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Abstract

Background: In order to understand patterns of adaptation and molecular evolution it is important to quantify
both variation in gene expression and nucleotide sequence divergence. Gene expression profiling in non-model
organisms has recently been facilitated by the advent of massively parallel sequencing technology. Here we
investigate tissue specific gene expression patterns in the zebra finch (Taeniopygia guttata) with special emphasis
on the genes of the major histocompatibility complex (MHC).

Results: Almost 2 million 454-sequencing reads from cDNA of six different tissues were assembled and analysed.
A total of 11,793 zebra finch transcripts were represented in this EST data, indicating a transcriptome coverage of
about 65%. There was a positive correlation between the tissue specificity of gene expression and non-
synonymous to synonymous nucleotide substitution ratio of genes, suggesting that genes with a specialised
function are evolving at a higher rate (or with less constraint) than genes with a more general function. In line
with this, there was also a negative correlation between overall expression levels and expression specificity of
contigs. We found evidence for expression of 10 different genes related to the MHC. MHC genes showed relatively
tissue specific expression levels and were in general primarily expressed in spleen. Several MHC genes, including
MHC class I also showed expression in brain. Furthermore, for all genes with highest levels of expression in spleen
there was an overrepresentation of several gene ontology terms related to immune function.

Conclusions: Our study highlights the usefulness of next-generation sequence data for quantifying gene
expression in the genome as a whole as well as in specific candidate genes. Overall, the data show predicted
patterns of gene expression profiles and molecular evolution in the zebra finch genome. Expression of MHC genes
in particular, corresponds well with expression patterns in other vertebrates.

Background
Studies of molecular evolution have until recently
focused on nucleotide divergence, while studies of varia-
tion in gene expression profiles have mainly been
restricted to a few model species such as Drosophila
and mice [1-4]. This is because the technologies for
studying gene expression have not been available (or
have been too costly to develop) for non-model species
[5]. However, sequencing-based technologies for expres-
sion profiling can now be utilised to this end. By count-
ing the number of reads generated by sequencing
of cDNA from different genes in the transcriptome,
one can get an estimate of the expression level of
these genes in the particular tissues sampled [6].

A complementary approach is to scan publicly available
databases of expressed sequence tags (ESTs) for the
genes of interest. In addition to microarrays, these stra-
tegies, called digital transcriptomics, are today the most
commonly used methods for investigating expression
patterns [7]. Digital transcriptomics has received a great
deal of attention, but the use of these methods has been
restricted in many species by the requirement of having
a reference genome to evaluate and analyse the data.
The advent of massively parallel (next-generation)

sequencing is now starting to change this picture by
providing a cost-effective way of generating large
amount of sequence data in species where there is no
prior knowledge of the genome sequence [8-10]. Next-
generation sequencing technology generally generates
millions of short sequence reads, each read being tens
to hundreds of base pairs long, depending on the
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specific platform. This enables detection of genes even
with very low expression levels. Roche 454-sequencing
[11], in particular, generates reads that are long enough
to be informative in the absence of a reference genome
[12,13]. Here, we evaluate the use of 454-sequencing to
investigate tissue specific gene expression profiles.
Next-generation sequencing can be used to not only

describe genome-wide patterns of gene expression, but
also to characterise specific gene families or genetic
pathways. To illustrate this point, we use the ecologi-
cally important and widely studied genes of the major
histocompatibility complex (MHC) for a more detailed
analysis. These genes are a very common focus of stu-
dies that take a candidate gene approach to investigate
functionally important genetic variation in immune
function [14]. MHC genes are among the most variable
of the vertebrate genomes [15-18]. In particular, the
classical MHC genes (class I and class II) exhibit an
extraordinary level of polymorphism. This polymorph-
ism is strongly associated to the role of these genes in
regulating and triggering the adaptive immune response.
Studies have found links between nucleic acid variation
in the MHC genes and resistance to parasites [19,20],
sexually selected ornaments [21], mate choice [22],
maternal-foetal incompatibilities [23] and local adapta-
tion [24]. Typically studies of MHC variation have
focused on sequence variation only in a few highly poly-
morphic regions of class I and class II genes, while var-
iation in other genes, regions and expression levels has
largely been ignored. The completion of the genome
sequence of first the chicken (Gallus gallus) [25] and
now of the zebra finch (Warren et al. in press) have
opened the door for in-depth studies of organisation
and expression of MHC genes in birds. There are strik-
ing differences in the way the adaptive immune defence
operates in birds compared to mammals [26] and it
could be envisioned that such studies will reveal new
insights in the evolution of vertebrate immunity.
The aim of the present study was to investigate tissue-

