited all blastn analysis to hits with E-values
less than 1 × 10-10 and overlaps of at least 150 nt. The
results reported here are based on the first high scoring
pair. See Additional File 1 for all of the common bean
sequences that met these criteria.

High density mapping of linkage group Pv7
Primers were developed for 15 contig or singletons that
electronically mapped between markers g2298 and
g1378 on linkage group Pv7. A 3’-primer was designed
to a sequence within 150 nt of the putative stop, and
the corresponding 5’ primer was located about 500 nt
upstream of the 3’-primer site. Subsequent PCR amplifi-
cation and sequencing followed the procedures
described in McClean et al. [41]. Based on sequence
polymorphism, either CAPs or SNP diagnostic markers
were developed. These markers were used to score poly-
morphisms among members of the community-wide
BAT93 × Jalo EEP558 RI population. These marker loci
were then mapped using the MAPMAKER software
[42]. The final order was verified using the “ripple” com-
mand with a LOD value of 3.0.

List of abbreviations
BAC: bacterial artificial chromosome; BES: BAC end
sequence; bp: base pairs; CAPs: cleaved amplified poly-
morphic sequence; CDS: coding sequence; cM: centi-
morgans; EST: expressed sequence tags; Gm: Glycine
max; LOD: logarithm of (base 10) of odds; Mb: mega-
bases; MYA: million years ago; RFLP: restriction frag-
ment length polymorphism.

Additional file 1: Electronically mapped common bean loci based
on synteny to the soybean genome sequence. List of P. vulgaris loci
which met the following selection criteria for electronic mapping: e-value
less than 1 × 10-30, hits to two soybean chromosomes, query length
greater than 149 nt, and soybean position for the end of one soybean
locus and the beginning of the next locus was less than 50 nt.
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