specific gene expression patterns in the zebra finch.
With the sequencing of its genome, the zebra finch has
taken a major step towards becoming an important
model system for bird genomics [27,28]. Outside of
some recent studies of gene expression in brain [29-31],
however, little is known about genome-scale, and organ-
ism-wide patterns of gene expression in song birds. In
this study we describe patterns of gene expression
across six zebra finch tissues and explore the relation-
ship between expression profiles of genes and character-
istics of their molecular evolution. To this end, we use a
next-generation sequencing (NGS) digital transcrip-
tomics approach known as RNA-Seq [32,33]. This meth-
odology was recently employed to study gene expression
differentiation between two subspecies of crow (Corvus

corone) [34], but as far as we are aware, this is the first
time that a bird transcriptome has been characterised in
multiple tissues using an NGS RNA-Seq approach. In
addition to global patterns of gene expression, we high-
light patterns of expression in the genes of the MHC.
Because of the complex history of duplication among
certain MHC genes, gene expression profiles have the
potential to offer insight into the evolutionary fates of
these duplicated genes. Importantly, characterizing the
expression of MHC genes will also facilitate downstream
studies of these genes in ecological contexts by identify-
ing functionally important loci.

Results
Assembly of 454 sequencing reads
After trimming and removal of contaminant sequences a
total of 1,882,439 reads were available, with a mean read
length of 83 nucleotides. 741,917 of these reads were
assembled (Additional file 1: Appendix s1) de-novo (the
rest were kept as singletons) into 49,606 contigs with a
mean contig length of 150 nucleotides (range 41-2,953;
Figure 1) and a mean of 15 reads per contig. The total
length of all contigs was 7,439 kb. For read and contig
statistics for each tissue separately see Additional file 1:
Appendix s2. 582 (1.2%) of the contigs showed signa-
tures of multiple splice variants, as indicated by gaps in
alignments between the contig and one or more of the
reads that contribute to that contig.

Expression levels for contigs
Expression levels were highly variable between tissues
and contigs. A vast majority of contigs were made up by
only a few reads (median = 6) but some had indications
of very high expression levels (maximum 6,028 reads;
Additional file 1: Appendix s3). As would be expected
(at least until a majority of the contigs are large enough
to include the whole transcribed gene) there was a posi-
tive relationship between contig length (log number of
base pairs) and contig depth (log number of reads; r =
0.636, df = 49,577, p < 0.0001, Figure 2, Additional file
1: Appendix s4). The tissue specificity of the expression
(τ) of contigs was negatively correlated with the overall
(log) amount of expression (r = -0.29, df = 49,076, p <
0.0001, Figure 3). This negative correlation could be the
result of a sampling artefact during the calculation of τ.
We found however, that the observed correlation was
significantly (t451 = 8.35, p < 0.0001) stronger than the
mean simulated correlation (mean r = -0.120) based on
unbiased τ-values calculated from randomisations of re-
sampled data. This suggests that there is indeed a sam-
pling bias in the calculation of τ but that it is not strong
enough to alone explain our observed correlation. Inter-
estingly, τ seems to have a somewhat bimodal distribu-
tion (Additional file 1: Appendix s5) with peaks around
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0.5 and 0.75, indicating that the genes may group into
two different classes of tissue specificity. However, only
a few contigs showed evidence of very low τ-values indi-
cative of housekeeping genes.

Outlier contigs with high expression levels
Three contigs were found to have strikingly high overall
expression levels; following BLAST searches against the
chicken and zebra finch gene databases they were found
to represent Albumin (6,028 reads), Heat Shock 90 kDa
Protein 1 Beta (4,305 reads) and NADH Dehydrogenase
Subunit 1 (4,753 reads). All of these are considered to
be so-called housekeeping genes (genes with equal
expression across tissues and treatments) and are also
highly expressed in mammals. Some contigs were con-
spicuous in having very strong expression in one or few
tissues. Genes represented by these include Elongation
Factor 1-Alpha (1,268 reads in embryo), Cytoplasmic
Beta-Actin gene (1,185 reads in embryo), Haemoglobin
Alpha (1,516 reads in spleen) and MHC Class II Asso-
ciated Invariant Chain Ii (2,137 reads in spleen). One
contig was found in high levels in testes (1,499 reads)
but was almost completely absent in other tissues, the

BLAST search revealed that this originates from a con-
tamination with DNA from a freshwater planarian
(Schmidtea). This is likely to have occurred in the
laboratory that carried out the sequencing (the
Washington University Genome Center), since the gen-
ome of Schmidtea mediterranea was being sequenced
there at the same time as the zebra finch cDNA pre-
paration. This contig, together with 26 other contigs
resulting from contamination (mainly from planarians),
was removed from the data before conducting down-
stream analyses.

Coverage of the zebra finch transcriptome
13,562 contigs from the de-novo assembly and 118,165
of the non-assembled singletons gave significant BLAST
hits against at least one predicted zebra finch gene.
Since the contigs were generally much shorter than the
total cDNA length of the gene it was commonly found
that several different contigs matched the same gene. In
total 11,793 zebra finch transcripts present in the Bio-
Mart database were found to correspond to the 454/
EST transcriptome contigs and singletons. This repre-
sents 65% of the total characterised zebra finch

Figure 1 Distribution of contig lengths (log) from 454 sequencing reads of all tissues combined.
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transctiptome (18,241 unique transcripts). The tran-
scripts are derived from 11,567 different genes, suggest-
ing that more than one splice variant was detected (and
placed in different contigs) for ~2% of the genes. We
also identified potential novel splice variants for 270 of
the expressed zebra finch genes, as indicated by gaps in
the alignments of the contig and the gene prediction.
On average 38% of the lengths of represented transcripts
were covered by contig sequences and 370 transcripts
were fully covered.
To further investigate the extent of transcriptomic

coverage, we investigated the presence of known genes
in various metabolic pathways and signalling cascades

(Table 1)[35]. For the metabolic pathways about 85% of
the genes were represented and for signalling cascades
we found around 60%. 2,285 (19%) of all genes found
were expressed in all investigated tissues and 2,998
(25%) were expressed exclusively in one tissue (Table 2).
Out of the 36,044 contigs that did not give any matches
to known predicted zebra finch transcripts, most
(34,456) still gave highly significant BLAST hits (e < 1e-
10) against the zebra finch genome sequence, suggesting
that these represent transcribed regions that have not
yet been annotated. The remaining 1,588 contigs (those
that did not match either the annotated zebra finch
genes or the genome sequence) may represent genes in

Figure 2 Positive relationship between length (log number of bases) and depth (log number of reads) of contigs for the whole
dataset (all tissues combined). The line represents a linear regression of the data (slope = 0.33, Intercept = 4.23, R2 = 0.40, p < 0.0001).
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Figure 3 Total expression level plotted against tissue specificity of gene expression (τ) for all contigs.

Table 1 Number of genes for specific metabolic and signalling pathways identified in the zebra finch genome that
were present in the transcriptome assembly presented here

GO number Biological process Total # zebra finch genes # present in this analysis % represented Mean τ (95% CI)

GO:0006096 Glycolysis 31 37 84 0.41 (0.30 - 0.51)

GO:0006094 Gluconeogenesis 7 6 86 0.56 (0.25 - 0.86)

GO:0006098 Pentose Phosphate 8 7 88 0.44 (0.31 - 0.56)

GO:0006101 Citrate metabolic processes 2 2 100 0.52 (NA)

GO:0007224 Hedgehog signalling pathways 15 7 47 0.50 (0.38 - 0.62)

GO:0007259 JAK/STAT cascade 8 5 63 0.55 (NA)

GO:0007219 Notch signalling 19 13 68 0.53 (0.42 - 0.65)

GO:0016055 WNT signalling 48 20 42 0.51 (0.38 - 0.64)

GO:0002224 Toll like receptor signalling 6 3 50 0.67 (NA)

- MHC genes 16 10 62 0.60 (0.40 - 0.80)

Number of MHC related genes included in this study is also given. The mean index of tissue specificity of expression (τ) and its 95% CI (when more than two
τ values) for each pathway is also given.
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regions of the genome that have not been sequenced
and/or assembled in the current genome assembly, or
additional contamination from other organisms that are
not represented in GenBank.

Analyses of gene expression profiles
We found a positive correlation between tissue specifi-
city of expression (τ) and the ratio of non-synonymous
to synonymous substitution rate (ω) when compared to
the chicken orthologue of the gene in question (rs =
0.20, df = 7,342, p < 0.0001, Figure 4). There was also a
negative correlation between total expression level of
the gene and ω (rs = -0.071, df = 10,711, p < 0.0001,
Additional file 1: Appendix s6). There was a weak posi-
tive correlation between the length of the gene and the
total level of gene expression (rs = 0.059, df = 10,711,
p < 0.0001), and a negative correlation between gene
length and τ (rs = -0.065, df = 7,342, p < 0.0001). There
were differences in ω between the tissues in which
genes were primarily expressed (Kruskal-Wallis test,
c2 = 106.43, df = 5, p < 0.0001). Genes that were
primarily expressed in the embryo had the lowest mean
ω-value (Table 2). The expression specificity (τ) of genes
also varied significantly between tissues of maximal
expression (ANOVA, F5 = 87.5, p < 0.0001). The lowest
tissue specificity was found in genes with primary
expression in embryo and muscle, while the highest
τ was found in genes with maximal expression in skin
and testes (Table 2).

Analysis of expression in relation to GO-terms
There were 20 gene ontology (GO) terms overrepre-
sented (Fisher’s adjusted p < 0.05) in genes with high
levels of expression specificity (6 for “biological process”,
2 for “cellular component” and 12 for “molecular func-
tion"; Additional file 1: Appendix s7). These represent
processes such as cellular and organelle movement and
specific enzymatic processes (for example “lipid meta-
bolic processes” and “carboxypeptidase activity”). Some

GO terms overrepresented in genes with high tissue
specificity are associated with reproduction (such as
“sperm motility”) and immune defence (such as “foam
cell differentiation”, “serine-type endopeptidase activity”
and “chemokine activity”). Genes identified as having
low tissue specificity of gene expression were signifi-
cantly overrepresented for 47 different GO terms (19 for
“biological process”, 14 for “cellular component” and 14
for “molecular function"; Additional file 1: Appendix s8).
These terms generally represented functions such as
protein synthesis and basal metabolic processes.
Gene ontology terms overrepresented in genes primar-

ily expressed in embryo were mostly associated with cell
division and protein synthesis (Additional file 1: Appen-
dix s9). Gene ontology associated with genes with high-
est expression in liver indicated functions of specific
metabolic processes - reactions involving oxygen and
energy related processes (Additional file 1: Appendix
s10). Also genes primarily expressed in muscles were
associated with GO terms related to energy utilisation
and especially the function of the mitochondria (Addi-
tional file 1: Appendix s11). In genes with the highest
expression levels in skin there was an overrepresentation
of GO terms related to cytoskeletal structures and cell
proliferation (Additional file 1: Appendix s12). Of main
interest in relation to MHC and immune function were
genes with primary expression in spleen. GO terms
associated with expression in this tissue include “leuko-
cyte adhesion”, “immune response”, “cell surface recep-
tor linked signal transduction” and “chemokine activity”,
but also several terms related to ribosomal activity
(Additional file 1: Appendix s13). Lastly, there were a
large number of GO terms overrepresented in genes
with maximal expression in testes, including for example
“spermatogenesis” and “microtubule motor activity”
(Additional file 1: Appendix s14).

Validation of expression profiling: “housekeeping” genes
We specifically investigated expression patterns in four
widely used housekeeping genes that have been shown
to have similar levels of expression over a wide range of
tissues and treatments in birds [36,37]. Two highly
expressed genes, Ubiquitin (UB) and Glyceraldehyde-3-
Phosphate Dehydrogenase (GAPDH), were represented
by 7,160 and 12,397 reads, respectively. The tissue speci-
ficities of gene expression (τ) for these were 0.15 for UB
and 0.16 for GAPDH (both within the lower 3rd percen-
tile of the total distribution of τ) Two genes with med-
ium expression levels also had low gene expression
variation between tissues. Ribosomal Protein S13
(RPS13) was found in 395 reads and had a τ-value of
0.20, while 60S Ribosomal Protein L30 (RPL30) was
found in 326 reads with a τ-value of 0.21 (within the
lower 7th percentile of the total distribution of τ).

Table 2 Mean dN/dS (ω) values and index of tissue
specificity of expression (τ) for genes with maximal
expression in each of the investigated six tissues,
together with 95% confidence intervals (CI)

Tissue Nmax (Nunique) ω 95% CI (ω) τ 95% CI (τ)

Embryo 2,033 (454) 0.132 0.120 - 0.144 0.438 0.430 - 0.446

Liver 1,347 (552) 0.157 0.150 - 0.164 0.518 0.506 - 0.530

Muscle 738 (348) 0.278 0.015 - 0.541 0.458 0.440 - 0.475

Skin 964 (427) 0.155 0.145 - 0.165 0.561 0.547 - 0.574

Spleen 1,000 (368) 0.161 0.140 - 0.182 0.492 0.479 - 0.505

Testes 2,996 (849) 0.165 0.148 - 0.182 0.542 0.534 - 0.549

Nmax represents the number of genes with maximal expression in each of the
tissues and the number within brackets (Nunique) is the number of genes
which are expressed uniquely in that tissue.
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Case study of expression profiling: MHC genes
We surveyed expression data for 16 MHC-related genes
found in the zebra finch assembly and targeted BAC
sequencing (Balakrishnan et al. in review, GenBank:
AC192433, AC191651, AC191861, AC192431,
AC232985, AC232854). We found evidence for expres-
sion of ten different MHC related genes in the zebra
finch (Table 3). Thus the coverage of these genes is
comparable to the rest of the genome (Table 1). Among
these there was evidence for one expressed MHC class I
loci but we did not find expression of any MHC class II
loci in the present dataset. This is not to say that there
are no expressed MHC class II molecules in the zebra

finch, but only that these genes are expressed at too low
levels in the sampled tissues to be detected using our
methodology. The expression patterns of MHC genes
were generally tissue specific (τ ranging from 0.336 to
0.833), with the highest expression levels for most genes
in spleen. A detailed presentation of the expression for
specific MHC genes can be found in a separate supple-
mentary text (Additional files 2 and 3). One of the
MHC genes, CD74 (Ii) presents a case of alternative
splicing. As is true in many other species, we found evi-
dence for at least two differently spliced isoforms of this
gene, represented by different contigs in our 454
sequence assembly (Additional file 2; Figure s3).

Figure 4 Positive relationship between the rate of non-synonymous/synonymous substitution (log (ω+1)) and the index of specificity
of gene expression (τ) for zebra finch against chicken comparisons of orthologous genes. The grey data points represent MHC genes.
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Discussion
We have used transcriptomic data from six different tis-
sues, generated by 454-sequencing [11], to investigate
expression patterns of different zebra finch genes. Our
results highlight, in a new evolutionary lineage, a num-
ber of trends in the evolution of gene expression pro-
files. Genes with a high degree of tissue specificity in
expression levels also had high non-synonymous to
synonymous rate of nucleotide substitutions (dN/dS),
while genes with high overall expression levels had low
dN/dS ratios. Thus genes with a more specialised func-
tion (lower overall expression and higher degree of tis-
sue specificity) seem to be evolving at a higher rate (or
with less constraint) than genes with a more general
function (high overall expression and low degree of tis-
sue specificity). These results recapitulate those of
Axelsson and co-workers [38] who analysed chicken
expression profiles in conjunction with sequence diver-
gence data from chicken and zebra finch. Similar pat-
terns of molecular evolution and expression specificity
have also been found in mammals [39]. One important
consequence of this finding for future studies of gene
expression is that genes under strong positive selection
might be missed if RNA from the appropriate tissues is
not sequenced. In other words, the genes that are likely
to be relevant for explaining genetic variation in ecologi-
cally important processes such as host-parasite co-evolu-
tion or reproduction [40] may be relatively less likely to
be sequenced. This is particularly relevant in the present
study system because the vast majority of gene expres-
sion studies in passerine birds have focussed on a single
tissue, the brain.
Overall about 65% of the annotated zebra finch tran-

scripts were covered by 454 sequencing in this study.
An analysis of genes in well characterised metabolic
pathways and signalling cascades [35] also corroborate

this number. There is also some indication that more
than one splice variant [41] was detected for some of
the genes. Most of the contigs that did not match any
of the annotated zebra finch transcripts still gave highly
relevant hits against the zebra finch genome, suggesting
that these represent novel genes that have yet to be
annotated in the zebra finch genome. A few contigs that
did not match anywhere in the zebra finch genome
could either be part of genetic regions that have not
been sequenced in the present zebra finch genome
assembly or may represent contamination from other
organisms. Higher coverage transcriptome sequencing
will be needed to complete the zebra finch transcrip-
tome and to fully characterize splice-variants.
Genes primarily expressed in embryo had low dN/dS

ratios, while genes with the highest expression in testes
showed high ratio. Low dN/dS ratios of embryonically
expressed genes may represent stabilizing selection and
high evolutionary constraint on core developmental and
housekeeping genes [42]. High dN/dS in testes-expressed
and reproductive genes has also been observed in
human versus chimpanzee comparisons [40], in Droso-
phila [43,44] and in mice [45]. Such a pattern may be
attributable to sexual selection acting on genes impor-
tant for traits involved in reproduction. High dN/dS
values of genes expressed primarily in spleen is also
concordant with previous studies showing high rate of
evolution in genes involved in the immune system [46].
Several of the MHC genes investigated in this study had
primary expression in spleen and high dN/dS ratios of
these genes are often seen as an indication of balancing
selection acting on them [47].
In addition to performing genome wide analyses we

also used the 454 transcriptome sequence data to investi-
gate specific genes of interest. In particular, special atten-
tion was given to genes of the major histocompatibillity

Table 3 Expression of zebra finch MHC genes in seven different tissues expressed as number of transcripts
per million (TPM) [57]

Gene Brain, EST Embryo Liver Muscle Skin Spleen Testes τ

TUBB 21.7 3.1 0.0 0.0 0.0 0.0 0.0 -

TRIM7.2 97.8 0.0 0.0 3.1 0.0 0.0 0.0 0.833

TRIM39 0.0 0.0 2.5 0.0 4.0 6.9 3.3 0.519

TRIM27 10.9 3.1 0.0 0.0 0.0 0.0 0.0 -

Ii 76.1 182.2 323.2 887.5 241.7 4,060.4 250.2 0.336

Class I 130.4 6.2 106.9 18.4 31.7 1,695.0 110.1 0.497

CIITA 0.0 0.0 0.0 0.0 0.0 10.4 0.0 -

CD1A 0.0 0.0 2.5 0.0 0.0 55.6 0.0 0.817

BRD2 21.7 0.0 0.0 0.0 0.0 0.0 0.0 -

B2M 10.9 0.0 45.8 9.2 27.7 896.1 43.4 0.602

Library size 92,040 323,897 392,890 325,646 252,349 287,902 299,755

The total number of reads in each tissue library after trimming (library size) and the tissue specificity of gene expression (τ) are also given (τ values based on
three or fewer reads are omitted, see Methods).
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complex (see Additional file 2 for details). We found evi-
dence for expression of ten different genes associated
with the major histocompatibility complex. Most of these
were primarily expressed in spleen, although there were
also high levels of expression in brain and liver for some.
Expression in the spleen is hardly surprising given the
function of spleen in the immune defence. The expres-
sion of MHC genes in the brain however, was only rela-
tively recently discovered in mammals [48] and has not
been previously described in birds. It will be of interest to
determine whether the role of the MHC in the brain is
conserved across vertebrates. Furthermore, several gene
ontology terms related to immune response were overre-
presented in genes with primary expression in spleen.
Some GO terms related to immune response were also
overrepresented in genes with high tissue specificity,
indicating that many immune genes are expressed mainly
in a few specialised tissues.
For a few known MHC genes we could not detect any

expression. This illustrates the fact that one may not
necessarily find specific genes of interest in a next gen-
eration transcriptome sequencing dataset, especially if
they are expressed at very low levels or only in specific
tissues or life history stages. On the other hand, ongoing
development of next generation sequencing technologies
means that deeper coverage will be obtained enabling
gene finding of lowly expressed genes. Coverage of
MHC genes was within the range of other well charac-
terised groups of genes related to specific metabolic and
signalling pathways. These genes had medium levels of
tissue specificity of expression, and there was a tendency
for MHC genes to have higher levels of expression spe-
cificity (Table 1).
In expression profiling it is preferable to use

sequences from a non-normalized cDNA library to
avoid bias in the estimates of expression individual
genes [49]. In our case the only data available for gene
expression in different tissues came from cDNA libraries
that were normalized to increase the abundance of rare
transcripts [50]. Thus there is a risk that our expression
estimates might be biased. In particular the expression
levels of rare transcripts are probably overestimated
while the levels for very common transcripts should be
underestimated. This also means that estimates of tissue
specificity of gene expression (τ) may be underestimated
for individual genes. We argue, however, that the com-
parative analyses presented here can be performed using
this dataset. There are at least four lines of evidence
that these analyses are valid. 1) There is still consider-
able variation in expression levels between the different
genes and tissues in our study, with many genes only
expressed in one or a few tissues. 2) The analysis con-
cerning gene expression gave results in the predicted
direction. For example there was a positive relationship

between specificity of gene expression and dN/dS ratio
[38]. 3) The expression of most MHC genes was by far
strongest in spleen which is what would be predicted
for genes involved in immune defence. Further, GO
terms overrepresented for genes with maximal expres-
sion in a certain tissue seemed to correspond well to
those expected given the biological functions of the dif-
ferent tissues. 4) The expression levels of several house-
keeping genes seemed to be stable across the different
tissues analysed here.
One potential explanation for our failure to find 6 of

the 16 MHC genes surveyed is that the relatively short
contigs generated here, in combination with oligo dT
priming, produced a strong 3’ bias in the 454 sequen-
cing. Indeed, many of the 454 reads fell in the 3’
untranslated region (UTR) of genes (Additional file 2:
Figure s4). It is therefore possible that these MHC genes
were expressed, but the sequence reads only included
UTR sequence. To investigate this issue we collected
information from the avian MHC genes where the 3’
UTR has been sequenced. UTR regions of avian MHC
genes are not well-described at this point but we found
3’ UTR sequence data for MHC class IIB from chicken,
turkey, quail, New Zealand robin (Petroica australis),
Bengalese finch (Lonchura striata) and zebra finch
(locus 2 from the genome sequence). For MHC class I
we found data from chicken, turkey, quail, mallard duck
(Anas platyrhynchos) and great reed warbler (Acrocepha-
lus arundinaceus), and we also included data from duck
CD74 (Ii). These sequences were blasted against all
zebra finch 454 contigs and positive matches were veri-
fied by a reciprocal BLAST against the zebra finch gen-
ome and chicken transcriptome databases. Only two of
our contigs matched the 3’ UTR MHC sequences, both
representing the CD74 (Ii) transcript. Therefore it is
unlikely that the failure to detect more MHC genes can
be attributed solely to the short, and 3’ UTR biased,
contigs we assembled. New and improved methods for
library preparation are now used to deal with this pro-
blem of 3’ bias.
In general, the contigs produced using de-novo

assembly of the 454-reads only partially covered the
gene transcripts, with a mean contig length of only
150 nucleotides. These data were produced using the
first generation of the 454-sequencing system (GS20)
for which maximal read lengths were only around 125
bp. With application of the new generation of 454-
sequencing (GS FLX Titanium), which generates more
and longer reads, one would expect to get longer con-
tigs and more contigs covering the whole of the gene
coding sequence [51]. On the other hand deeper cover-
age of the transcriptome, and expression data on
more genes, would be obtained using Illumina/Solexa
or ABI SOLLiD technology. Both of these approaches
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generates a much larger amount of reads compared to
454 sequencing but at a cost of much shorter reads.
They are thus particularly useful for species, like the
zebra finch, that have a characterized genome
sequence.
This study highlights the utility of next-generation

sequencing data for expression pattern profiling. The
zebra finch genome sequence was recently released and
this, together with the gene predictions available, has
been very useful when analysing the data. Still, this
methodology would also work well when addressing a
non-model species without any prior genome informa-
tion [10]. In particular, the long read lengths of the new
Titanium 454-generation means that many expressed
genes can be identified using comparative sequence ana-
lysis against genomes of distantly related species. The
combination of data on sequence and gene expression
variation makes this strategy useful for future studies in
novel species. However, our study also shows that it
may not always be possible to find and sequence specific
genes of interest using whole-transcriptome sequencing.
For example, we did not find any MHC class II, TAP or
tapasin sequences, even though there is no reason to
believe that these are not present and expressed in the
zebra finch genome. It may be that gene capture meth-
ods [52] or more efficient cDNA normalization and ran-
dom primed libraries are needed to be able to pick up
specific and very rare transcripts. Another approach to
improving the discovery of genes specifically involved in
the immune system would be to boost an immune
response prior to cDNA sampling.

Conclusions
Our analysis of the zebra finch transcriptome extends
conserved patterns of gene expression profiles and
molecular evolution to the avian lineage. Genes with
low overall and tissue specific expression were shown
to evolve at a higher rate than genes with high and
unspecific expression levels. Such genes were also
shown to be related to biological functions such as
reproduction and immune response. Furthermore
genes with primary expression in spleen were often
related to the immune function (for example several
MHC genes). Our results highlight the usefulness of
next-generation sequence data for investigating expres-
sion profiles in the genome as well as in specific candi-
date genes. However, as illustrated by our survey of
MHC genes, it is far from certain that all genes of
interest will be present in a given transcriptome
sequencing run. Therefore care must thus be taken to
ensure sampling of the appropriate tissues and life
stages if the aim of the sequencing run is to examine
specific gene families or physiological pathways.

Methods
Sequence data
Gene expression was analysed using 454 pyrosequencing
data generated by sequencing of cDNA from six differ-
ent tissues (Embryo, Liver, Muscle, Skin, Spleen and
Testes) of from pooled samples from six different zebra
finches in the University of Sheffield colony [53]. Raw
data (.sff files) from the GS20 sequencer were kindly
provided by Wesley C. Warren (The Genome Center,
Washington University School of Medicine). This repre-
sent two sequencing runs of cDNA from each tissue
type, totalling 1,961,888 reads. Library construction of
polyadenylated cDNA was performed using a variation
of the Clontech SMART system, in which the 5’ and 3’
PCR adapters contain type IIs restriction enzyme sites
(MmeI). The optimally-cycled product was then normal-
ized using a duplex-specific nuclease (DSN) that prefer-
entially digests double-stranded DNA in the presence of
single-stranded DNA (Trimmer; Evrogen). For more
details about cDNA synthesis and normalization see
[50]. The produced sequence reads are also available as
fasta files in the NCBI trace archive http://www.ncbi.
nlm.nih.gov/Traces/trace.cgi?cmd=retrieve&s=search&-
m=obtain&retrieve=Search&val=SPECIES_CODE%
3D’TAENIOPYGIA+GUTTATA’+AND+CENTER_-
NAME%3D’WUGSC’+AND+TRACE_TYPE_CODE%
3D’454’. For expression analysis of MHC genes we also
used EST libraries from zebra finch brain tissue down-
loaded from the NCBI website. Coding sequences from
manually-annotated MHC genes were obtained by
BLAST searches and HMMER gene prediction of the
zebra finch genome, as described in Balakrishnan et al.
(in review). After screening zebra finch BAC libraries
using probes designed for MHC genes, seven BAC
clones were sequenced at 6x coverage (Balakrishnan
et al. in review). Predicted zebra finch gene sequences
(cDNA, version 3.2.4.54) and chicken protein sequences
(version 2.52) were downloaded from the ENSEMBL ftp
site http://www.ensembl.org/info/data/ftp/index.html.

454 assembly
Trimming and assemblies (both de-novo and templated,
see below) of 454 sequence fragments were performed
using SeqMan NGen version 2.0 (DNASTAR, Inc.). The
sequences were trimmed of low-quality sequence, poly-
A tails, Smart primer sequence from cDNA synthesis
and 454 adaptor sequence before assembling into con-
tigs. In order to avoid falsely joining reads that do not
belong to the same gene, we increased the match size to
41 base pairs. This parameter defines the length of
sequences common to two or more sequences that are
used to join reads together into contigs. For other para-
meters we used default values or values suggested in the
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software manual for assembling 454 data (for complete
trimming and assembly parameters see Additional file 1:
Appendix s1). 454 reads for all six tissues were first
combined in a full data de-novo assembly. In order to
identify contigs with multiple splice variants we also
searched for gaps (defined here as more than 15 bases
long) in the alignments between all the individual reads
and the best matching contig. Alternative isoforms
would be expected to generate alignment gaps if a con-
tig contains an extra (or different) exon which is not
present in the read. In order to check for tissue specifi-
city of expression, another assembly was then made for
each tissue separately using the contigs created by the
full data assembly as a sequence template. To investigate
expression of MHC genes specifically we also performed
a templated assembly using zebra finch chromosome 16
and MHC containing BAC sequences as a reference
sequence (for more details about the MHC analyses see
Additional file 2).

Transcriptomic analysis
All of the contigs and singletons from the de-novo
assembly of 454 reads from all six different tissues
were blasted (BLASTN) against the Ensembl zebra
finch gene predictions using a cut-off e-value of 1e-10.
Only the best BLAST (minimum e-value, maximum
length) hit from each contig was extracted. For each
unique gene we then combined the data on number of
reads for each corresponding contig and singletons
(since most contigs did not cover the whole gene it
was common that several different contigs and single-
tons gave BLAST hits to different parts of the same
gene). To calculate the proportion of the individual
genes that were covered with our transcripts we used
the length of the gene divided by the sum of the length
of all contigs aligned to that gene. In the few cases
where the total contig length was larger than the gene
length (probably due to overlapping contigs) the gene
coverage was set to 100%. We also searched for gaps
in the alignments between the contigs and the
Ensembl gene predictions, as these are indications of
the presence of novel splice variants in the expression
data. Data on gene length, name, genomic location and
dN/dS ratio (compared to the chicken orthologue) were
then extracted from BioMart http://www.ensembl.org/
biomart/martview/. Values of dN/dS for MHC genes
not annotated in Ensembl were calculated using the
codeml model in PAML4 [54] using the IDEA inter-
face [55]. To investigate transcriptome coverage of our
contigs and reads matching Ensembl contigs we
searched specifically for genes in well characterised
metabolic pathways and signalling cascades. The speci-
fic pathways investigated were chosen based on similar
studies e.g. [35]. We also searched (BLASTN) the

current assembly zebra finch genome (version 3.2.4)
for matches to all contigs that did not produce good
hits to any annotated gene models in order to identify
candidates for new and non-annotated zebra finch
genes.

Tissue Specificity of Gene Expression
We calculated the index of tissue specificity of gene
expression (τ)[56], using the guidelines in [57]. Thus,
the number of transcripts per million (TPM) was set to
2 for tissues with no detected expression of the gene in
question. Furthermore τ estimates based on 3 or fewer
reads were removed from the analyses. This was done
to reduce the effect of sampling stochasticity when
expression levels were very low. The theoretical range of
τ for a specific gene varies between 0 and 1, where 0
means that the gene is equally expressed in all studied
tissues (housekeeping genes) and values approaching 1
means that the gene is expressed specifically in one tis-
sue [56]. The tissue of maximal expression was defined
as the tissue with the highest number of reads for a spe-
cific gene. Genes with less than four reads were also
excluded from lists of maximal expression.

Simulation to investigate bias in τ
To investigate possible bias in the calculation of τ, we
also performed a simulation of τ calculated from re-
sampled data. For each of the 452 levels of gene
expression in our data we randomly drew the same
number of contigs as observed from the full distribu-
tion of expression levels while keeping the relative
expression levels between tissues constant. This proce-
dure was iterated enough times to get the same num-
ber of data points as for the observed data. As these
data points all come from contigs with the same
expression level, τ values calculated from these should
be unbiased with respect to expression. We then calcu-
lated the correlation coefficient between total gene
expression and τ for each of these 452 simulated data-
sets and compared these to the observed correlation
coefficient for the original dataset.

Gene ontology analysis
The five hundred genes with the highest and the five
hundred genes with lowest tissue specificity of expres-
sion, as well as all genes with maximal expression for
each of the six tissues, were compared against all other
zebra finch genes with respect to associated gene ontol-
ogy (GO) terms. GO terms more common in these
genes than expected by chance (adjusted Fishers p <
0.05) were identified using the CORNA algorithm [58],
applied using the web interface provided by Michael
Watson at the Institute for Animal Health http://bioin-
formatics.iah.ac.uk/tools/GOfinch.
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Statistical analyses
Sequence similarity searches were performed using a
stand-alone version of the BLAST (2.2.18) package [59].
Handling of BLAST output files, assembly results and
statistical analyses were performed in R (2.7.2) statistical
computing language [60]. Total expression levels and
dN/dS ratios of genes were not normally distributed
(Kolmogorov-Smirnov test, p < 0.0001) and therefore
non-parametric tests were used for analyses involving
these.

Additional file 1: Appendix s1 - s14. Additional tables and figures

Additional file 2: Appendix s15. Detailed survey of MHC genes

Additional file 3: Appendix s16. Alignment of the zebra finch MHC
class I gene
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